Top Banner
Lecture 17 - Stanford University Lecture: Motion Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 28-Nov-17 1
79

Lecture: Motion - Stanford University

Jun 11, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Lecture:Motion

JuanCarlosNiebles andRanjayKrishnaStanfordVisionandLearningLab

28-Nov-171

Page 2: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whatwewilllearntoday?

• Opticalflow• Lucas-Kanade method• Horn-Schunk method• Pyramidsforlargemotion• Commonfate• Applications

28-Nov-172

Reading:[Szeliski]Chapters:8.4,8.5[Fleet&Weiss,2005]http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Page 3: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whatwewilllearntoday?

• Opticalflow• Horn-Schunk method• Lucas-Kanade method• Pyramidsforlargemotion• Commonfate• Applications

28-Nov-173

Reading:[Szeliski]Chapters:8.4,8.5[Fleet&Weiss,2005]http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Page 4: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Fromimagestovideos• Avideoisasequenceofframescapturedovertime• Nowourimagedataisafunctionofspace(x,y)andtime(t)

28-Nov-174

Page 5: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whyismotionuseful?

28-Nov-175

Page 6: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whyismotionuseful?

28-Nov-176

Page 7: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Opticalflow• Definition:opticalflowistheapparentmotionofbrightnesspatternsintheimage

• Note:apparentmotioncanbecausedbylightingchangeswithoutanyactualmotion– Thinkofauniformrotatingsphereunderfixedlightingvs.astationarysphereundermovingillumination

GOAL: Recoverimagemotionateachpixelfromopticalflow

Source:SilvioSavarese

28-Nov-177

Page 8: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

PicturecourtesyofSelim Temizer - LearningandIntelligentSystems(LIS)Group,MIT

Opticalflow

Vectorfieldfunctionofthespatio-temporalimagebrightnessvariations

28-Nov-178

Page 9: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Estimatingopticalflow

• Giventwosubsequentframes,estimatetheapparentmotionfieldu(x,y),v(x,y)betweenthem

• Keyassumptions• Brightnessconstancy:projectionofthesamepointlooksthesamein

everyframe• Smallmotion: pointsdonotmoveveryfar• Spatialcoherence: pointsmoveliketheirneighbors

I(x,y,t–1) I(x,y,t)

Source:SilvioSavarese

28-Nov-179

Page 10: Lecture: Motion - Stanford University

Lecture 17 -Stanford University 10

KeyAssumptions:smallmotions

*SlidefromMichaelBlack,CS143 2003

Page 11: Lecture: Motion - Stanford University

Lecture 17 -Stanford University 11

KeyAssumptions:spatialcoherence

*SlidefromMichaelBlack,CS143 2003

Page 12: Lecture: Motion - Stanford University

Lecture 17 -Stanford University 12

KeyAssumptions:brightnessConstancy

*SlidefromMichaelBlack,CS143 2003

Page 13: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

I(x +u, y+ v, t) ≈ I(x, y, t −1)+ Ix ⋅u(x, y)+ Iy ⋅ v(x, y)+ It

• BrightnessConstancyEquation:I(x, y, t −1) = I(x +u(x, y), y+ v(x, y), t)

LinearizingtherightsideusingTaylorexpansion:

I(x,y,t–1) I(x,y,t)

0»+×+× tyx IvIuIHence,

Imagederivativealongx

→∇I ⋅ u v[ ]T + It = 0I(x +u, y+ v, t)− I(x, y, t −1) = Ix ⋅u(x, y)+ Iy ⋅ v(x, y)+ It

Source:SilvioSavarese

28-Nov-1713

Thebrightnessconstancyconstraint

Page 14: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Filtersusedtofindthederivatives

28-Nov-1714

𝐼" 𝐼# 𝐼$

Page 15: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

• Howmanyequationsandunknownsperpixel?

Thecomponentoftheflowperpendiculartothegradient(i.e.,paralleltotheedge)cannotbemeasured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If(u,v)satisfiestheequation,sodoes(u+u’,v+v’)if

•Oneequation(thisisascalarequation!),twounknowns(u,v)

∇I ⋅ u ' v '[ ]T = 0

Canweusethisequationtorecoverimagemotion(u,v)ateachpixel?

Source:SilvioSavarese

28-Nov-1715

Thebrightnessconstancyconstraint

∇I ⋅ u v[ ]T + It = 0

Page 16: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Theapertureproblem

Actualmotion

Source:SilvioSavarese

28-Nov-1716

Page 17: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Theapertureproblem

Perceivedmotion Source:SilvioSavarese

28-Nov-1717

Page 18: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Thebarberpoleillusion

http://en.wikipedia.org/wiki/Barberpole_illusion Source:SilvioSavarese

28-Nov-1718

Page 19: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Thebarberpoleillusion

http://en.wikipedia.org/wiki/Barberpole_illusion Source:SilvioSavarese

28-Nov-1719

Page 20: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whatwewilllearntoday?

• Opticalflow• Lucas-Kanade method• Horn-Schunk method• Pyramidsforlargemotion• Commonfate• Applications

28-Nov-1720

Reading:[Szeliski]Chapters:8.4,8.5[Fleet&Weiss,2005]http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Page 21: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Solvingtheambiguity…

• Howtogetmoreequationsforapixel?• Spatialcoherenceconstraint:• Assumethepixel’sneighborshavethesame(u,v)

– Ifweusea5x5window,thatgivesus25equationsperpixel

B.LucasandT.Kanade.Aniterativeimageregistrationtechniquewithanapplicationtostereovision.InProceedingsoftheInternationalJointConferenceonArtificialIntelligence,pp.674–679,1981.

Source:SilvioSavarese

28-Nov-1721

Page 22: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

• Overconstrained linearsystem:

Lucas-Kanade flow

Source:SilvioSavarese

28-Nov-1722

Page 23: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

• Overconstrained linearsystem

ThesummationsareoverallpixelsintheKxKwindow

Leastsquaressolutionford givenby

Source:SilvioSavarese

28-Nov-1723

Lucas-Kanade flow

Page 24: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Conditionsforsolvability– Optimal(u,v)satisfiesLucas-Kanadeequation

Doesthisremindanythingtoyou?

WhenisThisSolvable?• ATA shouldbeinvertible• ATA shouldnotbetoosmallduetonoise

– eigenvaluesl1 andl 2 ofATA shouldnotbetoosmall• ATA shouldbewell-conditioned

– l 1/l 2 shouldnotbetoolarge(l 1 =largereigenvalue)

Source:SilvioSavarese

28-Nov-1724

Page 25: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

• EigenvectorsandeigenvaluesofATArelatetoedgedirectionandmagnitude• Theeigenvectorassociatedwiththelargereigenvaluepointsin

thedirectionoffastestintensitychange• Theothereigenvectorisorthogonaltoit

M=ATAisthesecondmomentmatrix!(Harriscornerdetector…)

Source:SilvioSavarese

28-Nov-1725

Page 26: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Interpretingtheeigenvalues

l1

l2

“Corner”l1 and l2 are large,l1 ~ l2

l1 and l2 are small “Edge” l1 >> l2

“Edge” l2 >> l1

“Flat” region

Classificationofimagepointsusingeigenvaluesofthesecondmomentmatrix:

Source:SilvioSavarese

28-Nov-1726

Page 27: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Edge

– gradientsverylargeorverysmall– large l1,smalll2

Source:SilvioSavarese

28-Nov-1727

Page 28: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Low-textureregion

– gradientshavesmallmagnitude– small l1,smalll2

Source:SilvioSavarese

28-Nov-1728

Page 29: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

High-textureregion

– gradientsaredifferent,largemagnitudes– large l1,largel2

Source:SilvioSavarese

28-Nov-1729

Page 30: Lecture: Motion - Stanford University

Lecture 17 -Stanford University 30

ErrorsinLukas-Kanade

Whatarethepotentialcausesoferrorsinthisprocedure?– SupposeATAiseasilyinvertible– Supposethereisnotmuchnoiseintheimage

• When our assumptions are violated– Brightness constancy is not satisfied– The motion is not small– A point does not move like its neighbors

• window size is too large• what is the ideal window size?

*FromKhurram Hassan-Shafique CAP5415ComputerVision2003

Page 31: Lecture: Motion - Stanford University

Lecture 17 -Stanford University 31

– Can solve using Newton’s method (out of scope for this class)

– Lukas-Kanade method does one iteration of Newton’s method• Better results are obtained via more iterations

Improvingaccuracy• Recalloursmallmotionassumption

• This is not exact– To do better, we need to add higher order terms back in:

• This is a polynomial root finding problem

It-1(x,y)

It-1(x,y)

It-1(x,y)

*FromKhurramHassan-ShafiqueCAP5415ComputerVision2003

Page 32: Lecture: Motion - Stanford University

Lecture 17 -Stanford University 32

IterativeRefinement• Iterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations

2. Warp I(t-1) towards I(t) using the estimated flow field- use image warping techniques

3. Repeat until convergence

*FromKhurramHassan-ShafiqueCAP5415ComputerVision2003

Page 33: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whendotheopticalflowassumptionsfail?

28-Nov-1733

Inotherwords,inwhatsituationsdoesthedisplacementofpixelpatchesnotrepresentphysicalmovementofpointsinspace?

1. Well, TV is based on illusory motion – the set is stationary yet things seem to move

2. A uniform rotating sphere – nothing seems to move, yet it is rotating

3. Changing directions or intensities of lighting can make things seem to move – for example, if the specular highlight on a rotating sphere moves.

4. Muscle movement can make some spots on a cheetah move opposite direction of motion. – And infinitely more break downs of optical flow.

Page 34: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whatwewilllearntoday?

• Opticalflow• Lucas-Kanade method• Horn-Schunk method• Pyramidsforlargemotion• Commonfate• Applications

28-Nov-1734

Reading:[Szeliski]Chapters:8.4,8.5[Fleet&Weiss,2005]http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Page 35: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Horn-Schunk methodforopticalflow

• Theflowisformulatedasaglobalenergy function whichisshouldbeminimized:

28-Nov-1735

Page 36: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Horn-Schunk methodforopticalflow

• Theflowisformulatedasaglobalenergy function whichisshouldbeminimized:

• Thefirstpartofthefunctionisthebrightnessconsistency.

28-Nov-1736

Page 37: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Horn-Schunk methodforopticalflow

• Theflowisformulatedasaglobalenergy function whichisshouldbeminimized:

• Thesecondpartisthesmoothnessconstraint.It’stryingtomakesurethatthechangesbetweenframesaresmall.

28-Nov-1737

Page 38: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Horn-Schunk methodforopticalflow

• Theflowisformulatedasaglobalenergy function whichisshouldbeminimized:

• 𝛼 isaregularizationconstant.Largervaluesof𝛼 leadtosmootherflow.

28-Nov-1738

Page 39: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Horn-Schunk methodforopticalflow

• Theflowisformulatedasaglobalenergy function whichisshouldbeminimized:

• Bytakingthederivativewithrespecttouandv,wegetthefollowing2equations:

28-Nov-1739

Page 40: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Horn-Schunk methodforopticalflow

• Bytakingthederivativewithrespecttouandv,wegetthefollowing2equations:

• WhereiscalledtheLagrangeoperator.Inpractice,itismeasuredusing:

• whereistheweightedaverageofumeasuredat(x,y).

28-Nov-1740

Page 41: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Horn-Schunk methodforopticalflow

• Nowwesubstitutein:

• Toget:

• Whichislinearinuandvandcanbesolvedforeachpixelindividually.

28-Nov-1741

Page 42: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

IterativeHorn-Schunk

• Butsincethesolutiondependsontheneighboringvaluesoftheflowfield,itmustberepeatedoncetheneighborshavebeenupdated.

• Soinstead,wecaniterativelysolveforuandvusing:

28-Nov-1742

Page 43: Lecture: Motion - Stanford University

Lecture 17 -Stanford University 43

Whatdoesthesmoothnessregularizationdoanyway?

• It’sasumofsquaredterms(aEuclidiandistancemeasure).• We’reputtingitintheexpressiontobeminimized.• =>Intexturefreeregions,thereisnoopticalflow

Regularizedflow

Opticalflow

• =>Onedges,pointswillflowtonearestpoints,solvingtheapertureproblem.

Slidecredit:SebastianThurn

Page 44: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

DenseOpticalFlowwithMichaelBlack’smethod

• MichaelBlacktookHorn-Schunk’s methodonestepfurther,startingfromtheregularizationconstant:

• Whichlookslikeaquadratic:

• Andreplaceditwiththis:

• Whydoesthisregularizationworkbetter?

28-Nov-1744

Page 45: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whatwewilllearntoday?

• Opticalflow• Lucas-Kanade method• Horn-Schunk method• Pyramidsforlargemotion• Commonfate• Applications

28-Nov-1745

Page 46: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

• Keyassumptions(ErrorsinLucas-Kanade)

• Smallmotion: pointsdonotmoveveryfar

• Brightnessconstancy:projectionofthesamepointlooksthesameineveryframe

• Spatialcoherence: pointsmoveliketheirneighbors

Recap

Source:SilvioSavarese

28-Nov-1746

Page 47: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Revisitingthesmallmotionassumption

• Isthismotionsmallenough?– Probablynot—it’smuchlargerthanonepixel(2nd ordertermsdominate)– Howmightwesolvethisproblem?

* Fro

m K

hurra

mH

assa

n-Sh

afiq

ueC

AP54

15 C

ompu

ter V

isio

n 20

03

28-Nov-1747

Page 48: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Reducetheresolution!

* Fro

m K

hurra

mH

assa

n-Sh

afiq

ueC

AP54

15 C

ompu

ter V

isio

n 20

03

28-Nov-1748

Page 49: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Source:SilvioSavarese

image Iimage H

Gaussianpyramidofimage1 Gaussianpyramidofimage2

image2image1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fineopticalflowestimation

28-Nov-1749

Page 50: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

image Iimage J

Gaussianpyramidofimage1(t) Gaussianpyramidofimage2(t+1)

image2image1

Coarse-to-fineopticalflowestimation

runiterativeL-K

runiterativeL-K

warp&upsample

.

.

.

Source:SilvioSavarese

28-Nov-1750

Page 51: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

OpticalFlowResults

* Fro

m K

hurra

mH

assa

n-Sh

afiq

ueC

AP54

15 C

ompu

ter V

isio

n 20

03

28-Nov-1751

Page 52: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

OpticalFlowResults

* Fro

m K

hurra

mH

assa

n-Sh

afiq

ueC

AP54

15 C

ompu

ter V

isio

n 20

03

• http://www.ces.clemson.edu/~stb/klt/• OpenCV

28-Nov-1752

Page 53: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whatwewilllearntoday?

• Opticalflow• Lucas-Kanade method• Horn-Schunk method• Pyramidsforlargemotion• Commonfate• Applications

28-Nov-1753

Page 54: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

• Keyassumptions(ErrorsinLucas-Kanade)

• Smallmotion: pointsdonotmoveveryfar

• Brightnessconstancy:projectionofthesamepointlooksthesameineveryframe

• Spatialcoherence: pointsmoveliketheirneighbors

Recap

Source:SilvioSavarese

28-Nov-1754

Page 55: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Reminder:Gestalt– commonfate

28-Nov-1755

Page 56: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Motionsegmentation• Howdowerepresentthemotioninthisscene?

Source:SilvioSavarese

28-Nov-1756

Page 57: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

• Breakimagesequenceinto“layers”eachofwhichhasacoherent(affine)motion

MotionsegmentationJ.WangandE.Adelson.LayeredRepresentationforMotionAnalysis.CVPR1993.

Source:SilvioSavarese

28-Nov-1757

Page 58: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

• Substitutingintothebrightnessconstancyequation:

yaxaayxvyaxaayxu

654

321

),(),(

++=++=

0»+×+× tyx IvIuI

Affinemotion

Source:SilvioSavarese

28-Nov-1758

Page 59: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

0)()( 654321 »++++++ tyx IyaxaaIyaxaaI

• Substitutingintothebrightnessconstancyequation:

yaxaayxvyaxaayxu

654

321

),(),(

++=++=

• Eachpixelprovides1linearconstraintin6unknowns

[ ] 2å ++++++= tyx IyaxaaIyaxaaIaErr )()()( 654321!

• Leastsquaresminimization:

Affinemotion

Source:SilvioSavarese

28-Nov-1759

Page 60: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Howdoweestimatethelayers?• 1.Obtainasetofinitialaffinemotionhypotheses

– Dividetheimageintoblocksandestimateaffinemotionparametersineachblockbyleastsquares• Eliminatehypotheseswithhighresidualerror

• Mapintomotionparameterspace• Performk-meansclusteringonaffinemotionparameters

–Mergeclustersthatarecloseandretainthelargestclusterstoobtainasmallersetofhypothesestodescribeallthemotionsinthescene

Source:SilvioSavarese

28-Nov-1760

Page 61: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Howdoweestimatethelayers?• 1.Obtainasetofinitialaffinemotionhypotheses

– Dividetheimageintoblocksandestimateaffinemotionparametersineachblockbyleastsquares• Eliminatehypotheseswithhighresidualerror

• Mapintomotionparameterspace• Performk-meansclusteringonaffinemotionparameters

–Mergeclustersthatarecloseandretainthelargestclusterstoobtainasmallersetofhypothesestodescribeallthemotionsinthescene

Source:SilvioSavarese

28-Nov-1761

Page 62: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Howdoweestimatethelayers?• 1.Obtainasetofinitialaffinemotionhypotheses

– Dividetheimageintoblocksandestimateaffinemotionparametersineachblockbyleastsquares• Eliminatehypotheseswithhighresidualerror

• Mapintomotionparameterspace• Performk-meansclusteringonaffinemotionparameters

–Mergeclustersthatarecloseandretainthelargestclusterstoobtainasmallersetofhypothesestodescribeallthemotionsinthescene

2.Iterateuntilconvergence:•Assigneachpixeltobesthypothesis

–Pixelswithhighresidualerrorremainunassigned•Performregionfilteringtoenforcespatialconstraints•Re-estimateaffinemotionsineachregion

Source:SilvioSavarese

28-Nov-1762

Page 63: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Exampleresult

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. Source:SilvioSavarese

28-Nov-1763

Page 64: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whatwewilllearntoday?

• Opticalflow• Lucas-Kanade method• Horn-Schunk method• Pyramidsforlargemotion• Commonfate• Applications

28-Nov-1764

Page 65: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Usesofmotion

• Trackingfeatures• Segmentingobjectsbasedonmotioncues• Learningdynamicalmodels• Improvingvideoquality

– Motionstabilization– Superresolution

• Trackingobjects• Recognizingeventsandactivities

28-Nov-1765

Page 66: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Estimating3Dstructure

Source:SilvioSavarese

28-Nov-1766

Page 67: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Segmentingobjectsbasedonmotioncues

• Backgroundsubtraction– Astaticcameraisobservingascene– Goal:separatethestaticbackground fromthemovingforeground

Source:SilvioSavarese

28-Nov-1767

Page 68: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

• Motionsegmentation– Segmentthevideointomultiplecoherentlymovingobjects

Segmentingobjectsbasedonmotioncues

S.J.Pundlik andS.T.Birchfield,MotionSegmentationatAnySpeed,ProceedingsoftheBritishMachineVisionConference(BMVC)2006

Source:SilvioSavarese

28-Nov-1768

Page 69: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Z.Yin andR.Collins,"On-the-flyObjectModelingwhileTracking,"IEEEComputerVisionandPatternRecognition(CVPR'07),Minneapolis,MN,June2007.

Trackingobjects

Source:SilvioSavarese

28-Nov-1769

Page 70: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Synthesizingdynamictextures

28-Nov-1770

Page 71: Lecture: Motion - Stanford University

Lecture 17 -Stanford University 71

Super-resolution

Example:Asetoflowqualityimages

Source:SilvioSavarese

28-Nov-17

Page 72: Lecture: Motion - Stanford University

Lecture 17 -Stanford University 72

Super-resolution

Eachoftheseimageslookslikethis:

Source:SilvioSavarese

28-Nov-17

Page 73: Lecture: Motion - Stanford University

Lecture 17 -Stanford University 73

Super-resolution

Therecoveryresult:

Source:SilvioSavarese

28-Nov-17

Page 74: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their Appearance. PAMI 2007.

Tracker

Recognizingeventsandactivities

Source:SilvioSavarese

28-Nov-1774

Page 75: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

JuanCarlosNiebles,HongchengWangandLiFei-Fei,UnsupervisedLearningofHumanActionCategoriesUsingSpatial-TemporalWords,(BMVC),Edinburgh,2006.

Recognizingeventsandactivities

28-Nov-1775

Page 76: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Crossing– Talking– Queuing– Dancing– jogging

W.Choi &K.Shahid&S.SavareseWMC2010

Recognizingeventsandactivities

Source:SilvioSavarese

28-Nov-1776

Page 77: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

W.Choi,K.Shahid,S.Savarese,"Whataretheydoing?:CollectiveActivityClassificationUsingSpatio-TemporalRelationshipAmongPeople",9thInternationalWorkshoponVisualSurveillance(VSWS09)inconjuction withICCV09

28-Nov-1777

Page 78: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Opticalflowwithoutmotion!

28-Nov-1778

Page 79: Lecture: Motion - Stanford University

Lecture 17 -Stanford University

Whatwehavelearnedtoday?

• Opticalflow• Lucas-Kanade method• Horn-Schunk method• Pyramidsforlargemotion• Commonfate• Applications

28-Nov-1779

[Fleet&Weiss,2005]http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Reading:[Szeliski]Chapters:8.4,8.5