Top Banner
Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation, Bettlach, Switzerland October 16 – 17, 2013, Uppsala, Sweden
44

Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Jul 10, 2019

Download

Documents

vudien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Lesson 1X-rays & Diffraction

Nicola DöbelinRMS Foundation, Bettlach, Switzerland

October 16 – 17, 2013, Uppsala, Sweden

Page 2: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Electromagnetic Spectrum

2

X rays: Wavelength λ: 0.01 – 10 nmEnergy: 100 eV – 100 keV

Generation of X-radiation:Shoot electrons on matter

Interatomic distances in crystals:typically 0.15 – 0.4 nm

Interference phenomena onlyfor features ≈ λ

Page 3: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Generation of X-rays

3

Accelerated electron impinges on matter:

Electron is deflected and decelerated by the atomic nucleus.(Inelastic scattering)

Deflected electron emits electromagnetic radiation.Wavelength depends on the loss of energy.

Bremsstrahlung (Deceleration radiation)

Page 4: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Bremsstrahlung

4

Wavelength (nm)

Inte

nsity

0.00 0.05 0.10 0.15 0.20

20 kV, 20 mA

30 kV, 20 mA

40 kV, 20 mA

Continuous spectrum

0.25 0.30

Page 5: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Bremsstrahlung

5

Wavelength (nm)

Inte

nsity

0.00 0.05 0.10 0.15 0.20

30 kV, 20 mA

Continuous spectrum

0.25 0.30

30 kV, 30 mA

30 kV, 40 mA

Page 6: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Characteristic Radiation

6

KLM

Eb (eV)0

76

122

933952

1097

8979

M4,5 (3d)

M2,3 (3p)

M1 (3s)

L3 (2p3/2)L1 (2p1/2)

L1 (2s)

K1 (1s)

Kα1 Kα2 Kβ

Cu

Wavelength of Kα1, Kα2, Kβ, Lα... are characteristic for the atomic species.

Page 7: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

X-rays: Spectrum

7

Wavelength (nm)

Inte

nsity

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Cu

Kα1

Kα2

Kα1

Kα2

Mo

Page 8: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

X-ray Tube

8

e‒

Filament

Target (Cu, Mo, Fe, Co, ...)

Be windowAccelerationVoltage

Vac

uum

FilamentCurrent

Generator settings: kV mA

Page 9: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Old X-ray tubes

9

Caution:Beryllium is toxic & carcinogenic!

- Never touch the windows!- Use appropriate covers!

Caution:Beryllium is toxic & carcinogenic!

- Never touch the windows!- Use appropriate covers!

Lifetime of a few years:

- Vacuum decreases� loss of intensity

- Tungsten from filament depositson target� contaminated spectrum (characteristicW spectrum starts to appear)

- Monitor the intensity

- Replace old tubes

Page 10: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Focal Point

10

Typical target size:Length: 10-12 mmWidth: 0.4-1.0 mm

Target

Point focus

Line focus

Take-off angle(typically 6°)

Page 11: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

X-rays: Summary

11

• Generated in an X-ray tube

• Spectrum contains Bremsstrahlung (continuous) and characteristic radiation (Kα1, Kα2, Kβ) of target material

• Tube is characterized by:• Target material• Size and shape of target• Aceleration voltage and

current

Page 12: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Diffraction Basics

12

Interaction of X-rays with matter:

- Absorption (photoelectric effect, giving rise to fluorescence)- Elastic scattering (Thomson scattering)- Inelastic scattering (Compton scattering)

Absorption Photoelectric effect, Fluorescence

1. Absorption and ionization2. Relaxation and emission of characteristic radiation

CuKα1

FeKα1

Fe atom

Page 13: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Elastic Scattering

13

Electron oscillates in the electric field,emits photons of the same wavelength as

the incoming radiation (λs = λp).

λp

λs

CuKα1

CuKα1

Fe atom

Secondary wave is in phase (+ 180°) with primary wave.

Page 14: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Crystal Lattice

14

Crystal: Periodic arrangement of atoms/ions/molecules in 3 dimensions.

Electrons of each atom become a source ofscattered radiation (spherical waves)

Page 15: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

xx.xx.xxxx Tagung15Image: http://www.forbes.com/

Positive interference (amplification)Negative interference (extinction)

More sources in ordered arrangement=

More distinct interference pattern

Page 16: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Bragg’s Law

16

n · λ = 2 · d · sin(θ)

d

λ

θθ 2θ

Diffracted beam looks like a «reflection», but it is scattered radiation

Page 17: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Bragg’s Law

17

CuKα1 = 0.154056 nma = 0.2 nmb = 0.5 nm

ba

b

a

2θ = 45.30°2θ = 17.72°

d = 0.2 nm

d = 0.5 nm

θ = 22.65°θ = 8.86°

Page 18: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Lattice Planes and Miller Indices

18

a

b

Definition:A lattice plane is a planewhich intersects atoms ofa unit cell across the whole3‐dimensional lattice.

d(100)

d(010)

d(110)

d(-210)

- Each lattice plane generates a diffraction peak.

- The 2θ angle of thepeak depends on the plane’s d-spacing.

- Diffraction peaks canbe labelled with the plane’s Miller index.

Page 19: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Single Crystal

19

A single crystal must be rotatedto bring each lattice plane indiffraction condition.

2θ 2θ2θ

Page 20: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Polycrystals, Powders

20

In an ideal powder everypossible orientation ofcrystals occurs.

In a random powderno orientation is preferred.

In an ideal powder all possible diffraction peaksare generated, regardless of sample orientation.

Page 21: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Diffraction Cones

21

Diffraction at an angle 2θ° fromthe primary beam

All possible rays form a cone = diffraction cone = Debye cone

Page 22: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Diffraction Cones

22

(120)

(100)

(010)

One Debye Cone for each lattice plane spacing (d value)

Powder sample:

Page 23: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Debye Ring

23

Gra

y V

alue

2θ Angle

Gra

y V

alue

2θ Angle

Page 24: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Powder Diffractometer

24

X-ray tube

Primary Beam

PowderSample

Diffraction Cones«Secondary Beams»

X-ray Detectorscanning X-ray intensity

vs. 2θ angle

Page 25: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Powder Diffraction Pattern

25

10 20 30 40 50 600

500

1000

1500

2000In

tens

ity (

cts)

Diffraction Angle (°2θ)

Lesson 2: All about powder diffractometers

Page 26: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Monochromatic X-radiation

26

n · λ = 2 · d · sin(θ)

http://fineartamerica.com

Diffraction angle θ depends on wavelength λ:

Polychromatic X-ray Beam

We need monochromatic X-radiation!

Page 27: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Monochromatic X-radiation

27

Wavelength (nm)

Inte

nsity

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Cu

Kα1

Kα2

X-ray Beam from Tube

Bremsstrahlung

Kα2

Kα1

Monochromator: Remove every wavelength but Kα1

Page 28: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Monochromator

28

X-radiation is absorbed by solid matter.

Absorption coefficient depends on wavelength.

There are steps (absorption edges) in the spectrum.

Wavelength (nm)

Abs

orpt

ion

Coe

ffic

ient

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Ni

K: 0.14879 nm

L-I: 1.22988 nm

Ni

«K» edge

Page 29: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Ni-Filter

29

Wavelength (nm)

Inte

nsity

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Cu

Kα1

Kα2

Ni

Cu Radiation

Ni filter

Page 30: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Ni-Filter

30

Cu Radiation

Ni filter

Ni-filtered Cu Radiation

Wavelength (nm)

Inte

nsity

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Kα1

Kα2

Ni

Kβ and Bremsstrahlung attenuated

No elimination of Kα2

Page 31: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Ni-filtered Diffraction Pattern

31

27 28 29 30 31 320

100000

200000

300000

400000

500000In

tens

ity

Diffraction Angle (°2θ)

CuKα1

CuKα2

Page 32: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Ni-filtered Diffraction Pattern

32

27 28 29 30 31 320

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Inte

nsity

Diffraction Angle (°2θ)

CuKβ

CuKα1 & CuKα2 duplet

Remaining Bremsstrahlung

Absorption Edge

Impurity

CuKα Satellites

(= CuKα3)

Page 33: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Ni Filter: Primary or Secondary Beam

33

BremsstrahlungKβ

Kα2

Kα1

Cu Radiation

Ni filter

Ni-filtered primary beam

Kα1

Kα2

Cu RadiationNi filter

Primary beam filter

Secondary beam filter

Page 34: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Kβ Filter

34

Target

Element

Kα1 (nm) Kα2 (nm) Kβ (nm) Kβ Filter Absorption

Edge λK (nm)

Cr 0.228975 0.229365 0.20849 V 0.2269

Fe 0.193631 0.194002 0.17567 Mn 0.1896

Co 0.178900 0.179289 0.16208 Fe 0.1744

Ni 0.165794 0.166178 0.15002 Co 0.1608

Cu 0.154059 0.154441 0.139225 Ni 0.1488

Mo 0.709317 0.713607 0.63230 Zr 0.6889

Ag 0.559422 0.563813 0.49708 Rh 0.5339

Birkholz, M. «Thin Film Analysis by X-ray Scattering», Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006.

Page 35: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Summary: K β Filter

35

Kβ Filter:

- Mostly eliminates Kβ

- Does not eliminate Kα2

- Moderate loss of intensity of Kα1 and Kα2

- Leaves an absorption edge in the foot of the diffraction peaks

- Attenuation of Kβ depends on thickness of filter foil

- Can be placed in the primary or secondary beam

Page 36: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Monochromator Crystal

36

Graphitesingle crystal

Emission Line Wavelength (nm) 2θ Bragg Diffraction

Condition (°)

CuKα1 0.154059 26.57

CuKα2 0.154441 26.64

CuKβ 0.139225 23.97

d (002) = 0.3352 nm

θ = 13.3°

n · λ = 2 · d · sin(θ)

2θ = 26.6°

Kβ and most of the Bremsstrahlung (BS)are not in diffraction condition � Extinction

Page 37: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Monochromator Crystal

37

BSKβ

Kα2

Kα1

Graphite Crystal

Kα1

Si / Ge CrystalsHigh-resolution monochromator

Graphitemonochromator

Kα1 Kα2

Page 38: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Graphite Monochromator

38

27 28 29 30 31 320

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000In

tens

ity

Diffraction Angle (°2θ)

CuKα1

CuKα2

Page 39: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Graphite Monochromator

39

27 28 29 30 31 320

100

200

300

400

500In

tens

ity

Diffraction Angle (°2θ)

CuKα1 & CuKα2 duplet

CuKα Satellites

(= CuKα3)

Page 40: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Monochromator Crystal

40

Monochromator Crystal:

- Completely eliminates Kβ

- Reduces background intensity

- Si / Ge eliminate Kα2, Graphite does not eliminate Kα2

- Severe loss of intensity of Kα1 (and Kα2)

- Graphite crystal can be placed in primary or secondary beam

- Si / Ge crystals are usually placed in the primary beam

- Monochromatic beam is polarized

Page 41: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Energy-Dispersive Detector

41

BS Kβ

Powder Sample

Detector

Kα2Kα1

Detector’s energy windowis set to Kα1/2, other

wavelengths are ignored(«digital filtering»)

Page 42: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Energy-Dispersive Detector

42

Energy-dispersive Detector:

- Completely eliminates Kβ

- Reduces background intensity

- Does not eliminate Kα2

- No loss of intensity of Kα1 and Kα2

Page 43: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Summary: Monochromators

43

• Monochromatic X-radiation is required for powder XRD

• Bremsstrahlung and Kβ must be eliminated from thetube’s spectrum

• 3 different types of monochromators:• Kβ filter (Cu tube + Ni filter, Mo tube + Zr filter)• Monochromator crystal• Energy-dispersive detector

• Most systems do not eliminate Kα2!

Page 44: Lesson 1: X-rays and Diffraction - Profex | Open Source XRD …profex.doebelin.org/.../Lesson-1-X-rays-and-Diffraction.pdf · Lesson 1 X-rays & Diffraction Nicola Döbelin RMS Foundation,

Overview of Instruments

44

Lab Instrument Monochromator

Uppsala Uni Bruker D8 Ni-Filter

RMS (Uni Bern) Panalytical X’Pert Ni-Filter

RMS (Uni Bern) Panalytical CubiX Graphite

Monochromator

Bruker D8 Panalytical X’Pert Panalytical CubiX