Top Banner

of 39

Lecture on Advanced Mathematical Technques

Jun 03, 2018

Download

Documents

Debayan Gupta
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 Lecture on Advanced Mathematical Technques

    1/39

    Numerical Methods for Partial

    Differential Equations

    CAAM 452

    Spring 2005

    ecture !

    "nstructor# $im %ar&urton

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    2/39

    Summar' of Small $heta Anal'sis

    ( $he dominant remainder term in this anal'sisrelates to a commonl' used) ph'sicall' moti*ated

    description of the shortfall of the method#

    ( )

    ( ){ }

    ( ) ( ){ }

    ( ) ( ){ }

    ( )

    33

    3

    3

    2

    5

    2

    5

    1

    2

    2

    2

    2

    0

    1

    42

    5

    4

    3!

    !

    !

    0

    0

    0

    0

    m

    m

    m

    m

    m

    m

    mtd

    tm Oi ctdxL

    m m

    tm c Oi ctdxL

    m m

    itm c Oi ctdxL

    m m

    i im c ti c

    i t

    tdx

    tdx

    m

    x

    x

    L

    d

    m

    du

    c u u u e edt

    duc u u u e e

    dt

    duc u u u e e

    dt

    du

    c u u u e edt

    +

    +

    +

    +

    +

    +

    = =

    = =

    = =

    = =

    r

    rr

    r r

    rr ( ){ }7m

    tO

    dx

    Dissipati*e

    +nsta&le

    Dispersi*e

    Dispersi*e

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    3/39

    Dissipation in Action

    ( Consider the right difference *ersion#

    ( %e are going to e,perimentall' determine ho-

    much dissipation the solution e,periences.

    ( ) ( ){ }2

    3312

    0 mm

    tm Oi ctdxL

    m m

    tdxdu c u u u e e

    dt

    +

    += =r

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    4/39

    $esting Methodolog'

    / 1educe the timestepping error to a secondar' effect &' choosing a 4

    th

    order 1unge3utta S$ timeintegrator and a small dt.

    2 6i, the method choose one of the difference operators for the spatialderi*ati*e

    7 Do a parameter stud' in M) i.e. -e as8 the questions# ho- doesincreasing the num&er of data points change the error.

    4 %e need to understand -hat questions -e are as8ing#

    / "s the computer code sta&le as predicted &' the theor'92 Does the computer code con*erge as predicted &' the theor'9

    7 %hat order of accurac' in M do -e achie*e9

    4 %e h'pothesi:e that if the theor' holds then -e should achie*e#

    5 %hat is the actual appro,imate p achie*ed9

    ( ) ( ), , pm mu T x u T x Cdx %

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    5/39

    "nitial Condition

    ( ;ecause -e do not -ish to introduce uncertaint'o*er the source of errors in the computation -e use

    an initial condition -hich is infinitel' smooth.

    ( ) ( )2

    4cos,0 with [0,2)xu x e x=

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    6/39

    Computing Appro,imate

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    7/39

    After 4 Periods

    ( $he numerical pulses are in the right place &utha*e se*erel' diminished amplitude.

    du

    c udt

    += r

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    8/39

    After 4 Periods

    M Ma,imum error at t=> ?order

    20 0.@/4/@45/!

    40 0.@/7!5747@744! 0

    >0 0.@>7240>/24>5@ 0.0/

    /@0 0.@7/@7@042/>5 0.//

    720 0.52!425@0@5040> 0.2@

    After 4 periods the solution is totall' flattened in all &ut the last 2 results. "f -e &othered

    to 8eep increasing M -e -ould e*entuall' see the error decline as /BM

    duc u

    dt+= r

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    9/39

    $he +nsta&le eft Stencil

    ( " repeated this -ith e*er'thing the same) e,cept the choice

    of instead of

    du

    c udt

    = r

    +

    ( )( )

    231 2

    2!

    2

    0 m

    mt

    d

    tm c O

    i ct dxL

    x M

    m m

    duc u u u e e

    dt

    +

    +

    = =r

    r

    %e clearl' see that there is initial gro-th

    near the pulses) &ut e*entuall' the

    dominant feature is the highl' oscillator'

    and e,plosi*e gro-th

    large m in the a&o*e red term.

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    10/39

    Cont (snapshot)

    ( )

    ( )2

    31 2

    2!

    2

    0

    m

    mt

    d

    tm c O

    i ct dxL

    x M

    m m

    du

    c u u u e edt

    +

    +

    = =

    rr

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    11/39

    Dispersion in Action

    ( Consider the central difference *ersion#

    ( %ith the same time integrator &efore) M=/00)

    ( %e note that the remainder terms are dispersi*e corrections

    i.e. the' indicate that modes of different frequenc' -ill

    tra*el -ith different speed.

    ( 6urthermore) to leading order accurac' the higher order

    modes -ill tra*el more and more slo-l' as m increases.

    ( ) ( ){ }3 52

    3!

    0 0

    mm

    itm i tc Oi ctdxL

    m mdxdu c u u u e e

    dt

    +

    = =r

    0

    duc u

    dt= r

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    12/39

    ( %e notice that the humps start to shed rear oscillations as

    the higher frequenc' 6ourier components lag &ehind the

    lo-er frequenc' 6ourier components.

    2nd

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    13/39

    Con*ergence Stud' t=>

    %hat should -e use as an error"ndicator 99

    0

    duc u

    dt= r

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    14/39

    2nd ?order

    20 0.4240>0/4!450@

    40 0.7502>>50!77 /.42

    >0 0.7>2>5/2!!@>5 0./7

    /@0 0.///>/2!4@@>!> /.00

    720 0.054!/!705244>2 /.>0

    ( %e do not see a con*incing 2ndorder accurac'

    ( " computed this &' log2errorMBerrorFM/G

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    15/39

    4th

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    16/39

    4th

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    17/39

    @th ?order

    20 0./405!5@/5520

    40 0.0457@5252@>7 /.!

    >0 0.00/@2/55@07 4.>!

    /@0 0.00002>/!24/05 5.>!

    720 0.0000004@04/4/5 5.!

    ( %e see prett' con*incing @thorder accurac'

    ( " computed this &' log2errorMBerrorFM/G

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    18/39

    Summar' of $esting Procedure

    / +nderstand -hat 'ou -ant to test

    2 3eep as man' parameters fi,ed as possi&le

    7 "f possi&le) perform an anal'sis &efore hand

    4 1un parameter s-eeps to determine if code agrees -ith anal'sis.

    5 Estimate error scaling -ith a single parameter if possi&le.

    @ "t should &e apparent here that the errors computed in the simulations

    onl' appro,imate the tid' po-er la- d,Hp in the limit of small d,large M.

    ! "t is quite common to refer to the range of M &efore the error scalingapplied as the Ipreasymptotic convergence rangeJ.

    > $he preas'mptotic range is due to the other factors in the errorestimate -hich are much larger than the d,Hp term i.e. the pKth

    deri*ati*es ma' &e *er' large) or the constant ma' &e large "n this case -e heuristicall' set dt small) using a highorder 1unge

    3utta time integrator) and then performed a parameter s-eep on M.%e could ha*e &een unluc8' and the timestepping errors ma' ha*e&een dominant -hich -ould mas8 the d, &eha*ior.

    /0 $o &e careful -e -ould tr' this e,periment -ith e*en smaller dt and

    chec8 if the scalings still hold.

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    19/39

    Summar' of our Approach to Designing

    6inite Difference Methods

    ( %e ha*e s'stematicall' created finite difference methods &'separating the treatment of space and time deri*ati*es.

    ( $hen designing a sol*er consists of choosingBtesting# a time integrator so far -e co*ered Euler6or-ard) eap6rog)

    Adams;ashford2)7)4) 1unge3utta a discreti:ation for spatial deri*ati*es a discrete differential operator -hich has all eigen*alues in the

    left half of the comple, plane assuming the PDE onl' admitsnongro-ing solutions.

    Possi&l' using LerschgorinKs theorem to locali:e theeigen*alues of the discrete differentiation operator

    dt so that dtlargest eigen*alue &' magnitude of thederi*ati*e operator sits inside the sta&ilit' region sta&ilit'.

    small d, spatial truncation anal'sis consistenc' andaccurac'.

    6ourier anal'sis for classification of the differential operator.

    %riting code and testing.

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    20/39

    Some Classical 6inite Difference Methods

    ( o-e*er) there are a num&er of classical methods-hich -e ha*e not discussed and do not quite fit

    into this frame-or8.

    ( %e include these for completeness..

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    21/39

    eap 6rog space and time

    ( %e use centered differencing for &oth space and time.

    ( %e 8no- that the leap frog time stepping method is onl'sta&le for operators -ith eigen*alues in the range#

    ( o-e*er) -e also 8no- that the centered differencederi*ati*e matri, is a s8e- s'mmetric matri, -itheigen*alues#

    ( So -e are left -ith a condition# i.e.

    1 1

    1 1

    2 2

    n n n n

    m m m mu u u ucdt dx

    + + =

    [ ]1,1dt i

    2sin

    ic m

    dx M

    1cdt

    dx

    dxdt

    c

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    22/39

    cont

    ( %e can perform a full truncation anal'sis in spaceand time#

    ( %e 8no- that dt O= d, so

    ( ) ( ) ( ) ( )

    ( ) ( )

    1 1 1 1

    3 3

    , , , ,

    2 2

    n m n m n m n m nm

    u x t u x t u x t u x t T cdt

    dx

    cdtO dt O dx

    dx

    + + =

    =

    ( ) ( )3 3nmT O dt cO dx=

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    23/39

    a,6riedrichs Method

    ( %e immediatel' conclude that the follo-ing method is notsta&le#

    ( ;ecause the Euler6or-ard time integrator onl' admits onesta&le point the origin on the imaginar' a,is) &ut thecentral differencing matri, has all eigen*alues on theimaginar' a,is.

    ( o-e*er) -e can sta&ili:e this formula &' replacing thesecond term in the timestepping formula#

    1

    0

    n nnm mm

    u uc u

    dt

    + =

    ( )1 1 10

    0.5n n nm m m nm

    u u uc u

    dt

    ++ + =

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    24/39

    cont

    ( $his formula does not quite fit into our constructi*eprocess method of lines approach.

    ( %e ha*e admitted spatial a*eraging into the

    discreti:ation of the time deri*ati*e.

    ( %e can rearrange this#

    ( )1 1 10

    0.5n n nm m m nm

    u u uc u

    dt

    ++ + =

    ( ) ( )1 1 1 1 1

    1 1

    1

    2 2

    1 11 1

    2 2

    n n n n n

    m m m m m

    n n

    m m

    dtu u u c u u

    dx

    dt dt c u c u

    dx dx

    ++ +

    +

    = + +

    = + +

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    25/39

    cont

    ( %e can immediatel' determine that this is a sta&le method as

    long as cdtBd, O=/

    ( Li*en) this condition -e o&ser*e that the time updated

    solution is al-a's &ounded &et-een the *alues of the left and

    right neigh&or at the pre*ious time &ecause this is aninterpolation formula.

    1

    1 11 11 12 2

    n n nm m mdt dt u c u c u

    dx dx+

    + = + +

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    26/39

    cont

    ( A formal sta&ilit' anal'sis -ould in*ol*e#

    ( %hich gi*es sta&ilit' for each mode if#

    ( ) ( ){ }

    1

    1 1

    1

    1

    1 11 1

    2 2

    1 11 1

    2 2

    1 11 1

    2 2

    cos sin

    m m

    n n n

    m m m

    n n n

    i in n n

    m m m

    n

    m m m

    dt dt u c u c u

    dx dx

    dt dt u c u c u

    dx dx

    dt dt u c e u c e u

    dx dx

    dtc i udx

    ++

    +

    +

    = + +

    = + + = + +

    = +

    R Lr r r

    % % %

    %

    ( ) ( )cos sin 1m mdt

    c idx

    +

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    27/39

    cont

    ( $hus considering all the possi&le modes( %e note that the middle mode requires#

    ( $his condition gi*es a sufficient condition for all modes to &e

    &ounded.

    ( ;' the in*erti&ilit' and &oundedness of the 6ourier transform

    -e conclude that the original equation is sta&le.

    cos sin 12 2

    1

    dtc i

    dx

    dtc

    dx

    +

    2

    m

    m

    M

    =

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    28/39

    cont

    ( %e can recast the a,6riedrichs method again

    ( $his method consists of Euler 6or-ard) central

    differencing for the space deri*ati*e and an e,tra

    dissipati*e term i.e. a grid dependent ad*ection

    diffusion equation#

    ( )

    1

    1 1

    1 2 2

    0

    1 11 1

    2 2

    11

    2

    n n n

    m m m

    n n n

    m m m

    dt dt u c u c u

    dx dx

    u cdt u dx u

    ++

    +

    = + +

    = + +

    2 2

    2

    2

    u u dx uc

    t x x

    = +

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    29/39

    C6 Num&er

    ( $he ratio appears repeatedl') in particular inthe estimates for the ma,imum possi&le time step.

    ( %e refer to this quantit' as the C6 Courant

    6riedrichse-' num&er.

    ( ;ounds of the form# -hich result from a

    sta&ilit' anal'sis are frequentl' referred to as C6conditions.

    dt

    dx

    =

    dtC

    dx=

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    30/39

    a,%endroff Method

    ( %e are fairl' free to choose the parameter in the sta&ili:ingterm#

    ( $he artificial viscosity term acts to shift the eigen*alues ofthe spatial operator into the left halfplane.

    ( 1ecall the Euler6or-ard sta&ilit' region is the unit circle

    centered at / in the comple, plane. So pushing theeigen*alues off the imaginar' a,is allo-s us to choose a dt

    small enough to push the eigen*alues of the discrete spatial

    operator into the sta&ilit' region

    ( )1 2 20

    11

    2

    n n n

    m m mu cdt u cdt u + = + +

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    31/39

    Class E,ercise

    ( Please pro*ide a C6 condition for#

    ( "n terms of#

    ( %hat is the truncation error9

    ( ) ( )1 1 1 1 2 24 1

    3 6

    n n n n n n

    m m m m m mu u c u u c u u +

    + + = +

    dt

    dx=

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    32/39

    on Neumann Anal'sis

    ( ;' stealth " ha*e introduced the classical on

    Neumann anal'sis.

    ( $he first step is to 6ourier transform the finite

    difference equation in space.

    ( A short cut is to ma8e the follo-ing su&stitutions#

    1

    1

    2

    2

    2

    2

    ......

    m

    m

    m

    m

    n n

    m m

    in n

    m m

    in n

    m m

    in n

    m m

    in n

    m m

    u u

    u e u

    u e u

    u e u

    u e u

    +

    +

    %

    %

    %

    %

    %

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    33/39

    Anal'sis cont

    ( %e can also ma8e the su&stitutions for thedifference operators#

    ( )

    ( )

    { } ( )

    2

    2

    1

    1

    2 0

    2

    2

    22

    1 11 2 sin

    2

    1 11 2 sin

    2

    1 1sin

    2

    ......

    m

    m

    m

    mm

    m

    m m

    m

    m

    ii m

    n n

    m mi

    i min n

    m m

    in n

    m mi i

    in n m

    m m

    in n

    m m

    e iedx dx

    u ue ieu e u

    dx dx

    u e ue e i

    u e u dx dxu e u

    +

    +

    +

    + =

    = =

    %

    %

    %

    %

    %

    ( ){ }

    2

    2

    2

    14sin

    2

    2

    1 cos

    m

    m

    dx

    dx

    + =

    =

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    34/39

    Example

    ( $he a,%endroff scheme

    ( &ecomes

    ( )1 2 20

    11

    2

    n n n

    m m mu cdt u cdt u + = + +

    2 2

    1 2

    2

    1 21

    2 2

    m m m mi i i i

    n n n

    m m m

    e e e eu cdt u cdt u

    dx dx

    + += + +

    % % %

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    35/39

    Example cont

    ( So the a,%endroff scheme &ecomes a neat onestep method for each 6ourier coefficient#

    ( %e ha*e neatl' decoupled the 6ourier coefficients

    so -e are &ac8 to sol*ing a recurrence relation in n

    for each m#

    ( ence -e need to e,amine the roots of the sta&ilit'pol'nomial for the a&o*e

    2 2

    1 2

    2

    1 21

    2 2

    m m m mi i i in n n

    m m m

    e e e eu cdt u cdt u

    dx dx

    + += + + % % %

    n

    mu%

    2 2

    2

    2

    1 21

    2 2

    m m m mi i i ie e e ez cdt cdt

    dx dx

    += + +

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    36/39

    E,ample cont

    ( $his case is tri*ial as -e Qust need to &ound thesingle root &' /

    ( Plot it this as a function of theta

    ( ) ( )( ){ }

    2 2

    2

    2

    2

    1 21

    2 2

    1 sin cos 2 1

    m m m mi i i i

    m

    e e e ez cdt cdt

    dx dx

    c i c

    += + +

    = + +

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    37/39

    6inal on Neuman Shortcut

    ( %e can s8ip lots of steps &' ma8ing the directsu&stitution#

    ( ere g is referred to as the amplification factor and

    imtheta is our pre*ious thetam

    n n im

    mu g e

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    38/39

    Ne,t $ime

    ( Definition of consistenc'

    ( a,1ichtm'er equi*alence theor'

    ( $reating higher order deri*ati*es

  • 8/12/2019 Lecture on Advanced Mathematical Technques

    39/39

    ome-or8 7

    R/ ;uild a finitedifference sol*er for

    R/a use 'our Cash3arp 1unge3utta time integrator from %2 for time stepping

    R/& use the 4thorder central difference in space periodic domain

    R/c perform a sta&ilit' anal'sis for the timestepping &ased on *isual inspection of

    the C3 13 sta&ilit' region containing the imaginar' a,is

    R/d &ound the spectral radius of the spatial operator

    R/e choose a dt -ell in the sta&ilit' region

    R/f perform four runs -ith initial condition use M=20)40)>0)/@0 and compute ma,imum error at t=>

    R/g estimate the accurac' order of the solution.

    R/h e,tra credit# perform adapti*e timestepping to 8eep the local truncation errorf ti t i & d d & t l

    u uc

    t x

    =

    ( ) ( )

    [ ]

    24cos

    ,0 , 0,2

    x

    u x e x

    =