Top Banner
LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTION IRFAN SIDDIQI Department of Applied Physics Yale University 7-27-2005 Boulder Summer School R. Vijay M. Metcalfe E. Boaknin L. Frunzio C. Rigetti M.H. Devoret Daniel Prober Robert Schoelkopf Steve Girvin
28

LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTION · 2019. 12. 18. · LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTION IRFAN SIDDIQI Department of Applied Physics Yale

Jan 25, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTION

    IRFAN SIDDIQI

    Department of Applied PhysicsYale University

    7-27-2005

    Boulder Summer School

    R. VijayM. MetcalfeE. BoakninL. FrunzioC. RigettiM.H. Devoret

    Daniel ProberRobert SchoelkopfSteve Girvin

  • OUTLINELecture I: Metastable States of the Josephson Junction• Josephson junction dynamics• Non-linear Josephson inductance• DC / RF current biased junction

    - metastable states- escape dynamics

    • Bifurcation amplification

    Lecture II: Bifurcation Readout for Superconducting Qubits• Quantum information and superconducting qubits• Quantronium qubit

    - DC switching readout- RF bifurcation readout

    • Coherence measurements• Information flow • Stark shift spectroscopy and relaxation

  • GENERALIZED FLUX

    B

    ( ) ( )mag surfacet B t dAΦ = ⋅∫

    ( ) ( )magperimeter

    d tE t dl

    dtΦ

    ⋅ = −∫

    circuit element1 2

    + -

    Egs.

    ( ) ( )2

    1

    tt E t dl dt

    −∞′ ′Φ = − ⋅∫ ∫

    12 ( )t

    V t dt−∞

    ′ ′= ∫

    R L C JosephsonTunnel Element

  • JOSEPHSON TUNNEL JUNCTION

    left

    ll

    ie ϕψ=Ψ right rrie ϕψ=Ψ

    superconductor superconductor

    barrier

    V

    IDC EFFECT AC EFFECT

    0( ) ( )

    2d dV

    e dt dtϕ ϕϕ∆ ∆= =0 sin( )l rI I ϕ ϕ ϕ= ∆ = −

    • Supercurrent with V=0• I0 is material dependent (nA-mA)

    • Fixed V, I oscillates• Magnitude I0 , ν=2eV/h (483 MHz/µV)

  • THE NON-LINEAR JOSEPHSON INDUCTORI0

    = =

    CJL

    ( )1( )I t tL

    = Φ

    ( )0 0( ) sin[ / ]I t I t ϕ= Φ

    ( ) ( )3

    0 0

    0 0

    ...6

    tI Itϕ ϕ

    Φ⎛ ⎞= Φ − +⎜ ⎟

    ⎝ ⎠

    I0

    Gauge Invariant Phase DifferenceJosephson Inductance

    0

    0

    ( )TJBCS

    RL BCSIϕ

    π≡ =

    ∆ 0mod 2δ ϕ δ π

    ϕΦ

    ≡ ∆ ∼

  • THE EQUATION OF MOTION

    0( ) sinJV dVI t C IR dt

    δ= + +

    222 00 0 0 02

    ( )

    sin ( ) 0Jmass U

    drag

    d dC I I tdt R dt

    δδ

    ϕδ δϕ ϕ δ ϕ∂

    + + − =

    0

    0p

    J

    IC

    ωϕ

    =

    p JQ RCω=

    0 0 0( ) cos ( )U I I tδ ϕ δ ϕ δ= − −

  • DC CURRENT BIAS I: I-V Curve

    0DCV ϕ δ=

    T=216mKQ = 12

    Al / AlOx / Al

    0

    0

    : 0

    : 0DC

    DC

    I I

    I I

    δ

    δ

    < =

    > ≠

    superconducting

    dissipative

  • DC CURRENT BIAS II: Metastability & Switching

    I0=1.43 µA

    ( )0 1 0( )

    , , exp2

    pDC

    kT

    UI I TkT

    ω

    ωπ→

    >>

    ∆⎛ ⎞Γ = −⎜ ⎟⎝ ⎠

    ( )3/ 2

    0 00

    0 50 K

    2 2, 13

    DCDC

    IU I I Ie I

    u ≈

    ⎡ ⎤ ⎛ ⎞∆ = ⋅ −⎢ ⎥ ⎜ ⎟

    ⎝ ⎠⎣ ⎦

    1µA

  • DC CURRENT BIAS III: Macroscopic Quantum Tunneling (MQT)

    Martinis et al, PRB 35 (1987)

    * :7.2

    Up kTT T ek

    ω −∆> = Γ ∝

    * : constant7.2

    pT Tk

    ω< = Γ =

    thermalactivation

    MQT

  • RF CURRENT BIAS I: SOFTENING POTENTIAL

    ( ) sin( )RFI t I tω=

    max( ) sin( )t tδ δ ω γ= +

    0( )V t ϕ δ=

    • Frequency decreases w. drive amplitude

    • For ω

  • RF CURRENT BIAS II: TWO DYNAMICAL STATES

    • If , bistability

    • Dynamical states differ in oscillation amplitude & phase

    32

    p

    ω∆ >

    22 32 00 0 0 02 sin( ) 06J RF

    d dC I I tdt R dt

    ϕδ δ δϕ ϕ δ ϕ ω⎛ ⎞

    + + − − =⎜ ⎟⎝ ⎠

  • EXPERIMENTAL SETUP

    10mK

    Challenges

    • Fully coherent microwavemeasurements

    • High speed data acquisition

    • Precision circuit design(remember LJ ~ 300pH)

    special capacitors

    • Ultra-low noise wide-band electronics

    new cryo filters

  • Al

    Si3N4

    27.3 pF

    Cu

    JUNCTION + MICROWAVE CAPACITOR

    1000 nm Cu

    20 nm Cr

    35 nm Cr15 nm Ti

    Silicon Substrate

    Al

    1 mm

    200 nm Si3N4

    =Cu

    Alεr=7.5

    Al/Al203/AlJunction (1.17 µA)

    METALLICUNDERLAYER

  • HIGH FREQUENCY CRYOGENIC FILTERING

    -3dB @ 1 MHz

    -3dB @ 2 GHz

  • RF CURRENT BIAS III: Plasma Resonance

    kT/EJ

    VD

    C(nV)

    1/Q

    Q=ωpRC

  • STRAY REACTANCES

    Lstray Lbond = 2.8 nH

    LJ = ϕ0 / I0 = 0.28 nH

    C

    2 20

    1 14 2 strayp

    C C Lf e Iπ

    = +

    Lstray = 0.003 nH

    C = 27.3 pF

  • PHASE DIAGRAM:EXP & THYIN GOOD

    AGEEMENT

    • Dark region corresponds towell-jumping

    • All parameters in predictionmeasured experimentally!

  • THE DRIVEN PENDULUM

    ωω < ω0

    0 2g

    ω = πθ

    Regime Drive Dynamical States

    harmonic weak (θmax>> 2

    V

    δ θ

    θ

    10

    1

    0

    J

    p

    I l

    C gω ω

  • DYNAMICS OF DYNAMICAL SWITCHING

    2 µs20 ns

    • N = 600,000

    • ∆φ = 74 deg

    • HysteresisIB and IB’ correct ! ( )3/ 23/ 2 0

    16 13 3B

    I Iα α⎡ ⎤= −⎢ ⎥⎣ ⎦1 0.122

    p

    ωαω

    ⎛ ⎞= − =⎜ ⎟⎜ ⎟

    ⎝ ⎠

  • SWITCHING HISTOGRAMS

    • No latching• 40 ns rise + 20 ns settle• τm = 20 ns

    Set by SNR

    • Latching• 40 ns rise + 20 ns settle• τm = 300 ns

  • DC vs. ACIB = f(I0,α)I0

    0

    1

    0

    1

    IDC ↔ iRFVDC ↔ φRs ↔ α

  • ATTRACTORS

    0

    ( ) ( ) ( )sin cost t tδ δ ω δ ω⊥= +

    THY

    1

  • 1-D METAPOTENTIAL

    ( ) ( )3/ 22

    30 0

    0

    64, , 1 118 3

    10K

    dyn RFRF

    B

    dyn

    iU I i IIe

    u

    α α α⎛ ⎞⎛ ⎞⎡ ⎤ ⎜ ⎟∆ = − − ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠

    ( )0

    1/ 222

    (2 ) 35

    4

    0MHz

    13 3

    a

    RFa p

    B

    iRCI

    ω αω

    ω π

    ⎛ ⎞⎛ ⎞⎡ ⎤ ⎜ ⎟= − ⎜ ⎟⎢ ⎥ ⎜ ⎟⎦ ⎝ ⎠ ⎠≈

    ⎣ ⎝i

    ( )3/ 2 03/ 2 016 1 0 1

    3.

    3BI I Iα α⎡ ⎥⎦

    ≈⎤= −⎢⎣0 1

    exp2

    dyndyn a U

    kTωπ→

    ⎛ ⎞∆Γ = −⎜ ⎟

    ⎝ ⎠

  • ESCAPE TEMPERATURE

    *RFT

    *DCT

    Ib ~ 0.1 I0*

    RFT kω

    =

    Quantum Saturation at Different Temperature ! * 7.2

    pDCT k

    ω=

  • JOSEPHSON BIFURCATION AMPLIFIER

    JBA: INPUT COUPLES TO I0- φ (irf,I0) - Pswitch (irf,I0)

    - minimal backaction- no on-chip dissipation

  • AMPLIFICATION

    DEVICE INPUT CIRCUIT

    OPERATION

    SQUIDFluxLoop

    DC Switching

    Quantronium

    Single Cooper Pair Transistor

    DC Switching

    SQUID JBAFluxLoop

    RFBifurcation

    Quantronium+ JBA

    Single Cooper Pair Transistor

    RFBifurcation

  • SQUID JBA

    I0 = 1.16 µA

    B=B0

    0 1

    EXPI0 = 1.17 µA

    B=0

    10

    EXP

    • fidelity = 80% @ 250mKfor ∆I0 = 10nA

    • predict > 95% @ T=60mK (single shot)

    10 MHzRep. Rate

  • SUMMARY

    • RF DRIVEN JOSEPHSON JUNCTION- non-linear plasma resonance- metastable states- escape dynamics

    • NOVEL QUANTUM SATURATION

    • BIFURCATION AMPLIFICATION- observe predicted sensitivity- SQUID JBA- QUBIT READOUT Next Lecture

    LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTIONOUTLINEGENERALIZED FLUXJOSEPHSON TUNNEL JUNCTIONTHE NON-LINEAR JOSEPHSON INDUCTORTHE EQUATION OF MOTIONDC CURRENT BIAS I: I-V CurveDC CURRENT BIAS II: Metastability & SwitchingDC CURRENT BIAS III: Macroscopic Quantum Tunneling (MQT)RF CURRENT BIAS II: TWO DYNAMICAL STATESEXPERIMENTAL SETUPJUNCTION + MICROWAVE CAPACITORHIGH FREQUENCY CRYOGENIC FILTERINGRF CURRENT BIAS III: Plasma ResonanceSTRAY REACTANCESTHE DRIVEN PENDULUMDYNAMICS OF DYNAMICAL SWITCHINGSWITCHING HISTOGRAMSDC vs. ACATTRACTORS1-D METAPOTENTIALESCAPE TEMPERATUREJOSEPHSON BIFURCATION AMPLIFIERAMPLIFICATIONSQUID JBASUMMARY