Top Banner
Lecture VII. Applications Electrostatic Imaging and Xerographic materials Organic Light-emitting diodes ) OLEDS and Active Matrix OLEDS (AMOLEDS) for Display and Lighting Solar Cells Field-effect transistors Batteries Photo-detectors Luminescence for Land-mine Sniffing Lasers Switches E-Ink
165
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 7 oms

Lecture VII. Applications Electrostatic Imaging and Xerographic materials Organic Light-emitting diodes ) OLEDS and Active Matrix OLEDS (AMOLEDS) for Display and Lighting

Solar Cells Field-effect transistors Batteries Photo-detectors Luminescence for Land-mine Sniffing Lasers Switches E-Ink

Page 2: Lecture 7 oms
Page 3: Lecture 7 oms

Inorganic Vs. Organic Material Properties

Page 4: Lecture 7 oms

Limitations At Early Stage Organic materials have often proved to be

unstable. Making reliable electrical contacts to organic

thin films is difficult. When exposed to air, water, or ultraviolet light,

their electronic properties can degrade rapidly. The low carrier mobilities characteristic of

organic materials obviates their use in high-frequency (greater than 10 MHz) applications.

These shortcomings are compounded by the difficulty of both purifying and doping the materials.

Page 5: Lecture 7 oms
Page 6: Lecture 7 oms
Page 7: Lecture 7 oms
Page 8: Lecture 7 oms

Electrostatic Imaging

Page 9: Lecture 7 oms

Chester Carlson

History of Xerography

The first xerographic image 10-22-1938, Astoria, NY.

slide #2

Page 10: Lecture 7 oms

History of Xerography 1906: Haloid Corp.

founded

1900 1910 1920 1930 1940 1950

1938: 1st xerographic image

1949: 1st copier - Model A

1950 1960 1970 1980 1990 2000

1959: Xerox 914, 1st plain paper automatic copier - 7 1/2 copies/min

1964: LDX (long distance xerography) - 1st fax

1973: Xerox 6500 - 1st color copier

1977: Xerox 9700 - 1st laser printer

1988: Xerox 5090 - 135 copies/min

1997: Docutech digital printer (180 copies/min)

1997: Docucolor 70 - 70 color prints/min

Today Xerox has 91,400 employees (50,200 in US) and $18.2 billion in revenues

Page 11: Lecture 7 oms

What is Xerography?

Creation of a visible image using surface charge pattern on a

“photoconductor”.

Visible images consist of fine charged particles called

toners”.

slide #5

Xero-graphy = Dry-Writing (Greek)

Page 12: Lecture 7 oms

Xerographic Prints are composed of toners

5-10 microns COLOR Digital prints are halftones

Page 13: Lecture 7 oms
Page 14: Lecture 7 oms

Inside a xerographic printer

Photoreceptor

Page 15: Lecture 7 oms
Page 16: Lecture 7 oms

Charging Subsystem (Corotron):

Electrons

Positive Ions

Free ions are attracted to wire; Free electrons are repelled. Counter-charges build up on grounded surfaces.

Rapidly moving electrons and ions collide with air molecules, ionizing them and creating a corona.

Electrons continue to follow Electric Field lines to Photoreceptor until uniform charge builds up

HV Power Supply (-)

HV Power Supply (-)

HV Power Supply (-)

slide #10

Page 17: Lecture 7 oms
Page 18: Lecture 7 oms
Page 19: Lecture 7 oms

Transfer to paper

• Electric field moves particles from photoreceptor to paper or transparency

• Detachment field must overcome toner adhesion to photoreceptor

Apply E Field

Paper

Paper

Photoreceptor

Photoreceptor

slide #18

Page 20: Lecture 7 oms

Additives control adhesion

Changing type type of additive modifies adhesion

Atomic Force Microscopy results

Page 21: Lecture 7 oms

Electrical Field Detachment of Fine Particles

E. Eklund, W. Wayman, L. Brillson, D. Hays, 1994 IS&T Proc., 10th Int. Cong. on Non-Impact Printing, 142-146

slide #19

Measure Many Particle Adhesion

Donor Receiver V

transparent conductive electrodes

V V

Page 22: Lecture 7 oms

Fusing Subsystem

• Permanently affix the image to the final substrate – paper of various roughness

– transparency (plastic)

• Apply heat and/or pressure

Hot Roll Fuser:

Pressure Roll

Heat Roll

Paper

slide #21

Page 23: Lecture 7 oms

Cleaning and Erase Subsystems

• Removes unwanted residual toner and charge from photoreceptor before next imaging cycle – Physical agitation removes toner (blade or brush)

– Light neutralizes charge by making entire photoreceptor conductive

slide #22

Page 24: Lecture 7 oms
Page 25: Lecture 7 oms
Page 26: Lecture 7 oms
Page 27: Lecture 7 oms
Page 28: Lecture 7 oms
Page 29: Lecture 7 oms
Page 30: Lecture 7 oms
Page 31: Lecture 7 oms
Page 32: Lecture 7 oms
Page 33: Lecture 7 oms
Page 34: Lecture 7 oms
Page 35: Lecture 7 oms
Page 36: Lecture 7 oms
Page 37: Lecture 7 oms

Physics of the Photo-discharge of the Corona Charge

Page 38: Lecture 7 oms
Page 39: Lecture 7 oms
Page 40: Lecture 7 oms
Page 41: Lecture 7 oms
Page 42: Lecture 7 oms
Page 43: Lecture 7 oms
Page 44: Lecture 7 oms
Page 45: Lecture 7 oms
Page 46: Lecture 7 oms
Page 47: Lecture 7 oms
Page 48: Lecture 7 oms
Page 49: Lecture 7 oms

Future of Xerography

• Color: Wide gamut, offset quality

• High Image Quality: High resolution, continuous tone

• High Speed: Full color at 200 pages per min, and higher

• Higher reliability: No paper jams

• Lower cost: Xerography vs. inkjet

slide #25

Page 50: Lecture 7 oms

Reference

The physics of

XEROGRAPHY:

Howard Mizes Xerox Corporation

Wilson Center for Research & Technology Webster, New York

Page 51: Lecture 7 oms

Organic Light-emitting diodes (OLEDS) and Active Matrix OLEDS (AMOLEDS) for Display and Lighting

Page 52: Lecture 7 oms

Overview

Page 53: Lecture 7 oms
Page 54: Lecture 7 oms

Inorganic LED’s

Page 55: Lecture 7 oms
Page 56: Lecture 7 oms

Inorganic Vs. Organic LEDs

Page 57: Lecture 7 oms

Why Organic LED?

Vibrant colors

High contrast

Wide viewing angles from all directions

Low power consumption

Low operating voltages

Wide operating temperature range

A thin and lightweight form factor

Cost-effective manufacturability , etc

Page 58: Lecture 7 oms
Page 59: Lecture 7 oms
Page 60: Lecture 7 oms

Organic LED Energy Diagram

Page 61: Lecture 7 oms
Page 62: Lecture 7 oms

A full color, 13-inch diagonal small-molecular-weight OLED display with 2mm thickness.

Flexible internet display screen

S. R. Forrest in Nature428, 911 (2004)

Applications — Full color OLED display

Page 63: Lecture 7 oms

Samsung large OLED displays

KODAK OLED displays

http://www.kodak.com/eknec/PageQuerier.jhtml?pq-path=1473/1481/1491&pq-locale=en_US

Applications — Full color OLED display

Page 64: Lecture 7 oms
Page 65: Lecture 7 oms
Page 66: Lecture 7 oms
Page 67: Lecture 7 oms
Page 68: Lecture 7 oms
Page 69: Lecture 7 oms
Page 70: Lecture 7 oms
Page 71: Lecture 7 oms
Page 72: Lecture 7 oms
Page 73: Lecture 7 oms
Page 74: Lecture 7 oms
Page 75: Lecture 7 oms
Page 76: Lecture 7 oms
Page 77: Lecture 7 oms

OLED Device Physics and Chemistry

Page 78: Lecture 7 oms
Page 79: Lecture 7 oms
Page 80: Lecture 7 oms
Page 81: Lecture 7 oms
Page 82: Lecture 7 oms
Page 83: Lecture 7 oms
Page 84: Lecture 7 oms
Page 85: Lecture 7 oms
Page 86: Lecture 7 oms
Page 87: Lecture 7 oms
Page 88: Lecture 7 oms

EIL, ETL: n-type materials

Alq3, PBD

HIL, HTL: p-type materials

NPB, TPD

EML:

Fluorescent dye

DCM2

Phosphorescent dye

PtOEP, Ir(ppy)3

Small molecular OLEDs — Materials

Alq3 PBD

NPB TPB

DCM2

Page 89: Lecture 7 oms
Page 90: Lecture 7 oms
Page 91: Lecture 7 oms

Cathode

Organic Layer

Anode

Substrate

Single layer device

Small molecular OLEDs — Structure

Cathode

Hole transport layer

Anode

Substrate

Electron transport layer

P-n junction device

Electron transport layer

Hole transport layer

Anode

Substrate

Emissive layer

Electron Injection layer

Cathode

Hole Injection layer

Multiple layers device

Page 92: Lecture 7 oms

Electron transport layer

Hole transport layer

Anode

Substrate

Emissive layer

Electron Injection layer

Cathode

Hole Injection layer

HOMO — Ev

LUMO — Ec

Transparent substrate

ITO HIL HTL EML ETL EIL Cathode

h+

e-

h+ h+

e- e- Light

Electrons injected from cathode

Holes injected from anode

Transport and radiative recombination of electron hole pairs at emissive layer

Small molecular OLEDs — Device operation principle

Page 93: Lecture 7 oms
Page 94: Lecture 7 oms

Anode:

Indium-tin-oxide (ITO): 4.5-5.1 eV

Au: 5.1 eV

Pt: 5.7 eV

Cathode:

Ca: 2.9 eV

Mg: 3.7 eV

Al: 4.3 eV

Ag: 4.3 eV

Mg : Al alloys

Ca : Al Alloys

Small molecular OLEDs — Electrodes

Page 95: Lecture 7 oms

Substrate

Small molecules

Vacuum

Heater

Cathode

Hole transport layer

Anode

Substrate

Electron transport layer

Small molecular OLEDs — Device preparation

Growth:

~10-5-10-7 Torr

Room temperature

~20 Å- 2000 Å

Thermal vacuum evaporation

Page 96: Lecture 7 oms

Polymeric OLEDS

Page 97: Lecture 7 oms

Cathode

Emissive polymer

Anode

Substrate

Cathode

Conducting polymer

Anode

Substrate

Emissive polymer

Polymer OLEDs — Structure and Operation

http://www.ewh.ieee.org/soc/cpmt/presentations/cpmt0401a.pdf

Page 98: Lecture 7 oms
Page 99: Lecture 7 oms

Conducting polymers:

PANI:PSS

PDOT:PSS

Emissive polymers:

R-PPV

PFO

Polymer OLEDs — Materials

PANI

PDOT PSS

Page 100: Lecture 7 oms
Page 101: Lecture 7 oms
Page 102: Lecture 7 oms

Polymer OLEDs — Fabrication

Spin coating

Ink jet printing

Screen printing

Web coating

Substrate

Ink jet printing

Substrate

Polymer film

Spin coating

Page 103: Lecture 7 oms
Page 104: Lecture 7 oms
Page 105: Lecture 7 oms
Page 106: Lecture 7 oms
Page 107: Lecture 7 oms
Page 108: Lecture 7 oms
Page 109: Lecture 7 oms
Page 110: Lecture 7 oms
Page 111: Lecture 7 oms
Page 112: Lecture 7 oms
Page 113: Lecture 7 oms
Page 114: Lecture 7 oms

Organic Solar Cells

Page 115: Lecture 7 oms
Page 116: Lecture 7 oms
Page 117: Lecture 7 oms
Page 118: Lecture 7 oms
Page 119: Lecture 7 oms
Page 120: Lecture 7 oms
Page 121: Lecture 7 oms
Page 122: Lecture 7 oms
Page 123: Lecture 7 oms
Page 124: Lecture 7 oms
Page 125: Lecture 7 oms
Page 126: Lecture 7 oms
Page 127: Lecture 7 oms
Page 128: Lecture 7 oms
Page 129: Lecture 7 oms
Page 130: Lecture 7 oms

Example

Page 131: Lecture 7 oms

Self-Organized Discotic Liquid Crystals for High-Efficiency Organic

Photovoltaics

Page 132: Lecture 7 oms

Organic Field Effect transistors

Page 133: Lecture 7 oms
Page 134: Lecture 7 oms

Organic Thin Film Transistors (OTFTs)

Organic material Organic material

Page 135: Lecture 7 oms
Page 136: Lecture 7 oms

An Example of an I-V of OTFTs

Lg = 20 µm W = 220 µm 400 nm SiO2

50 nm organic

Page 137: Lecture 7 oms
Page 138: Lecture 7 oms
Page 139: Lecture 7 oms

Battery Applications

Page 140: Lecture 7 oms
Page 141: Lecture 7 oms
Page 142: Lecture 7 oms
Page 143: Lecture 7 oms
Page 144: Lecture 7 oms

Li LiI

PVP-I CT complex

Li+

Page 145: Lecture 7 oms
Page 146: Lecture 7 oms
Page 147: Lecture 7 oms

Photo-detectors

Page 148: Lecture 7 oms
Page 149: Lecture 7 oms

Luminescence for Mine-Sniffing

Page 150: Lecture 7 oms
Page 151: Lecture 7 oms
Page 152: Lecture 7 oms

Organic Semiconducting Lasers

Page 153: Lecture 7 oms
Page 154: Lecture 7 oms

Organic Switches

Page 155: Lecture 7 oms
Page 156: Lecture 7 oms
Page 157: Lecture 7 oms
Page 158: Lecture 7 oms
Page 159: Lecture 7 oms
Page 160: Lecture 7 oms
Page 161: Lecture 7 oms

E-ink

Page 162: Lecture 7 oms
Page 163: Lecture 7 oms
Page 164: Lecture 7 oms
Page 165: Lecture 7 oms