Top Banner
Dr. Ismail Saad Lecturer Electrical & Electronics Engineering Program School of Engineering & IT Universiti Malaysia Sabah (UMS) Email: [email protected] MOSFET Modeling & Simulation with MATLAB
48

lecturenote3_mosfetchapter

May 26, 2017

Download

Documents

narpatza
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: lecturenote3_mosfetchapter

Dr. Ismail SaadLecturer 

Electrical & Electronics Engineering ProgramSchool of Engineering & IT

Universiti Malaysia Sabah (UMS)

E‐mail: [email protected]

MOSFET Modeling & Simulation with MATLAB

Page 2: lecturenote3_mosfetchapter

The MOS capacitor(a) Physical structure of an n+‐

Si/SiO2/p‐Si MOS capacitor(b) cross section(c) the energy band diagram under 

charge neutrality(d) the energy band diagram at 

equilibrium (note that the surface of the p‐type substrate near the oxide interface has become weakly inverted).

Page 3: lecturenote3_mosfetchapter

Energy band diagrams for the MOS capacitor  with the charge distributions for 3 bias conditions. 

(a) Equilibrium : Electrons from  the n+ gate transfer to the p‐Si substrate, resulting in a positive gate and a negative depletion region in the substrate. 

(b) Accumulation :A negative voltage is applied to the gate with respect to the substrate such that holes accumulate at the silicon–to–silicon dioxide interface. 

(c) Applied +ve 2V(d) With time, electrons generated in 

the transition region are trapped in the potential well at the interface until steady state is reach

Page 4: lecturenote3_mosfetchapter

(b) Capacitance‐voltage (CV) characteristic for a MOS capacitor at low and high frequencies.

fCvi

ac

ac π2=

sox CCC111

+=

(a) Circuit for measuring the capacitance of a MOS capacitor.

Page 5: lecturenote3_mosfetchapter

Schematic diagram of n‐channel silicon‐based MOSFET structure

• The channel width W, length L, and oxide thickness tox are shown• The symbols S, G, D, and B represent the source, gate, drain, and substrate (body) respectively.

Page 6: lecturenote3_mosfetchapter

(a)Cross section of an n‐channel FET(b)Energy band diagram at equilibrium

Page 7: lecturenote3_mosfetchapter

Accumulation : The channel charge accumulates in the bulk near the oxide interface. In this case the channel charge consists of electrons.

Page 8: lecturenote3_mosfetchapter

Inversion : The band bending at the surface of the semiconductor. At threshold, the Fermi level is as far above the intrinsic level at the surface (left‐hand edge) as it is below the intrinsic level in the bulk.

Page 9: lecturenote3_mosfetchapter

The ID‐VDS characteristics of a typical MOSFET. The threshold voltage is 0.5 V

Page 10: lecturenote3_mosfetchapter

Parallel‐Plate Capacitor Vs. MOS Capacitor

ddACCVCQ

dA

dACCVQ

osAAA

os

κεε

κεε

====

=== ( )

( )

( ))( yVVt

VVVt

qn

ttACC

VVVCQ

GTox

ox

chTGSox

oxs

ox

oxo

ox

oxA

chTGSAA

−=

−−=

===

−−=

ε

ε

κεε

Page 11: lecturenote3_mosfetchapter

Quantum Channel(a) Square well vs MOSFET 

triangular channel(b) Classical  vs quantum 

channel(c) Lifting of conduction 

band by quantum energy

(d) The wave function peaks at a distance away from the interface 

(e) Classical and quantum electron concentration profile (ns =1012 cm‐2)

Page 12: lecturenote3_mosfetchapter

Effective Capacitance due to Quantum Effect (QE)

T

ooQ

Q

SiQ q

Extt

CE3

2=≈=

ε

ox

Q

Si

oxox

G

Q

ox

ox

QoxG

ttC

C

CC

C

CCC

εε

+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

+=

1

1

11

111

10 15 20 25 30 35 40 45 500.65

0.7

0.75

0.8

0.85

0.9

ELECTRIC FIELD (MV/m)

REL

ATI

VE C

APA

CIT

AN

CE

10 nm

5 nm

Page 13: lecturenote3_mosfetchapter

- -Gate‐Field Induced Mobility Degradation Due to QE

( )( )chGT VV

ochGT

of e

VV−≈

−+= θμ

θμμ

1l

)(1 chTGS

of VVV −−+

μμl

Page 14: lecturenote3_mosfetchapter

sVcm

VVsV

cm

VVVV

sVcm

VVsV

cm

VVVV

sVcmVVV

mF

mmF

tC

sVcmVVnmtVExample

fGTGS

fGTGS

fGTTGS

ox

oxox

Tox

.316

)4(13.01.

48045

.380

)2(13.01.

48023

.4800

109.6105

1085.89.3

.4801513.0:

2

1

2

2

1

2

2

0

23

9

12

2

01

=+

===

=+

===

====

×=×

××==

====

−−

l

l

l

μ

μ

μμ

ε

μθ

Gate‐Field Induced Mobility Degradation Due to QE

Page 15: lecturenote3_mosfetchapter

Channel electron mobility and velocity (v = μ E) as a function of lateral field for VGS = 1.42 V

dydV

v

v

L

o

satc

c

L

Lf

=

+=

E

E

EEE

μ

μ

1

l

c

L

feff

EE

+=

1

lμμ

Page 16: lecturenote3_mosfetchapter

Modeling nanoMOSFET ID‐VD Characteristics 

Cross‐section viewed of a typical N‐channel MOSFET which shows the transverse ET and longitudinal EL electric field and oxide thickness tOX along 

the channel length L

Page 17: lecturenote3_mosfetchapter

In a nanoscale channel the validity of Ohm’s law that predict a linear driftvelocity response to the applied electric field, ν = μ0E is revealed to lost itssupremacy as the applied electric field is now much higher than the channelcritical electric field Ec. The drift velocity is now can be represented as below:

c

L

Lf

εε

εμν

+=

1l (1)

where μlf is the low‐field Ohmic mobility, the Ec was related to the saturation velocity νsat and μlf and the longitudinal electric field EL can be approximate as the gradient of applied voltage V along the negative y‐direction of the channel:

f

satc

lμν

ε =dy

ydVL

)(≈ε

y=0

V=0

y=L

V=VDEL

ET

(2)

Page 18: lecturenote3_mosfetchapter

The current in the nanoscale channel is a function of carrier concentration n, the charge q and the velocity ν of carrier in the inversion channel per unit area A:

nqvAI = (3)

In a 2D channel, the area A of the inversion channel is a function of the channelwidth W and its thickness xi and the n is replaced by carrier sheet concentrationns that are the number of carrier per meter square given by:

)/(# 2mnxn is = (4)

Equation (3) is now written as:

qvWnI sD = (5)

The density of inversion charge of a current to flow in the 2D channel is given by:

))(( yVVCqnQ GTGsi −== (6)

Page 19: lecturenote3_mosfetchapter

where VGT = VGS – VT the difference of an applied gate voltage VGS and threshold voltage VT , CG is the gate capacitance and V(y) is the channel voltage in y‐direction. By invoking eq. (1) and (6) into eq.(5), the drain current in the 2D inverted channel is represented as:

( ) WyVVCI

c

L

LfGTGD

εε

εμ+

−=1

)( l(7)

This drain current has to be integrate along y‐direction from y = 0 to y = L or from applied voltage V=0 to V = VDS the drain voltage in the inverted channel as shown in fig. below:

y=0

V=0

y=L

V=VD

EL

ET

Page 20: lecturenote3_mosfetchapter

By rearrange eq. (7) and integrate it:

( ) WdyyVVCdyI LfGT

L

Gc

LL

D εμεε

l)()1(00

−=+ ∫∫ (8)

By replacing EL = dV/dy as in eq.(2) into eq.(8):

( ) dydydVWyVVCdy

dydVI fGT

L

Gc

L

D lμε

)()11(00

−=+ ∫∫ (9)

Thus, eq.(9) simplify to:

( )dVyVVWCdydydVI

DV

GTfGc

L

D ∫∫ −=+00

)()11( lμε

( )dVyVVWCdydydVI

DD V

GTfG

VL

cD ∫∫ −=+

0

/

0

)()11( lμε

⎟⎟⎠

⎞⎜⎜⎝

⎛−=+

2)1(

2D

DGTfGDc

DVVVWCVLI lμ

ε

⎟⎠⎞

⎜⎝⎛ −=+ 2

21)

.11(. DDGTfGDc

D VVVWCVL

LI lμε

(10)

Page 21: lecturenote3_mosfetchapter

Rearrange eq.(10) and defined the critical voltage Vc as:

LLVf

satcc

lμνε == . (11)

Therefore, the drain current equation of a nanoscale channel when VDS < VDsat is given as:

c

D

DDGTfG

D

VV

VVV

LWC

I+

⎟⎠⎞

⎜⎝⎛ −

=1

21 2

lμDsatD VV ≤

(12)

The drain saturation current IDsat on the onset of the velocity saturation νsatwhen VDS = VDsat is now given by:

( ) WVVCI satDsatGTGDsat ν−= DsatD VV ≥ (13)

Page 22: lecturenote3_mosfetchapter

For long channel (LC) the drain voltage VD is smaller than the critical voltage Vc(VD << Vc), therefore the drain current equation is given by:

)21( 2

DDGTfG

D VVVL

WCI −= lμ (14)

Determination of VDsat and IDsat

To determined VDsat , the point on which the velocity saturate, eq.(12) and (13) must be reconcile by making ID the same and make VD = Vdsat:

( ) WVVC

VV

VVV

LWC

satDsatGTG

c

Dsat

DsatDsatGTfG ν

μ−=

+

⎟⎠⎞

⎜⎝⎛ −

1

21 2

l

(15)

Page 23: lecturenote3_mosfetchapter

Rearrange eq. (15) and solving for VDsat:

( ) )1)((21 2

c

Dsat

f

satDsatGTDsatDsatGT V

VLVVVVV +−=−lμ

ν

( ) )1)((21 2

c

DsatcDsatGTDsatDsatGT V

VVVVVVV +−=−

( ) )1(21 2

c

DsatcDsatcGTDsatDsatGT V

VVVVVVVV +−=−

22

21

DsatcDsatDsatGTcGTDsatDsatGT VVVVVVVVVV −−+=−

021 22 =−++− cGTcDsatDsatDsat VVVVVV

0222 =−+ cGTDsatcDsat VVVVV (16)

Page 24: lecturenote3_mosfetchapter

Equation (16) is a quadratic and solving it will give the VDsat as:

( )2

2422 2cGTcc

DsatVVVV

V×+±−

=

⎥⎦

⎤⎢⎣

⎡++−=

c

GTcDsat V

VVV 211

⎥⎦

⎤⎢⎣

⎡−+= 121

c

GTcDsat V

VVV (17)

The IDsat can be determined by using eq. (16) and solving it using eq.(13):

0222 =−+ cGTDsatcDsat VVVVV

( ) 22 DsatDsatGTc VVVV =− (18)

Page 25: lecturenote3_mosfetchapter

Then by inserting eq.(18) into eq.(13):

( ) WVVCI satDsatGTGDsat ν−=

c

DsatsatGDsat V

VWCI2

21 ν=

L

VWCI

f

sat

DsatsatGDsat

lμνν

2

21

=

Thus the IDsat is simplifying as:

2

21

DsatfG

Dsat VL

WCI lμ

= (19)

Page 26: lecturenote3_mosfetchapter

The ID‐VDS characteristics of the NFET : results from the simple model. For this device W/L= 5, tox = 4 nm, CG = 8.63 × 10‐3 F/m2, and mn = 500 cm2/V×s.

Page 27: lecturenote3_mosfetchapter

Comparison of ID‐VDS characteristics computed by using the constant mobility model (q = 0, dashed lines) and taking into account the effect of the transverse field (solid line) for q = 0.13 V‐1. The transverse field tends to reduce the currents

Page 28: lecturenote3_mosfetchapter

The calculated IV characteristics for the simple model and for NMOS and PMOS with carrier velocity saturation accounted for. 

Page 29: lecturenote3_mosfetchapter

The saturation voltage as a function of channel length for |(VGS ‐ VT)| = 2.6 V.

Page 30: lecturenote3_mosfetchapter

Saturation current |IDsat| as a function of L for n‐ and p‐channel silicon MOSFETs. Here |(VGS ‐ VT)| = 2.6 V, the width‐to‐length ratio is W/L = 10, and Wp = 2.5 Wn.

Page 31: lecturenote3_mosfetchapter

Comparison of the simple long‐channel model, the model including velocity saturation, the model including both velocity saturation and the series resistances RS and RD, and the actual measured data. For this NFETdevice, L = 0.25 mm, W = 9.9 mm, and VT = 0.3 V. The gate‐source voltage is 1.8 V.

Page 32: lecturenote3_mosfetchapter

For short‐channel devices, the reduction of the effective channel length with increasing VDSresults in an increase in ID

Page 33: lecturenote3_mosfetchapter

(a) For long channels the drain voltage has negligible effect on the barrier at the source‐channel interface. (b) For short‐channel devices the drain voltage tends to reduce the barrier at the source end. (c) The result is that the threshold voltage is decreased. The effect is more pronounced as the channels get shorter.

Page 34: lecturenote3_mosfetchapter

The difference between long‐ and short‐channel behavior depends on the oxide thickness tox, the source and drain junction depth xj, and the depletion region thickness at the source, wS, and drain, wD.

Page 35: lecturenote3_mosfetchapter

Illustration of MOSFET scaling. To reduce short‐channel effects, when the channel length is reduced, the dimensions and doping levels of the device (a) are adjusted to reduce the oxide thickness and junction depth (b).

Page 36: lecturenote3_mosfetchapter

MATLAB CODING1. Define Constant Data

hbar=1.0545887e-34;kb=1.380662e-23;q=1.6021892e-19;T=300;eox=3.9*8.8541878e-12;esi=11.9*8.8541878e-12;m3=0.98*9.109534e-31;m1=0.19*9.109534e-31;

tox=1.59*10^-9;L=80*10^-9;W=1.3*10^-6;VT=0.3542;VGS=0.7;

Page 37: lecturenote3_mosfetchapter

1.  Velocity Saturation Model

vth2=sqrt(pi*kb*T/(2*m1)); %non-degenerate 2D velocity vth=sqrt(2*kb*T/m1); % general thermal velocity

*22 mTkB

mπν =

*2 B

tht

k Tv

m=

%The following component calculates the vsat value for ElecFDrain infinityfor k=1:6

VGS(k)=0.7+(k-1)*0.1;VGT(k)=VGS(k)-VT;Et(k)=(VGS(k)+VT)/(6*tox);Eo(k)=(hbar^2/(2*m3))^(1/3)*(9*pi*q*Et(k)/8)^(2/3);zo(k)=Eo(k)/(q*Et(k));zQM(k)=2*zo(k)/3;toxeff(k)=tox+(eox/esi)*zQM(k);CG(k)=eox/toxeff(k);uo(k)=0.0695*exp(-0.7568*VGS(k)); % exponential fit to exp

x

TGSteff t

VVE06+

≈31

*3

222

2 ⎟⎟⎠

⎞⎜⎜⎝

⎛=

mEq

E teffo

h

teff

oo qE

Ez =

( )teff

oQM qE

Ez 2.33832

=QM

si

oxoxoxeff ztt

εε

+=

( )33.1.07.0 GSVf e−=lμ

Page 38: lecturenote3_mosfetchapter

Quantum Confinement & Mobility Model

teff

oo qE

Ez =113

ox oxG

QMoxeff

ox

CC

ztt

ε= =

+

13

oxoxeff ox QM ox QM

Sit t z t z

εε

= + ≈ +

( )teff

oQM qE

Ez 2.33832

=

31

*3

222

2 ⎟⎟⎠

⎞⎜⎜⎝

⎛=

mEq

E teffo

h

x

TGSteff t

VVE06+

( )33.1.07.0 GSVf e−=lμ

Page 39: lecturenote3_mosfetchapter

Continue…. Iterative solution for vsat when α=1vsat2(k)=vth2;

for j=1:10Vc(k)=vsat2(k)*L/uo(k);VDsat1(k)=Vc(k)*(sqrt(1+(2*VGT(k)/Vc(k)))-1);n2(k)=CG(k)*(VGT(k)-VDsat1(k))/q; % 2D Carrier sheet concentrationu(k)=n2(k)/NcT; %find fermi(0)eta2eta(k)= log(exp(u(k))-1); %eta2t1=fermi(eta(k),0.5); %find fermi 0.5 eta2vi2(k)=vth2*(t1/u(k));

end

n2cm(k)=n2(k)/1e4;K(k)=CG(k)*uo(k)*W/L;IDsat1(k)=K(k)*VDsat1(k)^2/2; % Idsat for full saturation end

⎥⎦

⎤⎢⎣

⎡−+= 1211

c

GTcDsat V

VVVLVf

satc

lμν

=

1/ 2 22 2

2

( )( )

Fi th

o Fv v

ηη

ℑ=

211 2

1Dsat

fGDsat V

LWC

I lμ=

Page 40: lecturenote3_mosfetchapter

Ballistic Saturation Velocity Model

IEEE International Conference on Semiconductor Electronics (ICSE2008)25th – 27th November 2008 (Johor Bahru)

E = 0

E = LARGE

νi νi

2νi

1/ 2 22 2

2

( )( )

Fi th

o Fv v

ηη

ℑ=

( )( )2 *

3/ 21 2 2

Bth th th

t

k Tv v v

mππΓ

= = =Γ

*2 B

tht

k Tv

m=

0

1( )( 1) 1

j

j xx dx

j e ηη∞

−ℑ =

Γ + +∫

( )22

22 .2

..F

CBi n

Nm

Tkv ηπ

21F×= ∗

22*hπ

TkmN BC =

)( 2022 ηFcNn =

*)(2

mEE CF

F−

∗=m

Tkv BNDi 22

π2*2 2

3

2 nm

v Di πh=

Page 41: lecturenote3_mosfetchapter

NanoMOSFET : I – V Characteristics

IEEE International Conference on Semiconductor Electronics (ICSE2008)25th – 27th November 2008 (Johor Bahru)

y=0

V=0

y=L

V=VDEL

ET

c

D

DDGTfG

D

VV

VVV

LWC

I+

⎟⎠⎞

⎜⎝⎛ −

=1

21 2

lμDsatD VV ≤≤0

( ) WVVCI satDsatGTGDsat να −= DsatD VV ≥

LLVf

satcc

lμνε == . satD ννα =

⎥⎦

⎤⎢⎣

⎡−+= 1211

c

GTcDsat V

VVV

211 2

1Dsat

fGDsat V

LWC

I lμ=

1=α(Full Saturation)

1 12

1

DsatVE

L xL

=−

l

Page 42: lecturenote3_mosfetchapter

Continue…iterative solution α<1%The following component calculates I-V characterisitcs and alpha for finite ElecFDrain

for k=1:6alphanew=1;

for i=1:20alpha1=alphanew;s=sqrt((alpha1+((1-alpha1)*VGT(k)/Vc(k)))^2+2*alpha1*(2*alpha1-1)*VGT(k)/Vc(k));VDsat(k)=(1/(2*alpha1-1))*((s-alpha1)*Vc(k)-(1-alpha1)*VGT(k)); alphanew=((1/alpha1)*VDsat(k)/Vc(k))/(1+((1/alpha1)*VDsat(k)/Vc(k)));end

alpha(k)=alphanew;vdrain(k)=alpha(k)*vi2(k);

%alpha not equal to 1s=sqrt((alpha(k)+((1-alpha(k))*VGT(k)/Vc(k)))^2+2*alpha(k)*(2*alpha(k)-1)*VGT(k)/Vc(k));VDsat=(1/(2*alpha(k)-1))*((s-alpha(k))*Vc(k)-(1-alpha(k))*VGT(k));IDsat=(alpha(k)/(2*alpha(k)-1))*K(k)*Vc(k)*(alpha(k)*VGT(k)-(s-alpha(k))*Vc(k));VDsatP(k)=VDsat;IDsatP(k)=IDsat;end

( ) ( )[ ]cGTcfG

Dsat VsVVL

WCI αα

μαα

−−−

= l

12

( ) ( ) ( )[ ]GTcDsat VVsV ααα

−−−−

= 112

1

( ) ( )c

GT

c

GT

VV

VV

s 12212

−+⎥⎦

⎤⎢⎣

⎡−+= αααα

Page 43: lecturenote3_mosfetchapter

IEEE International Conference on Semiconductor Electronics (ICSE2008)25th – 27th November 2008 (Johor Bahru)

NanoMOSFET : I – V Characteristics

( ) ( ) ( )[ ]GTcDsat VVsV ααα

−−−−

= 112

1

( ) ( )[ ]cGTcfG

Dsat VsVVL

WCI αα

μαα

−−−

= l

12

( ) ( )c

GT

c

GT

VV

VV

s 12212

−+⎥⎦

⎤⎢⎣

⎡−+= αααα

1<α

satD ανν =cD

cD

EEEE

+=

0μν satcE = LVE DsatD α=

Iterative

solution

Page 44: lecturenote3_mosfetchapter

Continue..for k=1:6

VD=0:0.01:VDsatP(k);ID=(K(k)/2)*(2*VGT(k)*VD-VD.^2)./(1+(VD./Vc(k))); % for

VDM=VDsatP(k):0.01:1.0; % for alphaprime=((1/alpha(k))*VDM/Vc(k))./(1+((1/alpha(k))*VDM/Vc(k)));IDMprime=alphaprime*W*CG(k)*vsat2(k)*(VGT(k)-VDsatP(k));

VD1=VDsatP(k):0.01:VDsat1(k);ID1=(K(k)/2)*(2*VGT(k)*VD1-VD1.^2)./(1+(VD1./Vc(k)));

VD1M=VDsat1(k):0.01:1.0;ID1M=ones(1,length(VD1M))*IDsat1(k);

end

c

D

DDGTfG

D

VV

VVV

LWC

I+

⎟⎠⎞

⎜⎝⎛ −

=1

21 2

DsatD VV ≤≤0

( ) WVVCI satDsatGTGDsat να −=

DsatD VV ≥

211 2

1Dsat

fGDsat V

LWC

I lμ=

Page 45: lecturenote3_mosfetchapter

Plotting Graph% Plotting Intercept Linex=[0 0.2667 0.3311 0.3932 0.4537 0.5131 0.5716]; %VDsat1y=[0 0.0003 0.0005 0.0007 0.0009 0.0011 0.0013]/1e-3; %IDsat1xi=0:0.01:0.7;yi=interp1(x,y,xi,'cubic')

%For VDsatP & IDsatP (Alpha < 1)x1=[0 0.1880 0.2661 0.3029 0.3387 0.3739]; %VDsatPy1=[0 0.0003 0.0006 0.0008 0.0010 0.0012]/1e-3; %IDsatPxi1=0:0.01:0.5;yi1=interp1(x1,y1,xi1,'cubic')

Figure (1)

plot(xi,yi,'--b',xi1,yi1,'--r',VD,ID/1e-3,'-r',VDM,IDMprime/1e-3,':r',VD1,ID1/1e-3,'-b',VD1M,ID1M/1e-3, '--b','Linewidth', 3.0)

hold on

Page 46: lecturenote3_mosfetchapter

Continue..%This block plots the experimental results on the same plot as previous%plot has "hold on"

VDexp=0.1:0.1:1.0;IDexp12=[0.000487727 0.000874322 0.00114401 0.00132208 0.00144098... 0.00152452 0.0015872 0.00163731 0.00167961 0.00171686 ]/1e-3;IDexp11=[0.000455394, 0.000800693, 0.00102774, 0.00117086, 0.00126455...

0.00133073,0.00138145,0.00140317, 0.00144182, 0.00147613,]/1e-3;IDexp10=[4.1575E-04 7.1329E-04 8.9562E-04 1.0055E-03 1.0770E-03... 1.1286E-03 1.1695E-03 1.2044E-03 1.2358E-03 1.2649E-03 ] /1e-3;IDexp09=[ 3.6741E-04 6.1091E-04 7.4837E-04 8.2842E-04 8.8132E-04...

9.2118E-04 9.5439E-04 9.8396E-04 1.0114E-03 1.0376E-03]/1e-3;IDexp08=[ 3.0908E-04 4.9363E-04 5.8896E-04 6.4404E-04 6.8234E-04...7.1317E-04 7.4037E-04 7.6569E-04 7.8995E-04 8.1361E-04] /1e-3;

IDexp07=[ 2.648E-04 4.065E-04 4.604E-04 4.843E-04 5.013E-04... 5.148E-04 5.258E-04 5.352E-04 5.431E-04 5.500E-04 ]/1e-3;

plot(VDexp,IDexp07, '.g',VDexp,IDexp08, '+g',VDexp,IDexp09, '*g',VDexp,IDexp10, 'xg', ...VDexp,IDexp11, 'sg' , VDexp,IDexp12, 'dg', 'MarkerSize',5.0,'Linewidth', 2.0)ylabel('\itI_{D} (mA)')xlabel('\it V_{D} (V)‘)

hold off

Page 47: lecturenote3_mosfetchapter

I-V characteristics of 80-nm MOSFET for Gate Voltage, VGS =0.7 - 1.2. Solid lines are for VD < VDsat. The dotted lines are for VD > VDsat . The dashed lines are for α =1.

Page 48: lecturenote3_mosfetchapter

Reference1. Vijay K. Arora, Michael L. P. Tan, Ismail Saad, Razali Ismail. 2007‐09‐06. ballistic

Quantum Transport In A Nanoscale Metal‐oxide‐semiconductor Field Effect Transistor.Jil. 91. American Institute Of Physics: Applied Physics Letter (apl 2007).

2. Michael L. P. Tan, Ismail Saad, Razali Ismail, Vijay K. Arora. 2007‐07‐18. enhancement InNano‐rc Switching Delay Due To The Resistance Blow‐up In Ingaas. Jil. 2. 4. WorldScientific.com: World Scientific Publishing Company (nano 2007).

3. Ismail Saad , Michael L.p Tan, Ing Hui Hii, Razali Ismail And Vijay K. Arora. 2008‐07‐26.Ballistic Mobility And Saturation Velocity In Low‐dimensional Nanostructures. Vol. 40,No. 3 (2009) pp 540‐542. www.elsevier.com: Microelectronics Journal.

4. Ismail Saad , Michael L. P. Tan, Aaron Chii Enn Lee, Razali Ismail And Vijay K. Arora.2008‐07‐25. Scattering‐limited And Ballistic Transport In Nano‐cmos Transistors. Vol. 40,No. 3 (2009) pp 581‐583. Www.elsevier.com: Microelectronics Journal.

5. Michael L. P. Tan, Vijay K. Arora, Ismail Saad, Mohammad Taghi Ahmadi And RazaliIsmail. 2009‐04‐02. The Drain Velocity Overshoot In An 80 Nm Metal‐oxide‐semiconductor. American Institute Of Physics: Journal of Applied Physics (2009).