Top Banner
12

Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

Jul 15, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem
Page 2: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

Lectures o n Coarse Geometr y

http://dx.doi.org/10.1090/ulect/031

Page 3: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

University

LECTURE Series

Volume 3 1

Lectures o n Coarse Geometr y

John Ro e

American Mathematica l Societ y Providence, Rhod e Islan d

Page 4: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

EDITORIAL COMMITTE E Jer ry L . Bon a (Chair ) Eri c M . Friedlande r Nigel J . Hitchi n Pe te r Landwebe r

2000 Mathematics Subject Classification. P r i m a r y 20F65 , 51K05 , 53C24 , 46L85 , 54E15 .

For addi t iona l informatio n an d upda te s o n thi s book , visi t w w w . a m s . o r g / b o o k p a g e s / u l e c t - 3 1

Library o f Congres s Cataloging-in-Publicat io n Dat a

Roe, John , 1959 -Lectures o n coars e geometr y / Joh n Roe .

p. cm . — (Universit y lectur e series , ISS N 1047-399 8 ; v. 31 ) Includes bibliographica l references . ISBN 0-8218-3332- 4 (alk . paper ) 1. Metri c spaces . 2 . Algebrai c topology . I . Title : Coars e geometry . II . Title . III . Univer -

sity lectur e serie s (Providence , R . I. ) ; 31.

QA611.28.R64 200 3 514/.325—dc22 200305238 5

Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f th e sourc e i s given .

Republication, systemati c copying , o r multipl e reproductio n o f any materia l i n thi s publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addresse d t o th e Acquisition s Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail t o [email protected] .

© 200 3 b y th e author . Al l right s reserved . Printed i n th e Unite d State s o f America .

@ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability .

Visit th e AM S hom e pag e a t h t t p : //www. ams. org/

10 9 8 7 6 5 4 3 2 1 5 1 4 1 3 1 2 1 1 1 0

Page 5: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

Contents

Preface

Chapter 1 . Metri c Space s 1.1. Legendr e o n hyperboli c geometr y 1.2. Metri c space s an d lengt h space s 1.3. Th e coars e perspectiv e o n metri c space s 1.4. Group s an d leave s 1.5. Tree s an d complexe s 1.6. Hyperboli c spac e 1.7. Nilpoten t example s — Heisenber g grou p

Chapter 2 . Coars e Space s 2.1. Th e abstrac t notio n o f coarse structur e 2.2. Topologica l coars e structur e 2.3. Th e Higso n coron a 2.4. Metrizatio n o f coars e structure s 2.5. Hyperbolizatio n

Chapter 3 . Growt h an d amenabilit y 3.1. Bounde d geometr y 3.2. Growt h 3.3. Amenabl e space s 3.4. Example s o f amenabl e an d nonamenabl e space s 3.5. Amenabl e group s 3.6. F0lner' s Theore m 3.7. Amenabilit y an d analysi s

Chapter 4 . Translatio n Algebra s 4.1. Translatio n Algebra s 4.2. Amenabilit y an d th e Translatio n Algebr a 4.3. Finitenes s o f Grou p Algebra s 4.4. Translatio n C*-Algebra s 4.5. Translatio n Algebra s a s Crosse d Product s

Chapter 5 . Coars e Algebrai c Topolog y 5.1. Coars e cohomolog y theor y 5.2. Produc t structur e o n coars e theor y 5.3. Computatio n o f coars e cohomolog y

vii

1 1 3 5 7

11 13 18

21 21 26 29 33 35

39 39 42 44 47 51 55 58

59 59 60 63 66 68

71 71 76 78

V

Page 6: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

vi CONTENT S

5.4. Covers , nerve s an d metrizatio n 8 0 5.5. Coars e homolog y theorie s 8 2 5.6. Th e Coars e Baum–Conne s conjectur e 8 4

Chapter 6 . Coars e Negativ e Curvatur e 8 7 6.1. Curvatur e condition s 8 7 6.2. Th e Rip s propert y an d Gromo v hyperbolicit y 8 8 6.3. Controllin g quasigeodesic s 9 2 6.4. Th e Gromo v boundar y o f a hyperboli c spac e 9 3 6.5. Bolicit y 9 7

Chapter 7 . Limit s o f Metri c Space s 9 9 7.1. Convergenc e o f metri c space s 9 9 7.2. Th e rescale d limi t o f metric space s 10 1 7.3. Group s o f polynomial growt h 10 4 7.4. Ultralimit s 10 5 7.5. Asymptoti c Cone s 10 7

Chapter 8 . Rigidit y 11 1 8.1. Wha t i s rigidity? 111 8.2. Th e quasi-isometr y grou p o f hyperboli c spac e 11 2 8.3. Proo f o f Mostow Rigidit y 11 7 8.4. Quasi-Isometri c Rigidit y Fo r Product s o f Hyperboli c Space s 12 1

Chapter 9 . Asymptoti c Dimensio n 12 9 9.1. Th e asymptoti c dimensio n o f a coarse spac e 12 9 9.2. Compositio n propertie s o f asymptoti c dimensio n 13 2 9.3. Mor e Example s 13 6 9.4. Analyti c implication s o f finit e asymptoti c dimensio n 13 9

Chapter 10 . Groupoid s an d coars e geometr y 14 1 10.1. Reminder s abou t topologica l groupoid s 14 1 10.2. Th e pai r produc t an d th e Stone-Cec h boundar y 14 3 10.3. Th e translatio n groupoi d o f a coarse spac e 14 5 10.4. Translatio n groupoi d an d translatio n algebr a 14 8

Chapter 11 . Coars e Embeddabilit y 15 1 11.1. Coars e embeddin g 15 1 11.2. Kernel s an d embedding s i n Hilber t spac e 15 3 11.3. Embeddabilit y an d Propert y T 15 7 11.4. Propert y T an d coars e equivalenc e 16 2 11.5. Propert y A and exactnes s fo r grou p C*-algebra s 16 5

Bibliography 173

Page 7: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

Preface

In the spring of 2002 I gave a series of graduate lectures a t Pen n Stat e on 'coars e geometry'. Thes e ar e th e edite d lectur e note s fro m tha t course . Th e intentio n wa s to discus s variou s aspect s o f the theor y o f 'larg e scal e structures ' o n spaces , wit h a particular focu s on the notions of asymptotic dimension an d uniform embeddabilit y into Hilber t space , whic h hav e recentl y prove d o f significanc e fo r th e Noviko v conjecture. O n the othe r hand , s o far a s is consistent wit h th e precedin g objective , the study o f C*-algebras arisin g from coars e geometry has been de-emphasized ; thi s has alread y bee n writte n abou t a t lengt h elsewher e [59] .

The first fe w chapters of the book are devoted to a general perspective on 'coars e structures' whic h was first se t ou t i n the pape r [34] . Thi s notion ha s the advantag e of including unde r on e heading man y o f the differen t notion s o f 'control ' tha t hav e been use d b y topologist s (fo r exampl e [2]) ; an d eve n whe n onl y metri c coars e structures ar e i n view , th e abstrac t framewor k bring s th e sam e simplificatio n a s does the passage from epsilon s and delta s to open set s when speaking o f continuity . In thi s mor e genera l contex t on e ca n stil l discus s idea s lik e growth , amenability , and coars e cohomology , an d thes e ar e addresse d i n chapter s 3 through 5 .

The middl e sectio n o f th e note s review s notion s o f negativ e curvatur e an d rigidity. Moder n interest i n large scale geometry derives in large part fro m Mostow' s rigidity theorem , wit h it s crucia l insigh t tha t th e coars e structur e o f hyperboli c space determines the quasiconformal structur e o f the boundary, an d from Gromov' s subsequent 'larg e scale ' renditio n o f th e crucia l propertie s o f negativel y curve d spaces. Ther e ar e man y excellen t exposition s o f thi s materia l an d ou r accoun t i s brief i n places .

In the fina l section s we discuss recent result s o n asymptoti c dimensio n (mostl y due t o Bel l an d Dranishnikov ) an d unifor m embeddin g int o Hilber t space . W e also tak e th e opportunit y t o revie w th e beautifu l constructio n o f Skandalis , T u and Y u [62 ] whic h allow s on e t o encod e th e larg e scal e structur e o f a (bounde d geometry) spac e b y mean s o f a suitable groupoid .

The larg e scal e geometr y o f discrete groups i s a beautifu l an d activ e are a o f research, an d i n thes e note s w e barel y scratc h it s surface . Th e reade r wh o want s to lear n mor e abou t geometri c grou p theor y i s referred t o th e book s [13 , 25 , 17] .

I am grateful t o the Nationa l Scienc e Foundation fo r thei r suppor t unde r grant s DMS-9800765 an d DMS-0100464 .

John Ro e

Page 8: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

This page intentionally left blank

Page 9: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

Bibliography

C. Anantharaman-Delaroch e an d J . Renault . Amenable groupoids, volum e 3 6 o f Monogra-phies de L'Enseignement Mathimatique [Monographs of L'Enseignement Mathematique]. L'Enseignement Mathematique , Geneva , 2000 . Wit h a forewor d b y George s Skandali s an d Appendix B b y E . Germain . D.R. Anderson , F . Connolly , S.C . Ferry , an d E.K . Pedersen . Algebrai c K-theor y wit h continuous contro l a t infinity . Journal of Pure and Applied Algebra, 94:25-47 , 1994 . Pere Ara , Kevi n C . O'Meara , an d Frances c Perera . Stabl e finiteness o f group rings in arbitrar y characteristic. Adv. Math., 170(2):224-238 , 2002 . O. Attie , J . Block , an d S . Weinberger . Characteristi c classe s an d distortio n o f diffeomor -phisms. Journal of the American Mathematical Society, 5:919-921 , 1992 . M. E . B . Bekka , P.-A . Cherix , an d A . Valette . Prope r afnn e isometri c action s o f amenabl e groups. I n Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), volume 22 7 o f London Math. Soc. Lecture Note Ser., page s 1-4 . Cambridg e Univ . Press , Cambridge, 1995 . M. E . B . Bekk a an d A . Valette . Kazhdan' s propert y (T ) an d amenabl e representations . Math. Z., 212(2):293-299 , 1993 . G. Bel l an d A . Dranishnikov . O n asymptoti c dimensio n o f groups . Algebraic and Geometric Topology, 1:57-71 , 2001 . G. Bel l an d A . Dranishnikov . O n asymptoti c dimensio n o f group s actin g o n trees . Preprint , 2002. Y. Benyamin i an d J . Lindenstrauss . Geometric Nonlinear Functional Analysis, volum e 4 8 of Colloquium Publications. America n Mathematica l Society , Providence , R.I. , 2000 . J. Bloc k an d S . Weinberger . Aperiodi c tilings , positiv e scala r curvature , an d amenabilit y o f spaces. Journal of the American Mathematical Society, 5:907-920 , 1992 . M. Bon k an d O . Schramm . Embedding s o f Gromo v hyperboli c spaces . Geometric and Functional Analysis, 10:266-306 , 2000 . R. Bot t an d L.W . Tu . Differential Forms in Algebraic Topology, volum e 8 2 of Graduate Texts in Mathematics. Springer-Verlag , Ne w York-Heidelberg-Berlin , 1982 . M. R . Bridso n an d A . Haefliger . Metric Spaces of Non-Positive Curvature. Springer-Verlag , New York-Heidelberg-Berlin , 2000 . Matthew G . Brin . Th e chameleo n group s o f Richar d J . Thompson : automorphism s an d dynamics. Inst. Hautes Etudes Sci. Publ. Math., 84:5-33 , 1996 . Michelle Buche r an d Ander s Karlsson . O n th e definitio n o f boli c spaces . Expositiones Math-ematicae, 20(3):269-277 , 2002 . Pierre-Alain Cherix , Michae l Cowling , Pau l Jolissaint , Pierr e Julg , an d Alai n Valette . Groups with the Haagerup property, volum e 19 7 o f Progress in Mathematics. Birkhause r Verlag , Basel, 2001 . P. d e l a Harpe . Topics in Geometric Group Theory. Universit y o f Chicag o Press , 2000 . P. d e l a Harp e an d A . Valette . L a propriet e (T ) d e Kazhda n pou r le s groupe s localemen t compacts. Asterisque, 175 , 1989 . C. H . Dowker . Topolog y o f metri c complexes . Amer. J. Math., 74:555-577 , 1952 . D.B.A. Epstein . Ends . I n M.K . Fort , editor , Topology of 3-Manifolds and Related Topics, pages 110-117 . Prentice-Hall , 1962 . Alex Furman . Gromov' s measur e equivalenc e an d rigidit y o f highe r ran k lattices . Ann. of Math. (2), 150(3):1059-1081 , 1999 . E. Ghy s an d P . d e l a Harpe . Sur les Groupes Hyperboliques d'apres Mikhael Gromov, volume 8 3 o f Progress in Mathematics. Birkhauser , Basel , 1990 .

173

Page 10: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

174 BIBLIOGRAPH Y

[23] J . Gray . Ideas of Space: Euclidean, Noneuclidean, and Relativistic. Oxfor d Universit y Press , 1988.

[24] M . Gromov . Hyperboli c groups . I n S.M . Gersten , editor , Essays in Group Theory, page s 75 -263. Springer-Verlag , Ne w York-Heidelberg-Berlin , 1987 . Mathematica l Science s Researc h Institute Publication s 8 .

[25] M . Gromov . Asymptoti c invariant s fo r infinit e groups . I n G.A . Nibl o an d M.A . Roller , editors, Geometric Group Theory, volum e 18 2 of LMS Lecture Notes, page s 1-295 . Cambridg e University Press , Cambridge , 1993 .

[26] M . Gromov . Metric structures for Riemannian and non-Riemannian spaces, volum e 15 2 o f Progress in Mathematics. Birkhause r Bosto n Inc. , Boston , MA , 1999 . Base d o n th e 198 1 French origina l [M R 85e:53051] , Wit h appendice s b y M . Katz , P . Pans u an d S . Semmes , Translated fro m th e Frenc h b y Sea n Michae l Bates .

[27] M . Gromov . Space s an d questions . Geom. Fund. Anal, Specia l Volume , Par t 1:118-161 , 2000. GAF A 200 0 (Te l Aviv , 1999) .

[28] M . Gromo v an d P . Pansu . Rigidit y o f lattices: a n introduction . I n Geometric topology: recent developments (Montecatini Terme, 1990), volum e 150 4 o f Lecture Notes in Math., page s 39-137. Springer , Berlin , 1991 .

[29] Mikhae l Gromov . Group s o f polynomia l growt h an d expandin g maps . Inst. Hautes Etudes Sci. Publ. Math., 53:53-73 , 1981.

[30] Eri k Guentne r an d Jerom e Kaminker . Addendu m to : "Exactnes s an d th e Noviko v conjec -ture". Topology, 41(2):419-420 , 2002 .

[31] Eri k Guentne r an d Jerom e Kaminker . Exactnes s an d th e Noviko v conjecture . Topology, 41(2):411-418, 2002 .

[32] Uff e Haagerup . A n exampl e o f a nonnuclea r C*-algebra , whic h ha s th e metri c approximatio n property. Invent. Math., 50(3):279-293 , 1978/79 .

[33] N . Higson , V . Lafforgue , an d G . Skandalis . Counterexample s t o th e Baum-Conne s conjecture . Geom. Fund. Anal, 12(2):330-354 , 2002 .

[34] N . Higson , E.K . Pedersen , an d J . Roe . C*-algebra s an d controlle d topology . K-Theory, 11:209-239, 1997 .

[35] N . Higso n an d J . Roe . Th e Baum-Conne s conjectur e i n coars e geometry . I n S . Ferry , A. Ranicki , an d J . Rosenberg , editors , Proceedings of the 1993 Oberwolfach Conference on the Novikov Conjecture, volum e 22 7 of LMS Lecture Notes, page s 227-254 . Cambridge Universit y Press, Cambridge , 1995 .

[36] N . Higso n an d J . Roe . Analytic K-Homology. Oxfor d Mathematica l Monographs . Oxfor d University Press , Oxford , 2000 .

[37] N . Higson , J . Roe , an d G . Yu . A coars e Mayer-Vietori s principle . Mathematical Proceedings of the Cambridge Philosophical Society, 114:85-97 , 1993 .

[38] C.H . Houghton . End s o f group s an d th e associate d first cohomolog y groups . Journal of the London Mathematical Society, 6:81-92 , 1972 .

[39] W . Hurewic z an d H . Wallman . Dimension Theory. Princeto n Universit y Press , Princeton , N.J., 1941 .

[40] J . Vaisala . Lectures on n-dimensional quasiconformal mappings, volum e 12 9 of Lecture Notes in Mathematics. Spinge r Verlag , 1971 .

[41] Michae l Kapovich , Bruc e Kleiner , an d Bernhar d Leeb . Quasi-isometrie s an d th e d e Rha m decomposition. Topology, 37(6):1193-1211 , 1998 .

[42] G.G . Kasparov . Topologica l invariant s o f ellipti c operator s I : K-homology . Mathematics of the USSR — Izvestija, 9:751-792 , 1975 .

[43] G.G . Kasparo v an d G . Skandalis . Groupe s "boliques " e t conjectur e d e Novikov . C. R. Acad. Sci. Paris Sir. I Math., 319(8):815-820 , 1994 .

[44] Harr y Kesten . Ful l Banac h mea n value s o n countabl e groups . Math. Scand., 7:146-156 , 1959 . [45] Harr y Kesten . Symmetri c rando m walk s o n groups . Trans. Amer. Math. Soc, 92:336-354 ,

1959. [46] Bruc e Kleine r an d Bernhar d Leeb . Rigidit y o f quasi-isometrie s fo r symmetri c space s an d

Euclidean buildings . Inst. Hautes Etudes Sci. Publ. Math., 86:115-19 7 (1998) , 1997 . [47] A . Lubotzky . Discrete Groups, Expanding Graphs and Invariant Measures, volum e 12 5 o f

Progress in Mathematics. Birkhauser , Basel-Boston-Berlin , 1994 . [48] J.W . Milnor . O n axiomati c homolog y theory . Pacific Journal of Mathematics, 12:337-341 ,

1962.

Page 11: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem

BIBLIOGRAPHY 175

J.W. Milnor . A not e o n curvatur e an d th e fundamenta l group . Journal of Differential Geometry, 2:1-7 , 1968 . I. Mineyev . Straightenin g an d bounde d cohomolog y o f hyperboli c groups . Geom. Fund. Anal, ll(4):807-839 , 2001 . Igor Mineye v an d Guolian g Yu . Th e Baum-Conne s conjectur e fo r hyperboli c groups . Invent. Math., 149(1):97-122 , 2002 . G.D. Mostow . Strong Rigidity of Locally Symmetric Spaces, volum e 7 8 o f Annals of Mathe-matics Studies. Princeto n Universit y Press , Princeton , N.J. , 1973 . Narutaka Ozawa . Amenabl e action s an d exactnes s fo r discret e groups . C. R. Acad. Sci. Paris Sir. I Math., 330(8):691-695 , 2000 . Pierre Pansu . Metrique s d e Carnot-Caratheodor y e t quasiisometrie s de s espace s symetrique s de ran g un . Ann. of Math. (2), 129(l):l-60 , 1989 . W.L. Paschke . K-theor y fo r commutant s i n th e Calki n algebra . Pacific Journal of Mathemat-ics, 95:427-437 , 1981 . G.K. Pedersen . C* -algebras and their Automorphism Groups. Academi c Press , Boston , 1979 . J. Roe . A n inde x theore m o n ope n manifold s I . Journal of Differential Geometry, 27:87-113 , 1988. J. Roe . Coars e cohomolog y an d inde x theor y o n complet e Riemannia n manifolds . Memoirs of the American Mathematical Society, 497 , 1993 . J. Roe . Index Theory, Coarse Geometry, and the Topology of Manifolds, volum e 9 0 of CBMS Conference Proceedings. America n Mathematica l Society , Providence , R.I. , 1996 . W. Rudin . Functional Analysis. McGraw-Hill , Ne w York , 1973 . J.-P. Serre . Trees. Springer-Verlag , Ne w York-Heidelberg-Berlin , 1980 . G. Skandalis , J.-L . Tu , an d G . Yu . Coars e Baum-Conne s conjectur e an d groupoids . Topology, 41:807-834, 2002 . E. Spanier . Algebraic Topology. McGraw-Hill , Ne w York , 1966 . Elias M . Stein . Singular integrals and differentiability properties of functions. Princeto n Mathematical Series , No . 30 . Princeto n Universit y Press , Princeton , N.J. , 1970 . D. Sullivan . Hyperboli c geometr y an d homeomorphisms . I n J.C . Cantrell , editor , Geometric Topology, page s 543-555 , Boston , 1979 . Academi c Press . A.S. Svarc . A volum e invarian t o f coverings . Doklady Akad. Nauk. SSR, 105:32-34 , 1955 . Pekka Tukia . Quasiconforma l extensio n o f quasisymmetri c map s compatibl e wit h a Mobiu s group. Acta Mathematica, 154:153-193 , 1985 . L. va n de n Drie s an d A . J . Wilkie . Gromov' s theore m o n group s o f polynomia l growt h an d elementary logic . J. Algebra, 89(2):349-374 , 1984 . S. Wassermann . Exact C*-algebras and related topics. Seou l Nationa l Universit y Researc h Institute o f Mathematic s Globa l Analysi s Researc h Center , Seoul , 1994 . Nick Wright . C o coarse geometry. Ph D thesis , Pen n State , 2002 . Nick Wright . Co coars e geometr y an d scala r curvature . Journal of Functional Analysis, 197(2):469-488, 2003 .

[72] G . Yu . Th e Noviko v conjectur e fo r group s wit h finite asymptoti c dimension . Annals of Mathematics, 147:325-355 , 1998 .

Page 12: Lectures on · Growth and amenability 3.1. Bounded geometry 3.2. Growth 3.3. Amenable spaces 3.4. Examples of amenable and nonamenable spaces 3.5. Amenable groups 3.6. F0lner's Theorem