Top Banner
. . . . . . Section 4.6 More Optimization Problems Math 1a Introduction to Calculus March 21, 2008 Announcements Problem Sessions Sunday, Thursday, 7pm, SC 310 (not next week) Office hours Tues, Weds, 2–4pm SC 323 (not next week) . . Image: Flickr user glassbeat
24

Lesson 20: (More) Optimization Problems

Jun 14, 2015

Download

Technology

What's the "best" design for a two-liter bottle? How do you get the best view of the Statue of Liberty?
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 20: (More) Optimization Problems

. . . . . .

Section4.6MoreOptimizationProblems

Math1aIntroductiontoCalculus

March21, 2008

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310(notnextweek)

◮ OfficehoursTues, Weds, 2–4pmSC 323(notnextweek)

..Image: Flickruser glassbeat

Page 2: Lesson 20: (More) Optimization Problems

. . . . . .

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310(notnextweek)

◮ OfficehoursTues, Weds, 2–4pmSC 323(notnextweek)

Page 3: Lesson 20: (More) Optimization Problems

. . . . . .

Outline

Modeling

TheTextintheBox

MoreExamplesShortestFenceNormanWindows

WorksheetTwo-literbottlesTheStatueofLiberty

Page 4: Lesson 20: (More) Optimization Problems

. . . . . .

TheModelingProcess

...Real-WorldProblems

..Mathematical

Model

..Real-WorldPredictions

..MathematicalConclusions

.formulate

.solve

.predict

.test

Page 5: Lesson 20: (More) Optimization Problems

. . . . . .

Outline

Modeling

TheTextintheBox

MoreExamplesShortestFenceNormanWindows

WorksheetTwo-literbottlesTheStatueofLiberty

Page 6: Lesson 20: (More) Optimization Problems

. . . . . .

TheTextintheBox

1. UnderstandtheProblem. Whatisknown? Whatisunknown? Whataretheconditions?

2. Drawadiagram.

3. IntroduceNotation.

4. Expressthe“objectivefunction” Q intermsoftheothersymbols

5. If Q isafunctionofmorethanone“decisionvariable”, usethegiveninformationtoeliminateallbutoneofthem.

6. Findtheabsolutemaximum(orminimum, dependingontheproblem)ofthefunctiononitsdomain.

Page 7: Lesson 20: (More) Optimization Problems

. . . . . .

Outline

Modeling

TheTextintheBox

MoreExamplesShortestFenceNormanWindows

WorksheetTwo-literbottlesTheStatueofLiberty

Page 8: Lesson 20: (More) Optimization Problems

. . . . . .

Yourturn

Example(Theshortestfence)A 216m2 rectangularpeapatchistobeenclosedbyafenceanddividedintotwoequalpartsbyanotherfenceparalleltooneofitssides. Whatdimensionsfortheouterrectanglewillrequirethesmallesttotallengthoffence? Howmuchfencewillbeneeded?

SolutionLetthelengthandwidthofthepeapatchbe ℓ and w. Theamountoffenceneededis f = 2ℓ + 3w. Since ℓw = A, aconstant, wehave

f(w) = 2Aw

+ 3w.

Thedomainisallpositivenumbers.

Page 9: Lesson 20: (More) Optimization Problems

. . . . . .

.

. .

.ℓ

.w

f = 2ℓ + 3w A = ℓw ≡ 216

Page 10: Lesson 20: (More) Optimization Problems

. . . . . .

Solution(Continued)So

dfdw

= −2Aw2 + 3

whichiszerowhen w =

√2A3

.

Since f′′(w) = 4Aw−3, whichispositiveforallpositive w, thecriticalpointisaminimum, infacttheglobalminimum.

Sotheareaisminimizedwhen w =

√2A3

= 12 and

ℓ =Aw

=

√3A2

= 18. Theamountoffenceneededis

f

(√2A3

)= 2 ·

√2A2

+ 3

√2A3

= 2√6A = 2

√6 · 216 = 72m

Page 11: Lesson 20: (More) Optimization Problems

. . . . . .

ExampleA Normanwindowhastheoutlineofasemicircleontopofarectangle. Supposethereis 8 + π feetofwoodtrimavailable.Discusswhyawindowdesignermightwanttomaximizetheareaofthewindow. Findthedimensionsoftherectangleandsemicirclethatwillmaximizetheareaofthewindow.

.

AnswerThedimensionsoftherectangularpartare2ftby4ft.

Page 12: Lesson 20: (More) Optimization Problems

. . . . . .

ExampleA Normanwindowhastheoutlineofasemicircleontopofarectangle. Supposethereis 8 + π feetofwoodtrimavailable.Discusswhyawindowdesignermightwanttomaximizetheareaofthewindow. Findthedimensionsoftherectangleandsemicirclethatwillmaximizetheareaofthewindow.

.

AnswerThedimensionsoftherectangularpartare2ftby4ft.

Page 13: Lesson 20: (More) Optimization Problems

. . . . . .

SolutionWehavetomaximize A = ℓw + (w/2)2π subjecttotheconstraintthat 2ℓ + w + πw = p. Solvingfor ℓ intermsof w gives

ℓ = 12(p−w− πw)

So A = 12w(p−w− πw) + 1

4πw2. Differentiatinggives

A′(w) =πw2

+12(−1− π)w +

12(p− πw−w)

whichiszerowhen w =p

2 + π. If p = 8 + 4π, w = 4. Itfollows

that ℓ = 2.

Page 14: Lesson 20: (More) Optimization Problems

. . . . . .

Outline

Modeling

TheTextintheBox

MoreExamplesShortestFenceNormanWindows

WorksheetTwo-literbottlesTheStatueofLiberty

Page 15: Lesson 20: (More) Optimization Problems

. . . . . .

Worksheet

.

.Image: ErickCifuentes

Page 16: Lesson 20: (More) Optimization Problems

. . . . . .

Two-literbottles

A two-litersodabottleisroughlyshapedlikeacylinderwithasphericalcap, andismadefromaplasticcalledpolyethyleneterephthalate(PET).Itsvolumeisfixedattwoliters.Whatdimensionsofthebottlewillminimizethecostofproduction?

Page 17: Lesson 20: (More) Optimization Problems

. . . . . .

Solution I

Thevolumeofsuchabottleis

V = πr2h + 23πr

3,

whichisfixed. Thus

h =V− 2

3πr3

πr2=

Vπr2

− 23 r.

Theobjectivefunctionisthesurfacearea(sincethematerialisallthesame, costisproportionaltomaterialsused)

A = 2πrh + 3πr2 = 2πr

(V− 2

3πr2

πr2

)+ 3πr2 =

2Vr

+53πr2.

Page 18: Lesson 20: (More) Optimization Problems

. . . . . .

Solution II

Thedomainofthisfunctionis (0,∞). Tofindthecriticalpointsweneedtofind

dAdr

= −2Vr2

+103

πr =−2V + 10

3 πr3

r2.

ThecriticalpointsarewhendAdr

= 0, or

0 = −2V +103

πr3

=⇒ r =

(3V5π

)1/3

.

Page 19: Lesson 20: (More) Optimization Problems

. . . . . .

Solution III

Substitutingintoourexpressionfor h tellsus(afteralotofalgebra)that h = r. That’sdefinitelyamuchsquatterbottlethatweseeinthestores. Soit’snotmaterialcoststhatthey’reminimizing(unlessourshapeistoooff).

Page 20: Lesson 20: (More) Optimization Problems

. . . . . .

TheStatueofLiberty

TheStatueofLibertystandsontopofapedestalwhichisontopofonoldfort. Thetopofthepedestalis47mabovegroundlevel.Thestatueitselfmeasures46mfromthetopofthepedestaltothetipofthetorch.Whatdistanceshouldonestandawayfromthestatueinordertomaximizetheviewofthestatue? Thatis, whatdistancewillmaximizetheportionoftheviewer’svisiontakenupbythestatue?

Page 21: Lesson 20: (More) Optimization Problems

. . . . . .

Model I

Theanglesubtendedbythestatueintheviewer’seyecanbeexpressedas

θ = arctan(a + bx

)−arctan

(bx

).

a

x

Page 22: Lesson 20: (More) Optimization Problems

. . . . . .

Solution I

Maximizing θ withrespectto x isasimplematterofdifferentiation:

dx=

1

1 +(a+bx

)2 · −(a + b)

x2− 1

1 +(bx

)2 · −bx2

=b

x2 + b2− a + b

x2 + (a + b)2

=

[x2 + (a + b)2

]b− (a + b)

[x2 + b2

](x2 + b2) [x2 + (a + b)2]

Page 23: Lesson 20: (More) Optimization Problems

. . . . . .

Solution II

Thisderivativeiszeroifandonlyifthenumeratoriszero, soweseek x suchthat

0 =[x2 + (a + b)2

]b− (a + b)

[x2 + b2

]= a(ab + b2 − x2),

orx =

√b(a + b).

Usingthefirstderivativetest, weseethat dθ/dx > 0 if0 < x <

√b(a + b) and dθ/dx < 0 if x >

√b(a + b). Sothisis

definitelytheabsolutemaximumon (0,∞).

Page 24: Lesson 20: (More) Optimization Problems

. . . . . .

AnalysisandDiscussion

Ifwesubstituteinthenumericaldimensionsgiven, wehave

x =√

(46)(93) ≈ 66.1 meters

Thisdistancewouldputyouprettyclosetothefrontoftheoldfortwhichliesatthebaseoftheisland. Unfortunately, you’renotallowedtowalkonthispartofthelawn.Thelength

√b(a + b) isthe geometricmean ofthetwodistances

measurefromtheground—tothetopofthepedestal(a)andthetopofthestatue(a+ b). Thegeometricmeanisoftwonumbersisalwaysbetweenthemandgreaterthanorequaltotheiraverage.