Top Banner
. . . . . . Section 2.5 The Chain Rule V63.0121.034, Calculus I October 5, 2009 Announcements I Quiz 2 this week I Midterm in class on §§1.1–1.4
62

Lesson 10: The Chain Rule

May 18, 2015

Download

Education

The chain rule helps us find a derivative of a composition of functions. It turns out that it's the product of the derivatives of the composed functions.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 10: The Chain Rule

. . . . . .

Section2.5TheChainRule

V63.0121.034, CalculusI

October5, 2009

Announcements

I Quiz2thisweekI Midterm inclasson§§1.1–1.4

Page 2: Lesson 10: The Chain Rule

. . . . . .

CompositionsSeeSection1.2forreview

DefinitionIf f and g arefunctions, the composition (f ◦ g)(x) = f(g(x)) means“do g first, then f.”

.

.g .f.x .g(x) .f(g(x))

.f ◦ g

Ourgoalforthedayistounderstandhowthederivativeofthecompositionoftwofunctionsdependsonthederivativesoftheindividualfunctions.

Page 3: Lesson 10: The Chain Rule

. . . . . .

CompositionsSeeSection1.2forreview

DefinitionIf f and g arefunctions, the composition (f ◦ g)(x) = f(g(x)) means“do g first, then f.”

..g

.f

.x .g(x)

.f(g(x)).f ◦ g

Ourgoalforthedayistounderstandhowthederivativeofthecompositionoftwofunctionsdependsonthederivativesoftheindividualfunctions.

Page 4: Lesson 10: The Chain Rule

. . . . . .

CompositionsSeeSection1.2forreview

DefinitionIf f and g arefunctions, the composition (f ◦ g)(x) = f(g(x)) means“do g first, then f.”

..g .f.x .g(x)

.f(g(x)).f ◦ g

Ourgoalforthedayistounderstandhowthederivativeofthecompositionoftwofunctionsdependsonthederivativesoftheindividualfunctions.

Page 5: Lesson 10: The Chain Rule

. . . . . .

CompositionsSeeSection1.2forreview

DefinitionIf f and g arefunctions, the composition (f ◦ g)(x) = f(g(x)) means“do g first, then f.”

..g .f.x .g(x) .f(g(x))

.f ◦ g

Ourgoalforthedayistounderstandhowthederivativeofthecompositionoftwofunctionsdependsonthederivativesoftheindividualfunctions.

Page 6: Lesson 10: The Chain Rule

. . . . . .

CompositionsSeeSection1.2forreview

DefinitionIf f and g arefunctions, the composition (f ◦ g)(x) = f(g(x)) means“do g first, then f.”

..g .f.x .g(x) .f(g(x))

.f ◦ g

Ourgoalforthedayistounderstandhowthederivativeofthecompositionoftwofunctionsdependsonthederivativesoftheindividualfunctions.

Page 7: Lesson 10: The Chain Rule

. . . . . .

CompositionsSeeSection1.2forreview

DefinitionIf f and g arefunctions, the composition (f ◦ g)(x) = f(g(x)) means“do g first, then f.”

..g .f.x .g(x) .f(g(x))

.f ◦ g

Ourgoalforthedayistounderstandhowthederivativeofthecompositionoftwofunctionsdependsonthederivativesoftheindividualfunctions.

Page 8: Lesson 10: The Chain Rule

. . . . . .

Outline

HeuristicsAnalogyTheLinearCase

Thechainrule

Examples

Relatedratesofchange

Page 9: Lesson 10: The Chain Rule

. . . . . .

Analogy

Thinkaboutridingabike. Togofasteryoucaneither:

I pedalfasterI changegears

.

.Imagecredit: SpringSun

Theangularposition(φ)ofthebackwheeldependsonthepositionofthefrontsprocket(θ):

φ(θ) =Rθ

r

Andsotheangularspeedofthebackwheeldependsonthederivativeofthisfunctionandthespeedofthefrontwheel.

Page 10: Lesson 10: The Chain Rule

. . . . . .

Analogy

Thinkaboutridingabike. Togofasteryoucaneither:

I pedalfaster

I changegears

.

.Imagecredit: SpringSun

Theangularposition(φ)ofthebackwheeldependsonthepositionofthefrontsprocket(θ):

φ(θ) =Rθ

r

Andsotheangularspeedofthebackwheeldependsonthederivativeofthisfunctionandthespeedofthefrontwheel.

Page 11: Lesson 10: The Chain Rule

. . . . . .

Analogy

Thinkaboutridingabike. Togofasteryoucaneither:

I pedalfasterI changegears

.

.Imagecredit: SpringSun

Theangularposition(φ)ofthebackwheeldependsonthepositionofthefrontsprocket(θ):

φ(θ) =Rθ

r

Andsotheangularspeedofthebackwheeldependsonthederivativeofthisfunctionandthespeedofthefrontwheel.

Page 12: Lesson 10: The Chain Rule

. . . . . .

Analogy

Thinkaboutridingabike. Togofasteryoucaneither:

I pedalfasterI changegears

.

.Imagecredit: SpringSun

Theangularposition(φ)ofthebackwheeldependsonthepositionofthefrontsprocket(θ):

φ(θ) =Rθ

r

Andsotheangularspeedofthebackwheeldependsonthederivativeofthisfunctionandthespeedofthefrontwheel.

Page 13: Lesson 10: The Chain Rule

. . . . . .

TheLinearCase

QuestionLet f(x) = mx + b and g(x) = m′x + b′. Whatcanyousayaboutthecomposition?

Answer

I f(g(x)) = m(m′x + b′) + b = (mm′)x + (mb′ + b)

I ThecompositionisalsolinearI Theslopeofthecompositionistheproductoftheslopesofthetwofunctions.

Thederivativeissupposedtobealocallinearizationofafunction. Sothereshouldbeananalogofthispropertyinderivatives.

Page 14: Lesson 10: The Chain Rule

. . . . . .

TheLinearCase

QuestionLet f(x) = mx + b and g(x) = m′x + b′. Whatcanyousayaboutthecomposition?

Answer

I f(g(x)) = m(m′x + b′) + b = (mm′)x + (mb′ + b)

I ThecompositionisalsolinearI Theslopeofthecompositionistheproductoftheslopesofthetwofunctions.

Thederivativeissupposedtobealocallinearizationofafunction. Sothereshouldbeananalogofthispropertyinderivatives.

Page 15: Lesson 10: The Chain Rule

. . . . . .

TheLinearCase

QuestionLet f(x) = mx + b and g(x) = m′x + b′. Whatcanyousayaboutthecomposition?

Answer

I f(g(x)) = m(m′x + b′) + b = (mm′)x + (mb′ + b)

I Thecompositionisalsolinear

I Theslopeofthecompositionistheproductoftheslopesofthetwofunctions.

Thederivativeissupposedtobealocallinearizationofafunction. Sothereshouldbeananalogofthispropertyinderivatives.

Page 16: Lesson 10: The Chain Rule

. . . . . .

TheLinearCase

QuestionLet f(x) = mx + b and g(x) = m′x + b′. Whatcanyousayaboutthecomposition?

Answer

I f(g(x)) = m(m′x + b′) + b = (mm′)x + (mb′ + b)

I ThecompositionisalsolinearI Theslopeofthecompositionistheproductoftheslopesofthetwofunctions.

Thederivativeissupposedtobealocallinearizationofafunction. Sothereshouldbeananalogofthispropertyinderivatives.

Page 17: Lesson 10: The Chain Rule

. . . . . .

TheLinearCase

QuestionLet f(x) = mx + b and g(x) = m′x + b′. Whatcanyousayaboutthecomposition?

Answer

I f(g(x)) = m(m′x + b′) + b = (mm′)x + (mb′ + b)

I ThecompositionisalsolinearI Theslopeofthecompositionistheproductoftheslopesofthetwofunctions.

Thederivativeissupposedtobealocallinearizationofafunction. Sothereshouldbeananalogofthispropertyinderivatives.

Page 18: Lesson 10: The Chain Rule

. . . . . .

TheNonlinearCaseSeetheMathematicaapplet

Let u = g(x) and y = f(u). Suppose x ischangedbyasmallamount ∆x. Then

∆y ≈ f′(y)∆u

and∆u ≈ g′(u)∆x.

So∆y ≈ f′(y)g′(u)∆x =⇒ ∆y

∆x≈ f′(y)g′(u)

Page 19: Lesson 10: The Chain Rule

. . . . . .

Outline

HeuristicsAnalogyTheLinearCase

Thechainrule

Examples

Relatedratesofchange

Page 20: Lesson 10: The Chain Rule

. . . . . .

Theoremoftheday: Thechainrule

TheoremLet f and g befunctions, with g differentiableat x and fdifferentiableat g(x). Then f ◦ g isdifferentiableat x and

(f ◦ g)′(x) = f′(g(x))g′(x)

InLeibniziannotation, let y = f(u) and u = g(x). Then

dydx

=dydu

dudx

..dy

��du��dudx

Page 21: Lesson 10: The Chain Rule

. . . . . .

Observations

I Succinctly, thederivativeofacompositionistheproductofthederivatives

I Theonlycomplicationiswherethesederivativesareevaluated: atthesamepointthefunctionsare

I InLeibniznotation, theChainRulelookslikecancellationof(fake)fractions

..Imagecredit: ooOJasonOoo

Page 22: Lesson 10: The Chain Rule

. . . . . .

Theoremoftheday: Thechainrule

TheoremLet f and g befunctions, with g differentiableat x and fdifferentiableat g(x). Then f ◦ g isdifferentiableat x and

(f ◦ g)′(x) = f′(g(x))g′(x)

InLeibniziannotation, let y = f(u) and u = g(x). Then

dydx

=dydu

dudx

..dy

��du��dudx

Page 23: Lesson 10: The Chain Rule

. . . . . .

Observations

I Succinctly, thederivativeofacompositionistheproductofthederivatives

I Theonlycomplicationiswherethesederivativesareevaluated: atthesamepointthefunctionsare

I InLeibniznotation, theChainRulelookslikecancellationof(fake)fractions

..Imagecredit: ooOJasonOoo

Page 24: Lesson 10: The Chain Rule

. . . . . .

CompositionsSeeSection1.2forreview

DefinitionIf f and g arefunctions, the composition (f ◦ g)(x) = f(g(x)) means“do g first, then f.”

..g .f.x .g(x) .f(g(x))

.f ◦ g

Ourgoalforthedayistounderstandhowthederivativeofthecompositionoftwofunctionsdependsonthederivativesoftheindividualfunctions.

Page 25: Lesson 10: The Chain Rule

. . . . . .

Observations

I Succinctly, thederivativeofacompositionistheproductofthederivatives

I Theonlycomplicationiswherethesederivativesareevaluated: atthesamepointthefunctionsare

I InLeibniznotation, theChainRulelookslikecancellationof(fake)fractions .

.Imagecredit: ooOJasonOoo

Page 26: Lesson 10: The Chain Rule

. . . . . .

Theoremoftheday: Thechainrule

TheoremLet f and g befunctions, with g differentiableat x and fdifferentiableat g(x). Then f ◦ g isdifferentiableat x and

(f ◦ g)′(x) = f′(g(x))g′(x)

InLeibniziannotation, let y = f(u) and u = g(x). Then

dydx

=dydu

dudx

..dy

��du��dudx

Page 27: Lesson 10: The Chain Rule

. . . . . .

Theoremoftheday: Thechainrule

TheoremLet f and g befunctions, with g differentiableat x and fdifferentiableat g(x). Then f ◦ g isdifferentiableat x and

(f ◦ g)′(x) = f′(g(x))g′(x)

InLeibniziannotation, let y = f(u) and u = g(x). Then

dydx

=dydu

dudx

..dy

��du��dudx

Page 28: Lesson 10: The Chain Rule

. . . . . .

Outline

HeuristicsAnalogyTheLinearCase

Thechainrule

Examples

Relatedratesofchange

Page 29: Lesson 10: The Chain Rule

. . . . . .

Example

Examplelet h(x) =

√3x2 + 1. Find h′(x).

SolutionFirst, write h as f ◦ g. Let f(u) =

√u and g(x) = 3x2 + 1. Then

f′(u) = 12u

−1/2, and g′(x) = 6x. So

h′(x) = 12u

−1/2(6x) = 12(3x

2 + 1)−1/2(6x) =3x√

3x2 + 1

Page 30: Lesson 10: The Chain Rule

. . . . . .

Example

Examplelet h(x) =

√3x2 + 1. Find h′(x).

SolutionFirst, write h as f ◦ g.

Let f(u) =√u and g(x) = 3x2 + 1. Then

f′(u) = 12u

−1/2, and g′(x) = 6x. So

h′(x) = 12u

−1/2(6x) = 12(3x

2 + 1)−1/2(6x) =3x√

3x2 + 1

Page 31: Lesson 10: The Chain Rule

. . . . . .

Example

Examplelet h(x) =

√3x2 + 1. Find h′(x).

SolutionFirst, write h as f ◦ g. Let f(u) =

√u and g(x) = 3x2 + 1.

Thenf′(u) = 1

2u−1/2, and g′(x) = 6x. So

h′(x) = 12u

−1/2(6x) = 12(3x

2 + 1)−1/2(6x) =3x√

3x2 + 1

Page 32: Lesson 10: The Chain Rule

. . . . . .

Example

Examplelet h(x) =

√3x2 + 1. Find h′(x).

SolutionFirst, write h as f ◦ g. Let f(u) =

√u and g(x) = 3x2 + 1. Then

f′(u) = 12u

−1/2, and g′(x) = 6x. So

h′(x) = 12u

−1/2(6x)

= 12(3x

2 + 1)−1/2(6x) =3x√

3x2 + 1

Page 33: Lesson 10: The Chain Rule

. . . . . .

Example

Examplelet h(x) =

√3x2 + 1. Find h′(x).

SolutionFirst, write h as f ◦ g. Let f(u) =

√u and g(x) = 3x2 + 1. Then

f′(u) = 12u

−1/2, and g′(x) = 6x. So

h′(x) = 12u

−1/2(6x) = 12(3x

2 + 1)−1/2(6x) =3x√

3x2 + 1

Page 34: Lesson 10: The Chain Rule

. . . . . .

Corollary

Corollary(ThePowerRuleCombinedwiththeChainRule)If n isanyrealnumberand u = g(x) isdifferentiable, then

ddx

(un) = nun−1dudx

.

Page 35: Lesson 10: The Chain Rule

. . . . . .

Doesordermatter?

Example

Findddx

(sin 4x) andcompareittoddx

(4 sin x).

Solution

I Forthefirst, let u = 4x and y = sin(u). Then

dydx

=dydu

· dudx

= cos(u) · 4 = 4 cos 4x.

I Forthesecond, let u = sin x and y = 4u. Then

dydx

=dydu

· dudx

= 4 · cos x

Page 36: Lesson 10: The Chain Rule

. . . . . .

Doesordermatter?

Example

Findddx

(sin 4x) andcompareittoddx

(4 sin x).

Solution

I Forthefirst, let u = 4x and y = sin(u). Then

dydx

=dydu

· dudx

= cos(u) · 4 = 4 cos 4x.

I Forthesecond, let u = sin x and y = 4u. Then

dydx

=dydu

· dudx

= 4 · cos x

Page 37: Lesson 10: The Chain Rule

. . . . . .

Doesordermatter?

Example

Findddx

(sin 4x) andcompareittoddx

(4 sin x).

Solution

I Forthefirst, let u = 4x and y = sin(u). Then

dydx

=dydu

· dudx

= cos(u) · 4 = 4 cos 4x.

I Forthesecond, let u = sin x and y = 4u. Then

dydx

=dydu

· dudx

= 4 · cos x

Page 38: Lesson 10: The Chain Rule

. . . . . .

Ordermatters!

Example

Findddx

(sin 4x) andcompareittoddx

(4 sin x).

Solution

I Forthefirst, let u = 4x and y = sin(u). Then

dydx

=dydu

· dudx

= cos(u) · 4 = 4 cos 4x.

I Forthesecond, let u = sin x and y = 4u. Then

dydx

=dydu

· dudx

= 4 · cos x

Page 39: Lesson 10: The Chain Rule

. . . . . .

Example

Let f(x) =(

3√

x5 − 2 + 8)2. Find f′(x).

Solution

ddx

(3√

x5 − 2 + 8)2

= 2(

3√

x5 − 2 + 8) ddx

(3√

x5 − 2 + 8)

= 2(

3√

x5 − 2 + 8) ddx

3√

x5 − 2

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3 ddx

(x5 − 2)

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3(5x4)

=103

x4(

3√

x5 − 2 + 8)

(x5 − 2)−2/3

Page 40: Lesson 10: The Chain Rule

. . . . . .

Example

Let f(x) =(

3√

x5 − 2 + 8)2. Find f′(x).

Solution

ddx

(3√

x5 − 2 + 8)2

= 2(

3√

x5 − 2 + 8) ddx

(3√

x5 − 2 + 8)

= 2(

3√

x5 − 2 + 8) ddx

3√

x5 − 2

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3 ddx

(x5 − 2)

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3(5x4)

=103

x4(

3√

x5 − 2 + 8)

(x5 − 2)−2/3

Page 41: Lesson 10: The Chain Rule

. . . . . .

Example

Let f(x) =(

3√

x5 − 2 + 8)2. Find f′(x).

Solution

ddx

(3√

x5 − 2 + 8)2

= 2(

3√

x5 − 2 + 8) ddx

(3√

x5 − 2 + 8)

= 2(

3√

x5 − 2 + 8) ddx

3√

x5 − 2

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3 ddx

(x5 − 2)

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3(5x4)

=103

x4(

3√

x5 − 2 + 8)

(x5 − 2)−2/3

Page 42: Lesson 10: The Chain Rule

. . . . . .

Example

Let f(x) =(

3√

x5 − 2 + 8)2. Find f′(x).

Solution

ddx

(3√

x5 − 2 + 8)2

= 2(

3√

x5 − 2 + 8) ddx

(3√

x5 − 2 + 8)

= 2(

3√

x5 − 2 + 8) ddx

3√

x5 − 2

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3 ddx

(x5 − 2)

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3(5x4)

=103

x4(

3√

x5 − 2 + 8)

(x5 − 2)−2/3

Page 43: Lesson 10: The Chain Rule

. . . . . .

Example

Let f(x) =(

3√

x5 − 2 + 8)2. Find f′(x).

Solution

ddx

(3√

x5 − 2 + 8)2

= 2(

3√

x5 − 2 + 8) ddx

(3√

x5 − 2 + 8)

= 2(

3√

x5 − 2 + 8) ddx

3√

x5 − 2

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3 ddx

(x5 − 2)

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3(5x4)

=103

x4(

3√

x5 − 2 + 8)

(x5 − 2)−2/3

Page 44: Lesson 10: The Chain Rule

. . . . . .

Example

Let f(x) =(

3√

x5 − 2 + 8)2. Find f′(x).

Solution

ddx

(3√

x5 − 2 + 8)2

= 2(

3√

x5 − 2 + 8) ddx

(3√

x5 − 2 + 8)

= 2(

3√

x5 − 2 + 8) ddx

3√

x5 − 2

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3 ddx

(x5 − 2)

= 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3(5x4)

=103

x4(

3√

x5 − 2 + 8)

(x5 − 2)−2/3

Page 45: Lesson 10: The Chain Rule

. . . . . .

A metaphor

Thinkaboutpeelinganonion:

f(x) =

(3√

x5︸︷︷︸�5

−2

︸ ︷︷ ︸3√�

+8

︸ ︷︷ ︸�+8

)2

︸ ︷︷ ︸�2

..Imagecredit: photobunny

f′(x) = 2(

3√

x5 − 2 + 8)

13(x

5 − 2)−2/3(5x4)

Page 46: Lesson 10: The Chain Rule

. . . . . .

Combiningtechniques

Example

Findddx

((x3 + 1)10 sin(4x2 − 7)

)

SolutionThe“last”partofthefunctionistheproduct, soweapplytheproductrule. Eachfactor’sderivativerequiresthechainrule:

ddx

((x3 + 1)10 · sin(4x2 − 7)

)=

(ddx

(x3 + 1)10)· sin(4x2−7)+ (x3 +1)10 ·

(ddx

sin(4x2 − 7)

)= 10(x3 + 1)9(3x2) sin(4x2 − 7) + (x3 + 1)10 · cos(4x2 − 7)(8x)

Page 47: Lesson 10: The Chain Rule

. . . . . .

Combiningtechniques

Example

Findddx

((x3 + 1)10 sin(4x2 − 7)

)SolutionThe“last”partofthefunctionistheproduct, soweapplytheproductrule. Eachfactor’sderivativerequiresthechainrule:

ddx

((x3 + 1)10 · sin(4x2 − 7)

)=

(ddx

(x3 + 1)10)· sin(4x2−7)+ (x3 +1)10 ·

(ddx

sin(4x2 − 7)

)= 10(x3 + 1)9(3x2) sin(4x2 − 7) + (x3 + 1)10 · cos(4x2 − 7)(8x)

Page 48: Lesson 10: The Chain Rule

. . . . . .

Combiningtechniques

Example

Findddx

((x3 + 1)10 sin(4x2 − 7)

)SolutionThe“last”partofthefunctionistheproduct, soweapplytheproductrule. Eachfactor’sderivativerequiresthechainrule:

ddx

((x3 + 1)10 · sin(4x2 − 7)

)=

(ddx

(x3 + 1)10)· sin(4x2−7)+ (x3 +1)10 ·

(ddx

sin(4x2 − 7)

)

= 10(x3 + 1)9(3x2) sin(4x2 − 7) + (x3 + 1)10 · cos(4x2 − 7)(8x)

Page 49: Lesson 10: The Chain Rule

. . . . . .

Combiningtechniques

Example

Findddx

((x3 + 1)10 sin(4x2 − 7)

)SolutionThe“last”partofthefunctionistheproduct, soweapplytheproductrule. Eachfactor’sderivativerequiresthechainrule:

ddx

((x3 + 1)10 · sin(4x2 − 7)

)=

(ddx

(x3 + 1)10)· sin(4x2−7)+ (x3 +1)10 ·

(ddx

sin(4x2 − 7)

)= 10(x3 + 1)9(3x2) sin(4x2 − 7) + (x3 + 1)10 · cos(4x2 − 7)(8x)

Page 50: Lesson 10: The Chain Rule

. . . . . .

YourTurn

Findderivativesofthesefunctions:

1. y = (1− x2)10

2. y =√sin x

3. y = sin√x

4. y = (2x− 5)4(8x2 − 5)−3

5. F(z) =

√z− 1z + 1

6. y = tan(cos x)

7. y = csc2(sin θ)

8. y = sin(sin(sin(sin(sin(sin(x))))))

Page 51: Lesson 10: The Chain Rule

. . . . . .

Solutionto#1

ExampleFindthederivativeof y = (1− x2)10.

Solutiony′ = 10(1− x2)9(−2x) = −20x(1− x2)9

Page 52: Lesson 10: The Chain Rule

. . . . . .

Solutionto#2

ExampleFindthederivativeof y =

√sin x.

SolutionWriting

√sin x as (sin x)1/2, wehave

y′ = 12 (sin x)−1/2 (cos x) =

cos x

2√sin x

Page 53: Lesson 10: The Chain Rule

. . . . . .

Solutionto#3

ExampleFindthederivativeof y = sin

√x.

Solution

y′ =ddx

sin(x1/2) = cos(x1/2)12x−1/2 =

cos(√

x)

2√x

Page 54: Lesson 10: The Chain Rule

. . . . . .

Solutionto#4

ExampleFindthederivativeof y = (2x− 5)4(8x2 − 5)−3

SolutionWeneedtousetheproductruleandthechainrule:

y′ = 4(2x− 5)3(2)(8x2 − 5)−3 + (2x− 5)4(−3)(8x2 − 5)−4(16x)

Therestisabitofalgebra, usefulifyouwantedtosolvetheequation y′ = 0:

y′ = 8(2x− 5)3(8x2 − 5)−4 [(8x2 − 5) − 6x(2x− 5)

]= 8(2x− 5)3(8x2 − 5)−4 (

−4x2 + 30x− 5)

= −8(2x− 5)3(8x2 − 5)−4 (4x2 − 30x + 5

)

Page 55: Lesson 10: The Chain Rule

. . . . . .

Solutionto#5

Example

Findthederivativeof F(z) =

√z− 1z + 1

.

Solution

y′ =12

(z− 1z + 1

)−1/2 ((z + 1)(1) − (z− 1)(1)

(z + 1)2

)=

12

(z + 1z− 1

)1/2 (2

(z + 1)2

)=

1(z + 1)3/2(z− 1)1/2

Page 56: Lesson 10: The Chain Rule

. . . . . .

Solutionto#6

ExampleFindthederivativeof y = tan(cos x).

Solutiony′ = sec2(cos x) · (− sin x) = − sec2(cos x) sin x

Page 57: Lesson 10: The Chain Rule

. . . . . .

Solutionto#7

ExampleFindthederivativeof y = csc2(sin θ).

SolutionRememberthenotation:

y = csc2(sin θ) = [csc(sin θ)]2

So

y′ = 2 csc(sin θ) · [− csc(sin θ) cot(sin θ)] · cos(θ)= −2 csc2(sin θ) cot(sin θ) cos θ

Page 58: Lesson 10: The Chain Rule

. . . . . .

Solutionto#8

ExampleFindthederivativeof y = sin(sin(sin(sin(sin(sin(x)))))).

SolutionRelax! It’sjustabunchofchainrules. Alloftheselinesaremultipliedtogether.

y′ = cos(sin(sin(sin(sin(sin(x))))))

· cos(sin(sin(sin(sin(x)))))

· cos(sin(sin(sin(x))))

· cos(sin(sin(x)))

· cos(sin(x))

· cos(x))

Page 59: Lesson 10: The Chain Rule

. . . . . .

Outline

HeuristicsAnalogyTheLinearCase

Thechainrule

Examples

Relatedratesofchange

Page 60: Lesson 10: The Chain Rule

. . . . . .

Relatedratesofchange

QuestionTheareaofacircle, A = πr2,changesasitsradiuschanges. Iftheradiuschangeswithrespecttotime,thechangeinareawithrespecttotimeis

A.dAdr

= 2πr

B.dAdt

= 2πr +drdt

C.dAdt

= 2πrdrdt

D. notenoughinformation

..Imagecredit: JimFrazier

Page 61: Lesson 10: The Chain Rule

. . . . . .

Relatedratesofchange

QuestionTheareaofacircle, A = πr2,changesasitsradiuschanges. Iftheradiuschangeswithrespecttotime,thechangeinareawithrespecttotimeis

A.dAdr

= 2πr

B.dAdt

= 2πr +drdt

C.dAdt

= 2πrdrdt

D. notenoughinformation

..Imagecredit: JimFrazier

Page 62: Lesson 10: The Chain Rule

. . . . . .

Whathavewelearnedtoday?

I Thederivativeofacompositionistheproductofderivatives

I Insymbols:(f ◦ g)′(x) = f′(g(x))g′(x)

I Calculusislikeanonion, andnotbecauseitmakesyoucry!