Top Banner
Dynamic Characteristics Lecture04 SME3242 Instrumentation 1
27

Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Jan 18, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Dynamic Characteristics

Lecture04 SME3242 Instrumentation 1

Page 2: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Static transfer function – how the output related to input if the input is constant

Dynamic transfer function – also called time response

Lecture04 SME3242 Instrumentation 2

Page 3: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 3

FIGURE 1.27 The dynamic transfer function specifies how asensor output varies when the input changes instantaneously intime (i.e., a step change).

Curtis JohnsonProcess Control Instrumentation Technology, 8e] Copyright ©2006 by Pearson Education, Inc.

Upper Saddle River, New Jersey 07458All rights reserved.

Page 4: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 4

Input and output relationship of a linear measurement system - ordinary differential equation (ODE):

where,u = input, y = output; u and y varies with tn > ma, b = constant coefficients

2.1.3: Mathematical model structure

d dyy yadt

adtda

dta n

n

nn

n

n 011

1

1

dtdtdtd du ubbdbub m

m

mm

m

m 011

1

1

y

u

Page 5: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 5

: Transfer Function of An Accelerometer

Differential equation:

xoxi

mk

c FD

=Fs ma

dxdx o d2

2

)()(dt

xmdtdt

cxxk oioi

kk ccx dx ii

ooo x

mdtdx

mx

mdtmdtd

2

2

Applying 2nd Newton’s Law: F = ma

Page 6: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 6

Dynamic characteristic- the output response of the instrument against

time when the input is varied- the relation between any input and output for

nth order system can be written as:

- 3 types of response: zero order response, firstorder response and second order response

y d dy ubyadt

adt

adtda n

n

nn

n

n 0011

1

1

y

Page 7: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 7

Dynamic response of zero order instrument (i.e. n = 0)

- the zero order instrument is represented bya0y=b0u or y=Ku

or

(y=output, u=input, K=b0/a0=static sensitivity)

- the output responses linearly to the input

y/u = K

Page 8: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 8

Eg: potentiometer

Page 9: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 9

Dynamic response of first order instrument (i.e. n = 1)

- dividing the equation by a0, and apply D-operator

- T=a1/a0=time constant, K=b0/a0=static sensitivity

1 KuyTDuabydt

dyaa )1(;

0

0

0

ubyadtdya 001

Page 10: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 10

Sensoru(t) y(t)

- the operational transfer function

y)1( TD

Ku

- The time constant; T, represents the time taken forthe output to reach 63% of the final value and itreaches its final value (99%) at around 5T.

Page 11: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 11

Eg.: Thermocouple

Page 12: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 12

Characteristic first-order time response of a sensor.

t y(t) %T 0.63212 63.2122T 0.86466 86.4663T 0.95021 95.0214T 0.98168 98.1685T 0.99326 99.32610T 0.99995 99.995

Page 13: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 13

Characteristic first-order time response of a sensor.

Page 14: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

General equation as function of time following a step input is given as:

where,yi = initial output from static transfer 

function and initial inputyf = final output from static transfer function 

and final inputT = time constant = 63% time

Lecture04 SME3242 Instrumentation 14

]1)[()( /Ttifi eyyyty

Page 15: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 15

Characteristic first‐order exponential time response of a sensorto a step change of input.

Curtis JohnsonProcess Control Instrumentation Technology, 8e]

Copyright ©2006 by Pearson Education, Inc.

Upper Saddle River, New Jersey 07458

All rights reserved.

yf

yi

y

Page 16: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

A sensor measures temperature linearly with a statictransfer function of 33 mV/0C and has a 1.5‐s timeconstant. Find the output 0.75 s after input changesfrom 200C to 410C. Find the error in temperature thisrepresents.

* Time response analysis always applied to the outputof the sensor because it is only the output of thesensor that lagged

Lecture04 SME3242 Instrumentation 16

Page 17: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Given static transfer function:V = (33mV/ºC)T

Hence, initial and final output of the sensor are:yi = (33mV/ºC)(20ºC)

= 660mVyf = (33mV/ºC)(41ºC)

= 1353mV

Lecture04 SME3242 Instrumentation 17

Page 18: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Substitute the value of yi and yf,

Lecture04 SME3242 Instrumentation 18

0.75y 660 )[ ]1 /1.50.75e(1353 - 660=

= 932.7 mV

]1)[()( /Ttifi eyyyty =

Time response of first-order system,

Page 19: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 19

The corresponding temperature for sensor output of932.7 mV,

C3.28

mVCmV

T/33

7.932

Since the actual temperature is 41ºC, hence the errorin temperature is:

error = (true value – instrument reading)= (41ºC – 28.3ºC)= 12.7ºC

Page 20: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 20

When t = 5T i.e. t = 5(1.5) = 7.5 s,

7.5y 660 )[ ]1 /1.57.5e (1353 - 660=

= 1348.3 mV

The corresponding temperature for sensor output of1348.3 mV is:

C41mVCmV

T/33

1348.3

which is the exact measured temperature

Page 21: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 21

Dynamic response of second-order instrument(i.e. n = 2)

Applying D operator

dtdty dy ubyaada 0012

2

2

)( 2210

0

DaDaauby

Page 22: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Applying Laplace Transform (with all initialconditions equal to zero) and rearranging theequation:

where, = damping ration= natural frequency

Lecture04 SME3242 Instrumentation 22

uss

Ky

nn

n22

2

2

Page 23: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 23

The time response is given as:q0(t) qe-atsin(nt)

where q=amplitude and a= n is output damping ratio

Eg.: Accelerometer

Page 24: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 24

Page 25: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 25

FIGURE 1.29 Characteristic second-order oscillatory time responseof a sensor.

Curtis JohnsonProcess Control Instrumentation Technology, 8e]

Copyright ©2006 by Pearson Education, Inc.

Upper Saddle River, New Jersey 07458All rights reserved.

Page 26: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 26

undamped (=0)

under damped (1>>0)

over damped (1)

Page 27: Lecture04 Dynamic Characteristicsmohamed/Ukur Inst Notes/Lecture 04.pdf · 2012. 10. 2. · Dynamic Characteristics Lecture04 SME3242 Instrumentation 1. Static transfer function –how

Lecture04 SME3242 Instrumentation 27