Top Banner
. . . . . . Section 3.5 Inverse Trigonometric Functions V63.0121, Calculus I March 11–12, 2009 Announcements I Get half of your unearned ALEKS points back by March 22
41

Lesson 17: Inverse Trigonometric Functions

May 25, 2015

Download

Education

The inverse trig functions are transcendental, but their derivatives are algebraic!
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 17: Inverse Trigonometric Functions

. . . . . .

Section 3.5Inverse Trigonometric

FunctionsV63.0121, Calculus I

March 11–12, 2009

Announcements

I Get half of your unearned ALEKS points back by March 22

Page 2: Lesson 17: Inverse Trigonometric Functions

. . . . . .

What functions are invertible?

In order for f−1 to be a function, there must be only one a in Dcorresponding to each b in E.

I Such a function is called one-to-oneI The graph of such a function passes the horizontal line test:

any horizontal line intersects the graph in exactly one point if atall.

I If f is continuous, then f−1 is continuous.

Page 3: Lesson 17: Inverse Trigonometric Functions

. . . . . .

Outline

Inverse Trigonometric Functions

Derivatives of Inverse Trigonometric FunctionsArcsineArccosineArctangentArcsecant

Page 4: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arcsin

Arcsin is the inverse of the sine function after restriction to[−π/2, π/2].

. .x

.y

.sin.

.−π

2

.

.−π

2

.y = x.arcsin

I The domain of arcsin is [−1, 1]

I The range of arcsin is[−π

2,π

2

]

Page 5: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arcsin

Arcsin is the inverse of the sine function after restriction to[−π/2, π/2].

. .x

.y

.sin.

.−π

2

.

.−π

2

.y = x.arcsin

I The domain of arcsin is [−1, 1]

I The range of arcsin is[−π

2,π

2

]

Page 6: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arcsin

Arcsin is the inverse of the sine function after restriction to[−π/2, π/2].

. .x

.y

.sin.

.−π

2

.

.−π

2

.y = x

.arcsin

I The domain of arcsin is [−1, 1]

I The range of arcsin is[−π

2,π

2

]

Page 7: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arcsin

Arcsin is the inverse of the sine function after restriction to[−π/2, π/2].

. .x

.y

.sin.

.−π

2

.

.−π

2

.y = x

.arcsin

I The domain of arcsin is [−1, 1]

I The range of arcsin is[−π

2,π

2

]

Page 8: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

. .x

.y

.cos..0

..π

.y = x

.arccos

I The domain of arccos is [−1, 1]

I The range of arccos is [0, π]

Page 9: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

. .x

.y

.cos..0

..π

.y = x

.arccos

I The domain of arccos is [−1, 1]

I The range of arccos is [0, π]

Page 10: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

. .x

.y

.cos..0

..π

.y = x

.arccos

I The domain of arccos is [−1, 1]

I The range of arccos is [0, π]

Page 11: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

. .x

.y

.cos..0

..π

.y = x

.arccos

I The domain of arccos is [−1, 1]

I The range of arccos is [0, π]

Page 12: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arctanArctan is the inverse of the tangent function after restriction to[−π/2, π/2].

. .x

.y

.tan

.−3π

2.−π

2.π

2 .3π

2

.y = x

.arctan

.−π

2

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, lim

x→−∞arctan x = −π

2

Page 13: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arctanArctan is the inverse of the tangent function after restriction to[−π/2, π/2].

. .x

.y

.tan

.−3π

2.−π

2.π

2 .3π

2

.y = x

.arctan

.−π

2

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, lim

x→−∞arctan x = −π

2

Page 14: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arctanArctan is the inverse of the tangent function after restriction to[−π/2, π/2].

. .x

.y

.tan

.−3π

2.−π

2.π

2 .3π

2

.y = x

.arctan

.−π

2

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, lim

x→−∞arctan x = −π

2

Page 15: Lesson 17: Inverse Trigonometric Functions

. . . . . .

arctanArctan is the inverse of the tangent function after restriction to[−π/2, π/2].

. .x

.y

.tan

.−3π

2.−π

2.π

2 .3π

2

.y = x

.arctan

.−π

2

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, lim

x→−∞arctan x = −π

2

Page 16: Lesson 17: Inverse Trigonometric Functions

. . . . . .

Outline

Inverse Trigonometric Functions

Derivatives of Inverse Trigonometric FunctionsArcsineArccosineArctangentArcsecant

Page 17: Lesson 17: Inverse Trigonometric Functions

. . . . . .

Theorem (The Inverse Function Theorem)Let f be differentiable at a, and f′(a) ̸= 0. Then f−1 is defined in an openinterval containing b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

“Proof”.If y = f−1(x), then

f(y) = x,

So by implicit differentiation

f′(y)dydx

= 1 =⇒ dydx

=1

f′(y)=

1

f′(f−1(x))

Page 18: Lesson 17: Inverse Trigonometric Functions

. . . . . .

Theorem (The Inverse Function Theorem)Let f be differentiable at a, and f′(a) ̸= 0. Then f−1 is defined in an openinterval containing b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

“Proof”.If y = f−1(x), then

f(y) = x,

So by implicit differentiation

f′(y)dydx

= 1 =⇒ dydx

=1

f′(y)=

1

f′(f−1(x))

Page 19: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1 − x2

So

ddx

arcsin(x) =1√

1 − x2 .

.1.x

..y = arcsin x

.√

1 − x2

Page 20: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1 − x2

So

ddx

arcsin(x) =1√

1 − x2

.

.1.x

..y = arcsin x

.√

1 − x2

Page 21: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1 − x2

So

ddx

arcsin(x) =1√

1 − x2

.

.1.x

..y = arcsin x

.√

1 − x2

Page 22: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1 − x2

So

ddx

arcsin(x) =1√

1 − x2

.

.1.x

..y = arcsin x

.√

1 − x2

Page 23: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1 − x2

So

ddx

arcsin(x) =1√

1 − x2

.

.1.x

..y = arcsin x

.√

1 − x2

Page 24: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1 − x2

So

ddx

arcsin(x) =1√

1 − x2

.

.1.x

..y = arcsin x

.√

1 − x2

Page 25: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1 − x2

So

ddx

arcsin(x) =1√

1 − x2 .

.1.x

..y = arcsin x

.√

1 − x2

Page 26: Lesson 17: Inverse Trigonometric Functions

. . . . . .

Graphing arcsin and its derivative

..|.−1

.|.1

.arcsin

.1√

1 − x2

Page 27: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arccos

Let y = arccos x, so x = cos y. Then

− sin ydydx

= 1 =⇒ dydx

=1

− sin y=

1− sin(arccos x)

To simplify, look at a righttriangle:

sin(arccos x) =√

1 − x2

So

ddx

arccos(x) = − 1√1 − x2 .

.1.√

1 − x2

.x.

.y = arccos x

Page 28: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arccos

Let y = arccos x, so x = cos y. Then

− sin ydydx

= 1 =⇒ dydx

=1

− sin y=

1− sin(arccos x)

To simplify, look at a righttriangle:

sin(arccos x) =√

1 − x2

So

ddx

arccos(x) = − 1√1 − x2 .

.1.√

1 − x2

.x.

.y = arccos x

Page 29: Lesson 17: Inverse Trigonometric Functions

. . . . . .

Graphing arcsin and arccos

..|.−1

.|.1

.arcsin

.arccos

Note

cos θ = sin(π

2− θ

)=⇒ arccos x =

π

2− arcsin x

So it’s not a surprise that theirderivatives are opposites.

Page 30: Lesson 17: Inverse Trigonometric Functions

. . . . . .

Graphing arcsin and arccos

..|.−1

.|.1

.arcsin

.arccosNote

cos θ = sin(π

2− θ

)=⇒ arccos x =

π

2− arcsin x

So it’s not a surprise that theirderivatives are opposites.

Page 31: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2 .

.x

.1.

.y = arctan x

.√

1 + x2

Page 32: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2

.

.x

.1.

.y = arctan x

.√

1 + x2

Page 33: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2

.

.x

.1

..y = arctan x

.√

1 + x2

Page 34: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2

.

.x

.1.

.y = arctan x

.√

1 + x2

Page 35: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2

.

.x

.1.

.y = arctan x

.√

1 + x2

Page 36: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2

.

.x

.1.

.y = arctan x

.√

1 + x2

Page 37: Lesson 17: Inverse Trigonometric Functions

. . . . . .

The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

ddx

arctan(x) =1

1 + x2 .

.x

.1.

.y = arctan x

.√

1 + x2

Page 38: Lesson 17: Inverse Trigonometric Functions

. . . . . .

Graphing arctan and its derivative

. .x

.y

.arctan

.1

1 + x2

Page 39: Lesson 17: Inverse Trigonometric Functions

. . . . . .

ExampleLet f(x) = arctan

√x. Find f′(x).

Solution

ddx

arctan√

x =1

1 +(√

x)2

ddx

√x =

11 + x

· 12√

x

=1

2√

x + 2x√

x

Page 40: Lesson 17: Inverse Trigonometric Functions

. . . . . .

ExampleLet f(x) = arctan

√x. Find f′(x).

Solution

ddx

arctan√

x =1

1 +(√

x)2

ddx

√x =

11 + x

· 12√

x

=1

2√

x + 2x√

x

Page 41: Lesson 17: Inverse Trigonometric Functions

. . . . . .

Recap

y y′

arcsin x1√

1 − x2

arccos x − 1√1 − x2

arctan x1

1 + x2

arccot x − 11 + x2

arcsec x1

x√

x2 − 1

arccsc x − 1

x√

x2 − 1

I Remarkable that thederivatives of thesetranscendental functionsare algebraic (or evenrational!)