Top Banner
. . . . . . Section 4.7 Antiderivatives V63.0121.027, Calculus I November 19, 2009 Announcements I Next written assignment will be due Wednesday, Nov 25 I next and last quiz will be the week after Thanksgiving (4.1–4.4, 4.7) I Final Exam: Friday, December 18, 2:00–3:50pm . . Image credit: Ian Hampton
97

Lesson 23: Antiderivatives

May 18, 2015

Download

Technology

An antiderivative of a function is a function whose derivative is the given function. The problem of antidifferentiation is interesting, complicated, and useful, especially when discussing motion.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 23: Antiderivatives

. . . . . .

Section4.7Antiderivatives

V63.0121.027, CalculusI

November19, 2009

Announcements

I NextwrittenassignmentwillbedueWednesday, Nov25I nextandlastquizwillbetheweekafterThanksgiving(4.1–4.4, 4.7)

I FinalExam: Friday, December18, 2:00–3:50pm

..Imagecredit: IanHampton

Page 2: Lesson 23: Antiderivatives

. . . . . .

WhytheMVT istheMITCMostImportantTheoremInCalculus!

TheoremLet f′ = 0 onaninterval (a,b). Then f isconstanton (a,b).

Proof.Pickanypoints x and y in (a,b) with x < y. Then f iscontinuouson [x, y] anddifferentiableon (x, y). ByMVT thereexistsapointz in (x, y) suchthat

f(y) − f(x)y− x

= f′(z) = 0.

So f(y) = f(x). Sincethisistrueforall x and y in (a,b), then f isconstant.

Page 3: Lesson 23: Antiderivatives

. . . . . .

TheoremSuppose f and g aretwodifferentiablefunctionson (a,b) withf′ = g′. Then f and g differbyaconstant. Thatis, thereexistsaconstant C suchthat f(x) = g(x) + C.

Proof.

I Let h(x) = f(x) − g(x)I Then h′(x) = f′(x) − g′(x) = 0 on (a,b)

I So h(x) = C, aconstantI Thismeans f(x) − g(x) = C on (a,b)

Page 4: Lesson 23: Antiderivatives

. . . . . .

Objectives

I Givenanexpressionforfunction f, findadifferentiablefunction Fsuchthat F′ = f (F iscalledan antiderivativefor f).

I Giventhegraphofafunction f, findadifferentiablefunction Fsuchthat F′ = f

I Useantiderivativestosolveproblemsinrectilinearmotion

Page 5: Lesson 23: Antiderivatives

. . . . . .

Hardproblem, easycheck

ExampleFindanantiderivativefor f(x) = ln x.

Solution???

Exampleis F(x) = x ln x− x anantiderivativefor f(x) = ln x?

Solution

ddx

(x ln x− x) = 1 · ln x + x · 1x− 1

= ln x

Yes!

Page 6: Lesson 23: Antiderivatives

. . . . . .

Hardproblem, easycheck

ExampleFindanantiderivativefor f(x) = ln x.

Solution???

Exampleis F(x) = x ln x− x anantiderivativefor f(x) = ln x?

Solution

ddx

(x ln x− x) = 1 · ln x + x · 1x− 1

= ln x

Yes!

Page 7: Lesson 23: Antiderivatives

. . . . . .

Hardproblem, easycheck

ExampleFindanantiderivativefor f(x) = ln x.

Solution???

Exampleis F(x) = x ln x− x anantiderivativefor f(x) = ln x?

Solution

ddx

(x ln x− x) = 1 · ln x + x · 1x− 1

= ln x

Yes!

Page 8: Lesson 23: Antiderivatives

. . . . . .

Hardproblem, easycheck

ExampleFindanantiderivativefor f(x) = ln x.

Solution???

Exampleis F(x) = x ln x− x anantiderivativefor f(x) = ln x?

Solution

ddx

(x ln x− x) = 1 · ln x + x · 1x− 1

= ln x

Yes!

Page 9: Lesson 23: Antiderivatives

. . . . . .

Hardproblem, easycheck

ExampleFindanantiderivativefor f(x) = ln x.

Solution???

Exampleis F(x) = x ln x− x anantiderivativefor f(x) = ln x?

Solution

ddx

(x ln x− x) = 1 · ln x + x · 1x− 1

= ln x

Yes!

Page 10: Lesson 23: Antiderivatives

. . . . . .

Outline

TabulatingAntiderivativesPowerfunctionsCombinationsExponentialfunctionsTrigonometricfunctions

FindingAntiderivativesGraphically

Rectilinearmotion

Page 11: Lesson 23: Antiderivatives

. . . . . .

Antiderivativesofpowerfunctions

Recallthatthederivativeofapowerfunctionisapowerfunction.

FactThePowerRuleIf f(x) = xr, then f′(x) = rxr−1.

Soinlookingforantiderivativesofpowerfunctions, trypowerfunctions!

Page 12: Lesson 23: Antiderivatives

. . . . . .

Antiderivativesofpowerfunctions

Recallthatthederivativeofapowerfunctionisapowerfunction.

FactThePowerRuleIf f(x) = xr, then f′(x) = rxr−1.

Soinlookingforantiderivativesofpowerfunctions, trypowerfunctions!

Page 13: Lesson 23: Antiderivatives

. . . . . .

ExampleFindanantiderivativeforthefunction f(x) = x3.

Solution

I Tryapowerfunction F(x) = axr

I Then F′(x) = arxr−1, andwewantthistobeequalto x3.

I Apparently, r− 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =14.

I So F(x) =14x4 isanantiderivative.

I Check:ddx

(14x4

)= 4 · 1

4x4−1 = x3

I Anyothers? Yes, F(x) =14x4 + C isthemostgeneralform.

Page 14: Lesson 23: Antiderivatives

. . . . . .

ExampleFindanantiderivativeforthefunction f(x) = x3.

Solution

I Tryapowerfunction F(x) = axr

I Then F′(x) = arxr−1, andwewantthistobeequalto x3.

I Apparently, r− 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =14.

I So F(x) =14x4 isanantiderivative.

I Check:ddx

(14x4

)= 4 · 1

4x4−1 = x3

I Anyothers? Yes, F(x) =14x4 + C isthemostgeneralform.

Page 15: Lesson 23: Antiderivatives

. . . . . .

ExampleFindanantiderivativeforthefunction f(x) = x3.

Solution

I Tryapowerfunction F(x) = axr

I Then F′(x) = arxr−1, andwewantthistobeequalto x3.

I Apparently, r− 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =14.

I So F(x) =14x4 isanantiderivative.

I Check:ddx

(14x4

)= 4 · 1

4x4−1 = x3

I Anyothers? Yes, F(x) =14x4 + C isthemostgeneralform.

Page 16: Lesson 23: Antiderivatives

. . . . . .

ExampleFindanantiderivativeforthefunction f(x) = x3.

Solution

I Tryapowerfunction F(x) = axr

I Then F′(x) = arxr−1, andwewantthistobeequalto x3.

I Apparently, r− 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =14.

I So F(x) =14x4 isanantiderivative.

I Check:ddx

(14x4

)= 4 · 1

4x4−1 = x3

I Anyothers? Yes, F(x) =14x4 + C isthemostgeneralform.

Page 17: Lesson 23: Antiderivatives

. . . . . .

ExampleFindanantiderivativeforthefunction f(x) = x3.

Solution

I Tryapowerfunction F(x) = axr

I Then F′(x) = arxr−1, andwewantthistobeequalto x3.

I Apparently, r− 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =14.

I So F(x) =14x4 isanantiderivative.

I Check:ddx

(14x4

)= 4 · 1

4x4−1 = x3

I Anyothers? Yes, F(x) =14x4 + C isthemostgeneralform.

Page 18: Lesson 23: Antiderivatives

. . . . . .

ExampleFindanantiderivativeforthefunction f(x) = x3.

Solution

I Tryapowerfunction F(x) = axr

I Then F′(x) = arxr−1, andwewantthistobeequalto x3.

I Apparently, r− 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =14.

I So F(x) =14x4 isanantiderivative.

I Check:ddx

(14x4

)= 4 · 1

4x4−1 = x3

I Anyothers? Yes, F(x) =14x4 + C isthemostgeneralform.

Page 19: Lesson 23: Antiderivatives

. . . . . .

ExampleFindanantiderivativeforthefunction f(x) = x3.

Solution

I Tryapowerfunction F(x) = axr

I Then F′(x) = arxr−1, andwewantthistobeequalto x3.

I Apparently, r− 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =14.

I So F(x) =14x4 isanantiderivative.

I Check:ddx

(14x4

)= 4 · 1

4x4−1 = x3

I Anyothers?

Yes, F(x) =14x4 + C isthemostgeneralform.

Page 20: Lesson 23: Antiderivatives

. . . . . .

ExampleFindanantiderivativeforthefunction f(x) = x3.

Solution

I Tryapowerfunction F(x) = axr

I Then F′(x) = arxr−1, andwewantthistobeequalto x3.

I Apparently, r− 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =14.

I So F(x) =14x4 isanantiderivative.

I Check:ddx

(14x4

)= 4 · 1

4x4−1 = x3

I Anyothers? Yes, F(x) =14x4 + C isthemostgeneralform.

Page 21: Lesson 23: Antiderivatives

. . . . . .

Fact(ThePowerRuleforantiderivatives)If f(x) = xr, then

F(x) =1

r + 1xr+1

isanantiderivativefor f…

aslongas r ̸= −1.

FactIf f(x) = x−1 =

1x, then

F(x) = ln |x| + C

isanantiderivativefor f.

Page 22: Lesson 23: Antiderivatives

. . . . . .

Fact(ThePowerRuleforantiderivatives)If f(x) = xr, then

F(x) =1

r + 1xr+1

isanantiderivativefor f aslongas r ̸= −1.

FactIf f(x) = x−1 =

1x, then

F(x) = ln |x| + C

isanantiderivativefor f.

Page 23: Lesson 23: Antiderivatives

. . . . . .

Fact(ThePowerRuleforantiderivatives)If f(x) = xr, then

F(x) =1

r + 1xr+1

isanantiderivativefor f aslongas r ̸= −1.

FactIf f(x) = x−1 =

1x, then

F(x) = ln |x| + C

isanantiderivativefor f.

Page 24: Lesson 23: Antiderivatives

. . . . . .

What’swiththeabsolutevalue?

I F(x) = ln |x| hasdomainallnonzeronumbers, while ln x isonlydefinedonpositivenumbers.

I Forpositivenumbers x,

ddx

ln |x| =ddx

ln x

(whichweknew)I Fornegativenumbers

ddx

ln |x| =ddx

ln(−x) =1−x

· (−1) =1x

I Weprefertheantiderivativewiththelargerdomain.

Page 25: Lesson 23: Antiderivatives

. . . . . .

What’swiththeabsolutevalue?

I F(x) = ln |x| hasdomainallnonzeronumbers, while ln x isonlydefinedonpositivenumbers.

I Forpositivenumbers x,

ddx

ln |x| =ddx

ln x

(whichweknew)

I Fornegativenumbers

ddx

ln |x| =ddx

ln(−x) =1−x

· (−1) =1x

I Weprefertheantiderivativewiththelargerdomain.

Page 26: Lesson 23: Antiderivatives

. . . . . .

What’swiththeabsolutevalue?

I F(x) = ln |x| hasdomainallnonzeronumbers, while ln x isonlydefinedonpositivenumbers.

I Forpositivenumbers x,

ddx

ln |x| =ddx

ln x

(whichweknew)I Fornegativenumbers

ddx

ln |x| =ddx

ln(−x) =1−x

· (−1) =1x

I Weprefertheantiderivativewiththelargerdomain.

Page 27: Lesson 23: Antiderivatives

. . . . . .

What’swiththeabsolutevalue?

I F(x) = ln |x| hasdomainallnonzeronumbers, while ln x isonlydefinedonpositivenumbers.

I Forpositivenumbers x,

ddx

ln |x| =ddx

ln x

(whichweknew)I Fornegativenumbers

ddx

ln |x| =ddx

ln(−x) =1−x

· (−1) =1x

I Weprefertheantiderivativewiththelargerdomain.

Page 28: Lesson 23: Antiderivatives

. . . . . .

Graphof ln |x|

. .x

.y

.f(x) = 1/x

.F(x) = ln |x|

.F(x) = ln |x|

Page 29: Lesson 23: Antiderivatives

. . . . . .

Graphof ln |x|

. .x

.y

.f(x) = 1/x

.F(x) = ln |x|

.F(x) = ln |x|

Page 30: Lesson 23: Antiderivatives

. . . . . .

Graphof ln |x|

. .x

.y

.f(x) = 1/x

.F(x) = ln |x|

.F(x) = ln |x|

Page 31: Lesson 23: Antiderivatives

. . . . . .

Combinationsofantiderivatives

Fact(SumandConstantMultipleRuleforAntiderivatives)

I If F isanantiderivativeof f and G isanantiderivativeof g,then F + G isanantiderivativeof f + g.

I If F isanantiderivativeof f and c isaconstant, then cF isanantiderivativeof cf.

Proof.Thesefollowfromthesumandconstantmultipleruleforderivatives:

I If F′ = f and G′ = g, then

(F + G)′ = F′ + G′ = f + g

I Again, if F′ = f,(cF)′ = cF′ = cf

Page 32: Lesson 23: Antiderivatives

. . . . . .

Combinationsofantiderivatives

Fact(SumandConstantMultipleRuleforAntiderivatives)

I If F isanantiderivativeof f and G isanantiderivativeof g,then F + G isanantiderivativeof f + g.

I If F isanantiderivativeof f and c isaconstant, then cF isanantiderivativeof cf.

Proof.Thesefollowfromthesumandconstantmultipleruleforderivatives:

I If F′ = f and G′ = g, then

(F + G)′ = F′ + G′ = f + g

I Again, if F′ = f,(cF)′ = cF′ = cf

Page 33: Lesson 23: Antiderivatives

. . . . . .

ExampleFindanantiderivativefor f(x) = 16x + 5

SolutionTheexpression 8x2 isanantiderivativefor 16x, and 5x isanantiderivativefor 5. So

F(x) = 8x2 + 5x + C

istheantiderivativeof f.

Page 34: Lesson 23: Antiderivatives

. . . . . .

ExampleFindanantiderivativefor f(x) = 16x + 5

SolutionTheexpression 8x2 isanantiderivativefor 16x, and 5x isanantiderivativefor 5. So

F(x) = 8x2 + 5x + C

istheantiderivativeof f.

Page 35: Lesson 23: Antiderivatives

. . . . . .

ExponentialFunctions

FactIf f(x) = ax, f′(x) = (ln a)ax.

Accordingly,

FactIf f(x) = ax, then F(x) =

1ln a

ax + C istheantiderivativeof f.

Proof.Checkityourself.

Inparticular,

FactIf f(x) = ex, then F(x) = ex + C istheantiderivativeof F.

Page 36: Lesson 23: Antiderivatives

. . . . . .

ExponentialFunctions

FactIf f(x) = ax, f′(x) = (ln a)ax.

Accordingly,

FactIf f(x) = ax, then F(x) =

1ln a

ax + C istheantiderivativeof f.

Proof.Checkityourself.

Inparticular,

FactIf f(x) = ex, then F(x) = ex + C istheantiderivativeof F.

Page 37: Lesson 23: Antiderivatives

. . . . . .

ExponentialFunctions

FactIf f(x) = ax, f′(x) = (ln a)ax.

Accordingly,

FactIf f(x) = ax, then F(x) =

1ln a

ax + C istheantiderivativeof f.

Proof.Checkityourself.

Inparticular,

FactIf f(x) = ex, then F(x) = ex + C istheantiderivativeof F.

Page 38: Lesson 23: Antiderivatives

. . . . . .

ExponentialFunctions

FactIf f(x) = ax, f′(x) = (ln a)ax.

Accordingly,

FactIf f(x) = ax, then F(x) =

1ln a

ax + C istheantiderivativeof f.

Proof.Checkityourself.

Inparticular,

FactIf f(x) = ex, then F(x) = ex + C istheantiderivativeof F.

Page 39: Lesson 23: Antiderivatives

. . . . . .

Logarithmicfunctions?

I Rememberwefound

F(x) = x ln x− x

isanantiderivativeof f(x) = ln x.

I Thisisnotobvious. SeeCalcII forthefullstory.

I However, usingthefactthat loga x =ln xln a

, wegetthat

F(x) =1ln a

(x ln x− x) + C

istheantiderivativeof f(x) = loga(x).

Page 40: Lesson 23: Antiderivatives

. . . . . .

Logarithmicfunctions?

I Rememberwefound

F(x) = x ln x− x

isanantiderivativeof f(x) = ln x.I Thisisnotobvious. SeeCalcII forthefullstory.

I However, usingthefactthat loga x =ln xln a

, wegetthat

F(x) =1ln a

(x ln x− x) + C

istheantiderivativeof f(x) = loga(x).

Page 41: Lesson 23: Antiderivatives

. . . . . .

Logarithmicfunctions?

I Rememberwefound

F(x) = x ln x− x

isanantiderivativeof f(x) = ln x.I Thisisnotobvious. SeeCalcII forthefullstory.

I However, usingthefactthat loga x =ln xln a

, wegetthat

F(x) =1ln a

(x ln x− x) + C

istheantiderivativeof f(x) = loga(x).

Page 42: Lesson 23: Antiderivatives

. . . . . .

Trigonometricfunctions

Fact

ddx

sin x = cos xddx

cos x = − sin x

Sototurnthesearound,

Fact

I Thefunction F(x) = − cos x + C istheantiderivativeoff(x) = sin x.

I Thefunction F(x) = sin x + C istheantiderivativeoff(x) = cos x.

Page 43: Lesson 23: Antiderivatives

. . . . . .

Trigonometricfunctions

Fact

ddx

sin x = cos xddx

cos x = − sin x

Sototurnthesearound,

Fact

I Thefunction F(x) = − cos x + C istheantiderivativeoff(x) = sin x.

I Thefunction F(x) = sin x + C istheantiderivativeoff(x) = cos x.

Page 44: Lesson 23: Antiderivatives

. . . . . .

Trigonometricfunctions

Fact

ddx

sin x = cos xddx

cos x = − sin x

Sototurnthesearound,

Fact

I Thefunction F(x) = − cos x + C istheantiderivativeoff(x) = sin x.

I Thefunction F(x) = sin x + C istheantiderivativeoff(x) = cos x.

Page 45: Lesson 23: Antiderivatives

. . . . . .

Outline

TabulatingAntiderivativesPowerfunctionsCombinationsExponentialfunctionsTrigonometricfunctions

FindingAntiderivativesGraphically

Rectilinearmotion

Page 46: Lesson 23: Antiderivatives

. . . . . .

ProblemBelowisthegraphofafunction f. Drawthegraphofanantiderivativefor F.

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.

. .

. .y = f(x)

Page 47: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 48: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+

.+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 49: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+

.− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 50: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .−

.− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 51: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .−

.+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 52: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 53: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗

.↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 54: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗

.↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 55: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘

.↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 56: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘

.↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 57: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗

. max .min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 58: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max

.min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 59: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 60: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 61: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++

.−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 62: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−−

.−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 63: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−−

.++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 64: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++

.++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 65: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++

.⌣ .⌢ .⌢ .⌣ .⌣.

IP.

IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 66: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣

.⌢ .⌢ .⌣ .⌣.

IP.

IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 67: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢

.⌢ .⌣ .⌣.

IP.

IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 68: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢

.⌣ .⌣.

IP.

IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 69: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣

.⌣.

IP.

IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 70: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 71: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 72: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 73: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6

. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 74: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. "

." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 75: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ."

. . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 76: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." .

. . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 77: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . .

. ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 78: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . "

.? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 79: Lesson 23: Antiderivatives

. . . . . .

Using f tomakeasignchartfor F

Assuming F′ = f, wecanmakeasignchartfor f and f′ tofindtheintervalsofmonotonicityandconcavityforfor F:

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

.

. .f = F′

.F..1

..2

..3

..4

..5

..6

.+ .+ .− .− .+

.↗ .↗ .↘ .↘ .↗. max .

min

.f′ = F′′

.F..1

..2

..3

..4

..5

..6

.++ .−− .−− .++ .++.⌣ .⌢ .⌢ .⌣ .⌣

.IP

.IP

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . ".? .? .? .? .? .?

Theonlyquestionleftis: Whatarethefunctionvalues?

Page 80: Lesson 23: Antiderivatives

. . . . . .

Couldyourepeatthequestion?

ProblemBelowisthegraphofafunction f. Drawthegraphof theantiderivativefor F with F(1) = 0.

Solution

I Westartwith F(1) = 0.I Usingthesignchart, we

drawarcswiththespecifiedmonotonicityandconcavity

I It’shardertotellif/whenF crossestheaxis; moreaboutthatlater.

..x

.y

..1

..2

..3

..4

..5

..6

.

.

.. .

. .f

.F

.shape..1

..2

..3

..4

..5

..6. " ." . . . "

.IP .max

.IP .min

.

.

.

.

..

Page 81: Lesson 23: Antiderivatives

. . . . . .

Outline

TabulatingAntiderivativesPowerfunctionsCombinationsExponentialfunctionsTrigonometricfunctions

FindingAntiderivativesGraphically

Rectilinearmotion

Page 82: Lesson 23: Antiderivatives

. . . . . .

Saywhat?

I “Rectlinearmotion”justmeansmotionalongaline.I Oftenwearegiveninformationaboutthevelocityoraccelerationofamovingparticleandwewanttoknowtheequationsofmotion.

Page 83: Lesson 23: Antiderivatives

. . . . . .

Example: DeadReckoning

Page 84: Lesson 23: Antiderivatives

. . . . . .

ProblemSupposeaparticleofmass m isacteduponbyaconstantforce F.Findthepositionfunction s(t), thevelocityfunction v(t), andtheaccelerationfunction a(t).

Solution

I ByNewton’sSecondLaw(F = ma)aconstantforceinduces

aconstantacceleration. So a(t) = a =Fm.

I Since v′(t) = a(t), v(t) mustbeanantiderivativeoftheconstantfunction a. So

v(t) = at + C = at + v0

where v0 istheinitialvelocity.I Since s′(t) = v(t), s(t) mustbeanantiderivativeof v(t),

meaning

s(t) =12at2 + v0t + C =

12at2 + v0t + s0

Page 85: Lesson 23: Antiderivatives

. . . . . .

ProblemSupposeaparticleofmass m isacteduponbyaconstantforce F.Findthepositionfunction s(t), thevelocityfunction v(t), andtheaccelerationfunction a(t).

Solution

I ByNewton’sSecondLaw(F = ma)aconstantforceinduces

aconstantacceleration. So a(t) = a =Fm.

I Since v′(t) = a(t), v(t) mustbeanantiderivativeoftheconstantfunction a. So

v(t) = at + C = at + v0

where v0 istheinitialvelocity.I Since s′(t) = v(t), s(t) mustbeanantiderivativeof v(t),

meaning

s(t) =12at2 + v0t + C =

12at2 + v0t + s0

Page 86: Lesson 23: Antiderivatives

. . . . . .

ProblemSupposeaparticleofmass m isacteduponbyaconstantforce F.Findthepositionfunction s(t), thevelocityfunction v(t), andtheaccelerationfunction a(t).

Solution

I ByNewton’sSecondLaw(F = ma)aconstantforceinduces

aconstantacceleration. So a(t) = a =Fm.

I Since v′(t) = a(t), v(t) mustbeanantiderivativeoftheconstantfunction a. So

v(t) = at + C = at + v0

where v0 istheinitialvelocity.

I Since s′(t) = v(t), s(t) mustbeanantiderivativeof v(t),meaning

s(t) =12at2 + v0t + C =

12at2 + v0t + s0

Page 87: Lesson 23: Antiderivatives

. . . . . .

ProblemSupposeaparticleofmass m isacteduponbyaconstantforce F.Findthepositionfunction s(t), thevelocityfunction v(t), andtheaccelerationfunction a(t).

Solution

I ByNewton’sSecondLaw(F = ma)aconstantforceinduces

aconstantacceleration. So a(t) = a =Fm.

I Since v′(t) = a(t), v(t) mustbeanantiderivativeoftheconstantfunction a. So

v(t) = at + C = at + v0

where v0 istheinitialvelocity.I Since s′(t) = v(t), s(t) mustbeanantiderivativeof v(t),

meaning

s(t) =12at2 + v0t + C =

12at2 + v0t + s0

Page 88: Lesson 23: Antiderivatives

. . . . . .

ExampleDropaballofftheroofoftheSilverCenter. Whatisitsvelocitywhenithitstheground?

SolutionAssume s0 = 100m, and v0 = 0. Approximate a = g ≈ −10.Then

s(t) = 100− 5t2

So s(t) = 0 when t =√20 = 2

√5. Then

v(t) = −10t,

sothevelocityatimpactis v(2√5) = −20

√5m/s.

Page 89: Lesson 23: Antiderivatives

. . . . . .

ExampleDropaballofftheroofoftheSilverCenter. Whatisitsvelocitywhenithitstheground?

SolutionAssume s0 = 100m, and v0 = 0. Approximate a = g ≈ −10.Then

s(t) = 100− 5t2

So s(t) = 0 when t =√20 = 2

√5. Then

v(t) = −10t,

sothevelocityatimpactis v(2√5) = −20

√5m/s.

Page 90: Lesson 23: Antiderivatives

. . . . . .

ExampleTheskidmarksmadebyanautomobileindicatethatitsbrakeswerefullyappliedforadistanceof160 ftbeforeitcametoastop. Supposethatthecarinquestionhasaconstantdecelerationof 20 ft/s2 undertheconditionsoftheskid. Howfastwasthecartravelingwhenitsbrakeswerefirstapplied?

Solution(Setup)

I Weknowthatthecarisdeceleratedby a(t) = −20I Weknowthatwhen s(t) = 160, v(t) = 0.I Wewanttoknow v(0) = v0.

Page 91: Lesson 23: Antiderivatives

. . . . . .

ExampleTheskidmarksmadebyanautomobileindicatethatitsbrakeswerefullyappliedforadistanceof160 ftbeforeitcametoastop. Supposethatthecarinquestionhasaconstantdecelerationof 20 ft/s2 undertheconditionsoftheskid. Howfastwasthecartravelingwhenitsbrakeswerefirstapplied?

Solution(Setup)

I Weknowthatthecarisdeceleratedby a(t) = −20I Weknowthatwhen s(t) = 160, v(t) = 0.

I Wewanttoknow v(0) = v0.

Page 92: Lesson 23: Antiderivatives

. . . . . .

ExampleTheskidmarksmadebyanautomobileindicatethatitsbrakeswerefullyappliedforadistanceof160 ftbeforeitcametoastop. Supposethatthecarinquestionhasaconstantdecelerationof 20 ft/s2 undertheconditionsoftheskid. Howfastwasthecartravelingwhenitsbrakeswerefirstapplied?

Solution(Setup)

I Weknowthatthecarisdeceleratedby a(t) = −20I Weknowthatwhen s(t) = 160, v(t) = 0.I Wewanttoknow v(0) = v0.

Page 93: Lesson 23: Antiderivatives

. . . . . .

Solution(Implementation)

Ingeneral, s(t) = s0 + v0t +12at2, sowehave

s(t) = v0t− 10t2

v(t) = v0 − 20t

forall t.

If t1 isthetimeittookforthecartostop,

160 = v0t1 − 10t210 = v0 − 20t1

Weneedtosolvethesetwoequations.

Page 94: Lesson 23: Antiderivatives

. . . . . .

Solution(Implementation)

Ingeneral, s(t) = s0 + v0t +12at2, sowehave

s(t) = v0t− 10t2

v(t) = v0 − 20t

forall t. If t1 isthetimeittookforthecartostop,

160 = v0t1 − 10t210 = v0 − 20t1

Weneedtosolvethesetwoequations.

Page 95: Lesson 23: Antiderivatives

. . . . . .

Wehavev0t1 − 10t21 = 160 v0 − 20t1 = 0

I Thesecondgives t1 = v0/20, sosubstituteintothefirst:

v0 ·v020

− 10( v020

)2= 160

or

v2020

−10v20400

= 160

2v20 − v20 = 160 · 40 = 6400

I So v0 = 80 ft/s ≈ 55mi/hr

Page 96: Lesson 23: Antiderivatives

. . . . . .

Wehavev0t1 − 10t21 = 160 v0 − 20t1 = 0

I Thesecondgives t1 = v0/20, sosubstituteintothefirst:

v0 ·v020

− 10( v020

)2= 160

or

v2020

−10v20400

= 160

2v20 − v20 = 160 · 40 = 6400

I So v0 = 80 ft/s ≈ 55mi/hr

Page 97: Lesson 23: Antiderivatives

. . . . . .

Wehavev0t1 − 10t21 = 160 v0 − 20t1 = 0

I Thesecondgives t1 = v0/20, sosubstituteintothefirst:

v0 ·v020

− 10( v020

)2= 160

or

v2020

−10v20400

= 160

2v20 − v20 = 160 · 40 = 6400

I So v0 = 80 ft/s ≈ 55mi/hr