Top Banner
Week Date Topic Classification of Topic 1 9 Feb. 2010 Introductio n to Numerical Methods and Type of Errors Measuring errors, Binary representation, Propagation of errors and Taylor series 2 14 Feb. 2010 Nonlinear Equations Bisection Method 3 21 Feb. 2010 Newto n-R aphso n Meth od 4 28 Feb. 2010 Interpolation Lagrange Interpolation 5 7 March 2010 Newton's Divided Difference Method 6 14 March 2010 Differentiation Newton's Forward and B ackward Divided Difference 7 21 March 2010 Regression Least squares 8 28 March 2010 Systems of Linear Equations Gaussian Jordan 9 11 April 2010 Gaussian Seidel 10 18 April 2010 Integration Composite T rapezoidal and Simpson Rules 11 25 April2010 Ordinary Differential Equations Euler's Method 12 2 May2010 Runge -Kutta 2 nd and4 th order Method Schedule
22

Lecture5 Newton Divided DifferenceBUE

Jun 04, 2018

Download

Documents

Tarek Hassan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 1/22

Week Date Topic Classification of Topic

1 9 Feb. 2010 Introduction toNumerical Methods

and Type of Errors

Measuring errors, Binary representation,Propagation of errors and Taylor series

2 14 Feb. 2010 Nonlinear Equations Bisection Method

3 21 Feb. 2010 Newton-Raphson Method

4 28 Feb. 2010 Interpolation Lagrange Interpolation

5 7 March 2010 Newton's Divided Difference Method

6 14 March 2010 Differentiation Newton's Forward and BackwardDivided Difference

7 21 March 2010 Regression Least squares

8 28 March 2010 Systems of Linear

Equations

Gaussian Jordan

9 11 April 2010 Gaussian Seidel

10 18 April 2010 Integration Composite Trapezoidal and SimpsonRules

11 25 April 2010 Ordinary Differential

Equations

Euler's Method

12 2 May2010 Runge-Kutta 2nd and4th order Method

Schedule

Page 2: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 2/22

Interpolation

Newton’s Divided Difference

Page 3: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 3/22

What is Interpolation ?

Given (x0,y0), (x1,y1), …… (xn,yn), find thevalue of ‘y’ at a value of ‘x’ that is not given.

Page 4: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 4/22

Interpolants

Polynomials are the most commonchoice of interpolants because they

are easy to:

Evaluate

Differentiate, andIntegrate.

Page 5: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 5/22

Page 6: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 6/22

Newton’s Divided Difference

Method: Given pass aLinear interpolation

linear interpolant through the data

where

),,( 00   y x ),,( 11   y x

)()( 0101   x xbb x f    

)( 00   x f b  

01

011

)()(

 x x

 x f  x f b

Page 7: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 7/22

ExampleThe upward velocity of a rocket is given as a function of 

time in Table 1. Find the velocity at t=16 seconds usingthe Newton Divided Difference method for linearinterpolation.

t v(t)

s m/s

0 0

10 227.04

15 362.78

20 517.35

22.5 602.97

30 901.67

Table 1: Velocity as afunction of time

Figure 2: Velocity vs. time data

for the rocket example

Page 8: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 8/22

Linear Interpolation

10 12 14 16 18 20 22 24350

400

450

500

550517.35

362.78

y s

f ran g e( )

f x desired

x s1

10x s0

10 x s range x desired

1520

78.36235.517

,150   t  78.362)( 0   t v  

,201  t  35.517)( 1   t v  

)( 00   t vb     78.362  

01

011

)()(

t t 

t vt vb

 

)tt( b b)t(v 0101  

914.30

Page 9: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 9/22

Linear Interpolation (contd)

10 12 14 16 18 20 22 24350

400

450

500

550517.35

362.78

y s

f range( )

f x desired

x s1

10x s0

10 x s range x desired

)tt( b b)t(v 0101    

),15(914.3078.362     t  2015   t   

At 16t   

)1516(914.3078.362)16(   v  

69.393  m/s

Page 10: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 10/22

Quadratic Interpolation

Given ),,( 00   y x ),,( 11   y x  and ),,( 22   y x  fit a quadratic interpolant through the data.

))(()()( 1020102   x x x xb x xbb x f    

)( 00   x f  b  

01

01

1

)()(

 x x

 x f   x f  b

02

01

01

12

12

2

)()()()(

 x x

 x x

 x f   x f  

 x x

 x f   x f  

b

Page 11: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 11/22

ExampleThe upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds usingthe Newton Divided Difference method for quadraticinterpolation.

t v(t)

s m/s

0 0

10 227.04

15 362.78

20 517.35

22.5 602.97

30 901.67

Table 1: Velocity as afunction of time

Figure 2: Velocity vs. time data

for the rocket example

Page 12: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 12/22

Quadratic Interpolation (contd)

10 12 14 16 18 20200

250

300

350

400

450

500

550517.35

227.04

y s

f range( )

f x desired

2010 x s range x desired

,100   t  04.227)( 0   t v  

,151  t    78.362)( 1   t v  

,202   t  35.517)( 2   t v  

Page 13: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 13/22

Quadratic Interpolation (contd)

  )( 00   t vb    

04.227  

01

01

1

)()(

t t 

t vt vb

 1015

04.22778.362

 

148.27  

02

01

01

12

12

2

)()()()(

t t 

t t 

t vt v

t t 

t vt v

b

 1020

1015

04.22778.362

1520

78.36235.517

 

10

148.27914.30  

 

37660.0

 

Page 14: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 14/22

Quadratic Interpolation (contd)

)tt)(tt( b)tt( b b)t(v 1020102    

),15)(10(37660.0)10(148.2704.227     t t t    2010   t   

At ,16t   

)16(v2   )1516)(1016(37660.0)1016(148.2704.227    

19.392  m/s

The absolute relative approximate error a obtained between the results from the first

order and second order polynomial is

a   100x19.392

69.39319.392  

 

= 0.38502 %

Page 15: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 15/22

General Form

))(()()( 1020102   x x x xb x xbb x f    

where

Rewriting

))(](,,[)](,[][)( 1001200102   x x x x x x x f   x x x x f   x f   x f    

)(][ 000   x f   x f  b    

01

01

011

)()(],[

 x x

 x f   x f   x x f  b

 

02

01

01

12

12

02

01120122

)()()()(

],[],[],,[

 x x

 x x

 x f   x f  

 x x

 x f   x f  

 x x

 x x f   x x f   x x x f  b

 

Page 16: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 16/22

General Form

Given )1(   n  data points, nnnn   y x y x y x y x ,,,,......,,,, 111100    as

))...()((....)()( 110010   nnn   x x x x x xb x xbb x f    

where

][ 00   x f  b    

],[ 011   x x f  b    

],,[ 0122   x x x f  b    

 ],....,,[ 0211   x x x f  b nnn  

   

],....,,[ 01   x x x f  b nnn    

Page 17: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 17/22

General formThe third order polynomial, given ),,( 00   y x ),,( 11   y x ),,( 22   y x and ),,( 33   y x  is

)xx)(xx)(xx](x,x,x,x[f 

)xx)(xx](x,x,x[f )xx](x,x[f ]x[f )x(f 

2100123

1001200103

 

0b  

0 x   )( 0 x f    1

b  

],[ 01   x x f     2b  

1 x   )( 1 x f     ],,[ 012   x x x f     3b  

],[ 12   x x f     ],,,[ 0123   x x x x f    

2 x   )( 2 x f     ],,[ 123   x x x f    

],[ 23   x x f    

3

 x   )(3

 x f    

Page 18: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 18/22

Example

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds usingthe Newton Divided Difference method for cubicinterpolation.

t v(t)

s m/s

0 0

10 227.04

15 362.78

20 517.35

22.5 602.97

30 901.67

Table 1: Velocity as afunction of time

Figure 2: Velocity vs. time data

for the rocket example

Page 19: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 19/22

Example

The velocity profile is chosen as

)tt)(tt)(tt( b)tt)(tt( b)tt( b b)t(v 21031020103  

we need to choose four data points that are closest to 16

t ,100  t    04.227)( 0   t v

 

,151  t    78.362)( 1   t v  

,202   t    35.517)( 2   t v  

,5.223   t  97.602)( 3   t v  

Page 20: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 20/22

Example

 

 b0 = 227.04; b1 = 27.148; b2 = 0.37660; b3 = 5.4347*10-3

0b  

100  t    04.227   1b  

148.27   2b  

,151  t    78.362   37660.0   3b  

914.30   3104347.5    x  

,202  t    35.517   44453.0  

248.34  

,5.223  t    97.602  

Page 21: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 21/22

Example

Hence))()(())(()()(

2103102010  t t t t t t bt t t t bt t bbt v    

)20)(15)(10(10*4347.5

)15)(10(37660.0)10(148.2704.227

3

t t t 

t t t  

At ,16

t   

)2016)(1516)(1016(10*4347.5

)1516)(1016(37660.0)1016(148.2704.227)16(

3

06.392  m/s

The absolute relative approximate error a obtained is

a   100x06.392

19.39206.392  

 

= 0.033427 %

Page 22: Lecture5 Newton Divided DifferenceBUE

8/14/2019 Lecture5 Newton Divided DifferenceBUE

http://slidepdf.com/reader/full/lecture5-newton-divided-differencebue 22/22

Comparison Table

Order of

Polynomial

1 2 3

v(t=16)

m/s

393.69 392.19 392.06

Absolute Relative

Approximate Error

---------- 0.38502 % 0.033427 %