Top Banner
Lecture 6 Scalar and Vector Quantization Wen-Hsiao Peng, Ph.D Multimedia Architecture and Processing Laboratory (MAPL) Department of Computer Science, National Chiao Tung University May 2008 Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 1 / 61
61

Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Mar 29, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization

Wen-Hsiao Peng, Ph.D

Multimedia Architecture and Processing Laboratory (MAPL)Department of Computer Science, National Chiao Tung University

May 2008

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 1 / 61

Page 2: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Introduction

Quantization

Lossy Compression Method

Reduce distinct output values to a much smaller setMap an input value/vector to an approximated value/vector

Approaches

Scalar Quant. - quantize each sample separately

Uniform vs. Non-uniformMSE vs. MAE vs. ....

Vector Quant. - quantize a group of samples jointly

Uniform (Lattice Quantizer) vs. Non-uniformMSE vs. MAE vs. ....

Design Objectives

1 Minimize Distortion s.t. Fixed Number of Reconstructions2 Minimize Entropy Rate s.t. Distortion Constraint (Minimize Distortions.t. Entropy Rate Constraint)

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 2 / 61

Page 3: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Introduction

Example

Scalar Quantization

Quantization Levels L = 2R

Reconstruction Values gl , l = 1, 2, ..., LBoundary Values bl , l = 0, 1, ..., LQuantizer Mapping Function

Q(f ) = gl if f 2 Bl = [bl�1, bl )

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 3 / 61

Page 4: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Introduction

Quantizer Mapping Function

Q(f ) = gl if f 2 Bl Q(f ) =jf�fminq

k�q+ q

2+f min

Non-uniform Quantizer Uniform Quantizer

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 4 / 61

Page 5: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Introduction

Uniform vs. Non-uniform

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 5 / 61

Page 6: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Introduction

Midright vs. Midtread Quantizers

Midright Uniform Quantizer (Even L)

"0" is a decision boundary

Midtread Uniform Quantizer (Odd L)

"0" is a reconstruction levelBetter for small L in video/image coding

Midright vs. Midtread (for Symmetric Distributions)

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 6 / 61

Page 7: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Introduction

Quantizer Distortion

Dq = σ2q(granular )| {z }Our Focus

+ σ2q(overload)| {z }0 for bounded inputs

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 7 / 61

Page 8: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Introduction

Quantizer Distortion

Quantizer Distortion Dq1

Dq = E (d(F ,Q(F )))

= ∑l2L

�Zf 2Bl

d(f ,Q(f ))p(f )df

�= ∑

l2LP(Bl )

Zf 2Bl

d(f ,Q(f ))p(f jf 2 Bl )df| {z }Dq,l

Example: d(F ,Q(F )) = (F �Q(F ))2

Dq = E (d(F ,Q(F )) = E�(F �Q(F ))2

�| {z }

MSE

= σ2q

where Quant. Error F �Q(F ) is of zero mean1Depend on distortion measure d(�) and source distribution p(f )

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 8 / 61

Page 9: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Introduction

Scalar Quantizer

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 9 / 61

Page 10: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Uniform Scalar Quantizer

Uniform Scalar Quantizer

Equal Quantization Stepsize

bl � bl�1 = gl � gl�1 = q

where

bl = fmin + l � q

gl =bl + bl�1

2Q(f ) =

�f � fminq

��q+q

2+f min| {z }

Closed�form

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 10 / 61

Page 11: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Uniform Scalar Quantizer

Uniform Quantizer Optimized for Uniform Distribution

Uniform Distribution

p(f ) =

�1/B f 2 (fmin, fmax)0 otherwise

where B = fmax � fmin

Distortion Measure

d(F ,Q(F )) � (F �Q(F ))2

Quantizer Distortion

Dq = ∑l2LP(Bl )Dq,l = Dq,l =

q2

12= σ2f 2

�2R

SNR = 10 logσ2fDq

= (20 log 2)R = 6.02R

where

Dq,l =q2

12, q =

B

L, L = 2R , Signal Variance σ2f = B

2/12

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 11 / 61

Page 12: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer

Minimum Mean Square Error Scalar Quantizer

Distortion Measure

d(F ,Q(F )) � (F �Q(F ))2

Objective

(b�, g�) = arg minfb,gg

∑l2L

Z bl

bl�1(f � gl )2p(f )df

!| {z }

J(b,g)

whereb = (b0, b1, ..., bL)

T , g = (g1, g2, ..., gL)T

Necessary Conditions

rJ(b�, g�) = 0) (1) ∂J(b�, g�)/∂bl = 0(2) ∂J(b�, g�)/∂gl = 0

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 12 / 61

Page 13: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer

MMSE Scalar Quantizer

Solution

(1) ∂J(b�, g�)/∂bl = (b�l � g �l )2 p(b�l )� (b�l � g �l+1)2p(b�l ) = 0

(2) ∂J(b�, g�)/∂gl = �Z b�l

b�l�1

2(f � g �l )p(f )df = 0

Nearest-Neighbor Condition

b�l =g �l + g

�l+1

2) Bl = ff : d(f , gl ) � d(f , gl 0), 8l 0 6= lg (1)

Centroid Condition

g �l =1

P(Bl )

Z b�l

b�l�1

f p(f )df = E (FjF 2 Bl )| {z }Conditional Mean

(2)

Eqs. (1) & (2) generally DO NOT have a closed-form solution

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 13 / 61

Page 14: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer

Properties of MMSE Scalar Quantizer

Symbols

F : original random variableG: quantized random variableQ = F � G: quantization error

G is unbiased estimator of FE (G) = E (F ),E (Q) = 0

G is orthogonal to Q, whereas F is correlated to QE (GQ) = 0,E (FQ) 6= 0

Reduced signal variance

σ2G = σ2F � σ2Q

Equalized error contribution

P(Bl )Dq,l =DqL, 8l 2 L

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 14 / 61

Page 15: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer

MMSE Scalar Quantizer of Various Sources

All sources are with zero mean and unit variance2

Quantizer Design (y j= g j , xj = bj ) SNR

U: Uniform, G: Gaussian, L: Laplacian, Γ: Gamma2See Appendix for arbitrary PDFWen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 15 / 61

Page 16: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

MMSE Scalar Quantizer High Rate Approximation

High Rate Approximation: p(f ) is approximately at in all intervals Bl

Dq = ∑l2L

Z bl

bl�1(f � gl )2 p(f )|{z} df

' ∑l2Lp(gl )| {z }

Z bl

bl�1(f � gl )2df

= ∑l2L

P(Bl )∆l| {z }

Z bl

bl�1(f � gl )2df , where ∆l = bl � bl�1

Centroid Condition

∂Dq∂gl

= 0)Z bl

bl�1(f � gl )df = 0) g �l =

bl + bl�12| {z }

High Rate

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 16 / 61

Page 17: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

MMSE Quantizer Distortion High Rate Approximation

Quantizer Distortion

Dq ' ∑l2L

P(Bl )∆l

Z bl

bl�1(f � g �l )2df = ∑

l2LP(Bl )

∆2l12|{z}Dq,l

where ∆l = bl � bl�1Equalized Error Contribution

P(Bl )Dq,l =1

12P(Bl )"

∆2l#= constant

Special Case: Uniform Quantizer and Uniform Source

P(Bl ) = P(Bl 0),∆l = ∆l 0 = ∆,Dq =∆2

12

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 17 / 61

Page 18: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

MMSE Quantizer Distortion High Rate Approximation

Alternative Expression (More Useful)

Dq ' ∑l2LP(Bl )

∆2l12' ∑

l2L

pF (g�l )∆

3l

12' σ2f 2

�2Rε2 (See Appendix)

where

ε2 =1

12

�Z fmax/σf

fmin/σf

3

qpF 0(f )df

�3pF 0(f ) = σf pF (σf f ) is PDF of an unit variance source

Uniform Quantizer/Source vs. Non-uniform Quantizer/Source

Uniform : SNR ' 10 log σ2fDq

= 10 log 22R = 6.02R

Non-uniform : SNR ' 10 log σ2fDq

= 6.02R � 20 log ε

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 18 / 61

Page 19: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

MMSE Scalar Quantizer of Various Sources

∆SNR = 6.02R (Uniform Source and Quantizer)�maxfSNRgSolid (Non-uniform Quantizer) vs. Dashed (Uniform Quantizer)

Uniform quantizer becomes increasingly ine�cient with increasing R

Non-uniform quantizer attains an asymptote with increasing R

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 19 / 61

Page 20: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Companding: Compressing and Expanding

A technique for analyzing

quantizers at high rate

Companding Law c(x) de�nes Bl a

Interval Intensity

dc(gl )

dx� 2xmax

L∆l

where

c(xmax) = xmax,c(0) = 0,c(xmin) = xmin

aQuantizers designed by c(x) is nolonger common

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 20 / 61

Page 21: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Companding: Compressing and Expanding

Distortion Measure

d(F ,Q(F )) � (F �Q(F ))2

Quantizer Distortion (in terms of c(x))

Dq ' ∑l2LP(Bl )

∆2l12

' x2max3L2 ∑

l2Lp(gl )∆l

�dc(gl )

dx

��2' x2max

3L2

Z xmax

xminp(x)

�dc(x)

dx

��2dx

Constraint Z xmax

xmin

dc(x)

dxdx = c(xmax)� c(xmin) = 2xmax

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 21 / 61

Page 22: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

MMSE Scalar Quantizer Design Using Companding

MMSE Scalar Quantizer

minx2max3L2

Z xmax

xminp(x)

�dc(x)

dx

��2dx| {z }

Dq

s.t.Z xmax

xmin

dc(x)

dxdx = 2xmax

Lagrange Multiplier (�nd dc�(x)/dx = g �)

g � = argmin

�Z xmax

xminp(x) (g)�2 dx + λ

�Z xmax

xmingdx � 2xmax

��Optimal Companding Law c�(x)

g � =dc�(x)

dx=

xmaxR xmax0

3pp(x)dx

3

qp(x)

D�q '2

3L2

�Z xmax

0

3

qp(x)dx

�2= σ2f 2

�2Rε2

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 22 / 61

Page 23: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMAE Scalar Quantizer

Minimum Mean Absolute Error Quantizer

Distortion Measure

d(F ,Q(F )) � jF �Q(F )j

Objective

(b�, g�) = arg minfb,gg

∑l2L

Z bl

bl�1jf � gl j p(f )df

!| {z }

J(b,g)

whereb = (b0, b1, ..., bL)

T , g = (g1, g2, ..., gL)T

Necessary Conditions

rJ(b�, g�) = 0) (1) ∂J(b�, g�)/∂bl = 0(2) ∂J(b�, g�)/∂gl = 0

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 23 / 61

Page 24: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization MMAE Scalar Quantizer

Minimum Mean Absolute Error Quantizer

Solution

(1) ∂J(b�, g�)/∂bl = jb�l � g �l j p(b�l )� jb�l � g �l+1j p(b�l ) = 0

(2) ∂J(b�, g�)/∂gl =Z gl

bl�1p(f )df �

Z bl

glp(f )df = 0 (Appendix)

Nearest Neighbor Condition (Same as MMSE Quantizer)

jb�l � g �l j p(b�l )� jb�l � g �l+1j p(b�l ) = 0) b�l =g �l + g

�l+1

2

Generalized Centroid ConditionZ g �l

b�l�1

p(f )df =Z b�l

g �l

p(f )df

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 24 / 61

Page 25: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Optimal Scalar Quantizer

Optimal Scalar Quantizer

Nearest-Neighbor Condition (same as MMSE case)

B�l = ff : d(f , gl ) � d(f , gl 0), 8l 0 6= lg

Generalized Centroid Condition3

g �l = argminglE (d(F , g)jF 2 Bl )

Remarks

Nearest-Neighbor condition is NOT a�ectedCentroid SHALL be adapted to Distortion MeasureSource distribution MUST be knownReconstruction level is indexed by a �xed-length code

3Solution depends on distortion measureWen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 25 / 61

Page 26: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Optimal Scalar Quantizer

Lloyd-Max Algorithm

Optimal quantizer design based on training data

Applicable when source distribution is unknownUse sample averages to replace expectations

Update reconstruction and boundary values iteratively

1 Initialization

Choose initial reconstruction valuesCalculate initial boundary values (Nearest Neighbor)Calculate initial distortion

2 Iterations

Find new reconstructions (Centroid, Sample Mean)Find new boundaries (Nearest Neighbor)Calculate new distortionRepeat till distortion converges

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 26 / 61

Page 27: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Optimal Scalar Quantizer

Lloyd-Max Algorithm

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 27 / 61

Page 28: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Optimal Scalar Quantizer

Entropy Constrained Optimal Scalar Quantizer

Minimize Quantizer Output Entropy s.t. Quantizer Distortion in MSE

minHQ = �∑l2LP(Bl ) log2 P(Bl )| {z }

Quantizer Output Entropy

s.t. Dq =x2max3L2

Z xmax

xminp(x)

�dc(x)

dx

��2dx| {z } = D

Quantizer Distortion with L Levels (High Rate Approx.)

Assumptions

High Rate ApproximationAn arbitrary number of quantization levels L

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 28 / 61

Page 29: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Optimal Scalar Quantizer

Entropy Constrained Optimal Scalar Quantizer

Quantizer Output Entropy (in terms of c(x))

HQ = �∑l2LP(Bl ) log2 P(Bl ) (3)

' �∑l2Lp(gl )∆l log2 (p(gl )∆l )

' �Z xmax

xminp(x) log2 p(x)dx| {z }

h(X )=E (� log2 p(x)) di�erential entropy

+ log2L

2xmax+Z xmax

xminp(x) log2

dc(x)

dxdx

Optimal quantizer is equivalent to �nding g � = dc�(x)/dx such that

minZ xmax

xminp(x) log2

dc(x)

dxdx + λ

Z xmax

xminp(x)

�dc(x)

dx

��2dx �D 0

!Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 29 / 61

Page 30: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Optimal Scalar Quantizer

Entropy Constrained Optimal Scalar Quantizer

Uniform Quantizer attains minimum output entropy regardless of PDF

dc�(x)

dx=p2λ = Constant

c�(x) = x given c(xmax) = xmax, c(0) = 0 (4)

Optimal Output Entropy (From Eqs. (3) & (4))

H�Q(x) = h(X )� log∆ = h(X )� 12log2 (12Dq)

Information-theoretical Interpretation

h(X ) average information at quantizer inputlog2 ∆ = h(Q) average information loss due to quantization

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 30 / 61

Page 31: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Optimal Scalar Quantizer

Comparison with Rate-Distortion Bound

Memoryless Non-Gaussian Sources (No closed-form D(R))

LD(R)| {z }Lower Bound

� D(R) � D(R)G| {z }Upper Bound

where distortion D is in MSE and

LD(R) = (2πe)�12�2[R�h(X )],

LR(D) = h(X )� 12log2 2πeD

For a given distortion

H�Q(x)�L R(D) = 0.255bits

Lower e�ciency is caused by scalar (or memoryless) quantization

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 31 / 61

Page 32: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Optimal Scalar Quantizer

Comparison with MMSE Scalar Quantizer

For a given distortion, maximum bit rate reduction

maxf∆Rg = 1

2log2

σ2fDq

ε2 �H�Q(x) =1

2log2

�12σ2f ε2

�� h(X )

For a given rate, maximum SNR gain

maxf∆SNRg = SNREC � SNRMMSE = 6.02maxf∆Rg dB

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 32 / 61

Page 33: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Optimal Scalar Quantizer

Comparison with MMSE Scalar Quantizer

maxf∆RgRate reduction with entropy constrained quantizerA higher number of quantization levels

∆Rpdf�optRate reduction by entropy encoding MMSE quantizer outputsA �xed number of quantization levels

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 33 / 61

Page 34: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Optimal Scalar Quantizer

Comparison with MMSE Scalar Quantizer

Gaussian Source Even L vs. Odd L (Entropy Constrained)

(MMSE Scalar Quantizer L=8)

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 34 / 61

Page 35: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Optimal Scalar Quantizer

Summary

∆Rpdf�optNOT the best value achievable by entropy coding

maxf∆Rg = (3/2)∆Rpdf�optAchieved with uniform quantizer and more quantization levelsAdditional quantization levels are used for outer part of PDFFall short of R-D bound by 0.255bits (1.53dB) at high ratesApproach R-D bound at low rates

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 35 / 61

Page 36: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Optimal Scalar Quantizer

Vector Quantizer

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 36 / 61

Page 37: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Vector Quantization

Vector Quantization

Why Vector Quantization?

Samples in a block are correlatedSome block patterns are more likely than others

Parameters

Quantization Levels LReconstruction Vectors (Codewords) gl , l = 1, 2, ..., LPartition Regions Bl , l = 1, 2, ..., LQuantizer Mapping Function

gl = Q(f) if f 2 Bl

wheref = [f1, f2, ..., fN ]

T , gl = [gl ;1, gl ;2, ..., gl ;N ]T

Bits/Sample R = 1N dlog2 Le

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 37 / 61

Page 38: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Nearest-Neighbor Vector Quantizer

Nearest-Neighbor Vector Quantizer

Quantized vector gl determined by Nearest Neighbor criterion

Complexity (increases exponentially with vector size N)

Operations NL (or N2NR ), storage NL (or N2NR )

Bl = ff 2 RN : dN(f, gl ) � dN(f, g0l ), 8l 0 6= lg

dN(f, gl ) =1

N ∑N

n=1(fn � gl ;n)

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 38 / 61

Page 39: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Lattice Vector Quantizer

Lattice Vector Quantizer

Realization of Uniform Vector Quantizer

All partitions have same shape and size (good for uniform source)Closed-form quantizer mapping function (low complexity)

Reconstruction Vectors gl are Lattice Points (or Lattice Coset)

Lattice Λ (de�ned by a set of basis vectors fvng)

gl =N

∑n=1

ml ;nvn = [V]ml ,

whereml 2 Zn

[V] = [v1, v2, ..., vN ] is Lattice Generating Matrix

Determination of Quantized Vector

1 m =[V]�1f, where m 2 Rn is a real index vector2 Evaluate distortions of bm = dme or bmc, where bm 2 Zn

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 39 / 61

Page 40: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Lattice Vector Quantizer

Quantizer Distortion

Vector Quantizer Distortion (Same as Scalar Quantizer)

Dq = E (dN(�!F ,Q(�!F )))

=ZBpN(f)dN(f,Q(f))df

=L

∑l=1

P(Bl )Dq,l

where

Dq,l =ZBlpN(f jf 2 Bl )dN(f, gl )df

Example: Lattice Quantizer for Uniform Distribution

Dq =L

∑l=1

P(Bl )Dq,l = Dq,l and Dq,l =1

jdet[V]j

ZBldN(f, 0)df

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 40 / 61

Page 41: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Lattice Vector Quantizer

Lattice Vector Quantizer

Rectangular vs. Hexagonal

Better space packing makes VQ outperform SQ even with i.i.d source

dN (f, gl ) = maxf2Bl

dN (f, gl )

Rectangular Lattice: 2 uniform scalar quantizers

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 41 / 61

Page 42: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Optimal Vector Quantizer

Optimal Vector Quantizer

Objective

(B�1 ,B�2 , ...,B�L; g�1, g�2, ..., g�L)= argminE (d(

�!F ,Q(�!F )))

= argmin

�ZBdN(f,Q(f))p(f)df

�= argmin

�∑P(Bl )

ZBldN(f,Q(f))p(f jf 2 Bl )df

�Optimal Solution

1 Given�g�1, g

�2, ..., g

�L

�, what would be optimal (B1,B2, ...,BL)?

2 Given�B�1,B�2, ...,B�L

�, what would be optimal (g1, g2, ..., gL)?

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 42 / 61

Page 43: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Optimal Vector Quantizer

Optimal Vector Quantizer

Given (g�1, g�2, ..., g

�L), what would be optimal (B1,B2, ...,BL)?

Q�(f) = arg minQ(f)=fg�1 ,g�2 ,...,g�Lg

�ZBdN(f,Q(f))p(f)df

�= arg min

Q(f)=fg�1 ,g�2 ,...,g�LgdN(f,Q(f))

B�l = ff : dN(f, g�l ) � dN(f, g�l 0), 8l 0 6= lg (Nearest Neighbor)

Given (B�1 ,B�2 , ...,B�L), what would be optimal (g1, g2, ..., gL)?

g�l = argming

�∑P(B�l )

ZB�ldN(f, g)p(f jf 2 B�l )df

�= argmin

g

ZBldN(f, g)p(f jf 2 B�l )df

= argmingE (dN(

�!F , g)j�!F 2 B�l ) (Centroid)

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 43 / 61

Page 44: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Optimal Vector Quantizer

Optimal Vector Quantizer

Nearest-Neighbor and Centroid are Necessary Conditions (Candidates)

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 44 / 61

Page 45: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Optimal Vector Quantizer

Lloyd-Max Algorithm

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 45 / 61

Page 46: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Optimal Vector Quantizer

Lloyd-Max Algorithm

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 46 / 61

Page 47: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Vector Quantizer

Entropy Constrained Vector Quantizer

ObjectiveminDq s.t. �∑

l2LP(Bl ) log2 P(Bl )| {z }Entropy Rate

= RN

Solution (Necessary Conditions)

Lagrangian

(B�1,B�2, ...,B�L; g�1, g�2, ..., g�L)

= argmin

Dq + λ�

�∑l2LP(Bl ) log2 P(Bl )� RN

!!| {z }

J(B1,B2,...,BL;g1,g2,...,gL)4

λ� must be chosen such that

�∑l2LP(B�l ) log2 P(B�l ) = RN

4Lloyd-Max Algorithm is still applicable by replacing Dq with J(�)Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 47 / 61

Page 48: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Vector Quantizer

Gaussian-Markov Source + 8D VQ

http://www.stanford.edu/class/ee368b/Handouts/06-Quantization.pdf

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 48 / 61

Page 49: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Entropy Constrained Vector Quantizer

Memoryless Laplacian + 8D VQ

http://www.stanford.edu/class/ee368b/Handouts/06-Quantization.pdf

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 49 / 61

Page 50: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

Appendix

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 50 / 61

Page 51: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

Properties of MMSE Quantizer

G is unbiased estimator of F

E (G) = ∑l

P(Bl )gl

= ∑l

P(Bl )�Z

Blf p(f jf 2 Bl )df

�= ∑

l

ZBlf p(f )df

=ZBf p(f )df = E (F )

Q = F � G is of zero mean

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 51 / 61

Page 52: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

Properties of MMSE Quantizer

G is orthogonal to Q

E (GQ) = E (G(F � G)) = ∑l

P(Bl )ZBlgl (f � gl ) p(f jf 2 Bl )df| {z }

=0

= 0

For an MMSE quantizer

gl = E (f jf 2 Bl ) =ZBlf p(f jf 2 Bl )df

ThusZBlgl (f � gl ) p(f jf 2 Bl )df = glE (f jf 2 Bl )| {z }

=gl

� g2l = 0, 8l 2 L

Note that E (F (F � G)) = E (F2)� E (FG) = E (F2)� E (G2) 6= 0Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 52 / 61

Page 53: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

Properties of MMSE Quantizer

Reduced signal variance

σ2G = σ2F � σ2Q

By de�nition

σ2Q = E ((F � G)2)= E (

�(F�µF )�

�G�µG

��2)

= σ2F + σ2G � 2E ((F�µF )�G�µG

�)

= σ2F + σ2G � 2(E (FG)�µFµG)

= σ2F + σ2G � 2(E (G2)�µ2G)

= σ2F � σ2G

where µF = µG = E (G) and E (FG) =E (G2)

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 53 / 61

Page 54: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

MMSE Scalar Quantizer High Rate Approximation

Quantizer Distortion

Dq ' ∑l2L

P(Bl )∆2l12

= ∑l2L

p(g �l )∆3l

12= ∑

l2L

α3l12

where

αl =3

qp(g �l )∆l

Observe that

∑l2L

αl = ∑l2L

3

qp(g �l )∆l '

Z fmax

fmin

3

qp(f )df = constant

MMSE Scalar Quantizer

min ∑l2L

α3l12s.t. ∑

l2Lαl = C

) α�l = constant =1

L

Z fmax

fmin

3

qp(f )df

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 54 / 61

Page 55: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

MMSE Scalar Quantizer High Rate Approximation

Given

α�l =1

L

Z fmax

fmin

3

qp(f )df

Quantizer Distortion

Dq ' ∑l2L

(α�l )3

12= L

(α�l )3

12

=1

L21

12

�Z fmax

fmin

3

qp(f )df

�3= 2�2R

1

12

�Z fmax

fmin

3

qp(f )df

�3where L = 2R

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 55 / 61

Page 56: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

MMSE Scalar Quantizer High Rate Approximation

Given F 0 = F/σf is an unit variance source

P(F 0 � f 0)| {z }CF0 (f

0)

= P(F � σf f0)| {z }

CF (σf f 0)

) d

df 0CF 0(f

0) =d

df 0CF (σF f

0)

) pF 0(f0) = σf pF (σf f

0) or pF (f ) =1

σfpF 0(

f

σf)

Quantizer Distortion

Dq ' 2�2R

12

�Z fmax

fmin

3

qpF (f )df

�3=2�2R

12

Z fmax

fmin

3

s1

σfpF 0(

f

σf)df

!3= σ2f 2

�2Rε2

where ε2 = 112

�R fmax/σffmin/σf

3ppF 0(f )df

�3Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 56 / 61

Page 57: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

MMSE Scalar Quantizer of Various Sources

Given a source F 0= (F � µF ) /σF of zero mean and unit variance

P(F 0 � f 0)| {z }CF0 (f

0)

= P(F � σF f0 + µF )| {z }

CF (σF f 0+µF )

) d

df 0CF 0(f

0) =d

df 0CF (σF f

0 + µF )

) pF 0(f0) = σFpF (σF f

0 + µF ) or pF (f ) =1

σFpF 0(

f � µFσF

)

where

pF 0(f0) and pF (f ) are PDF of F 0 and F , respectively

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 57 / 61

Page 58: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

MMSE Scalar Quantizer of Various Sources

Optimal Scalar Quantizer for F 0

(1) ebl = egl+egl+12

(2) egl = E (F 0jF 0 2 eBl ) = R eblebl�1 f 0 pF0 (f 0)df 0R eblebl�1 pF0 (f 0)df 0Optimal Scalar Quantizer for F

(1) bl =gl+gl+1

2 = σFebl + µF

(2) gl = E (FjF 2 Bl ) =R blbl�1

f pF (f )dfR blbl�1

pF (f )df= σFegl + µF

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 58 / 61

Page 59: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

MMSE Scalar Quantizer of Various Sources

Let

f 0 =f � µF

σFAssume ebl = bl � µF

σFThen optimal gl for F can be obtained as follows:

gl = E (FjF 2 Bl ) =R blbl�1

f pF (f )dfR blbl�1

pF (f )df=

R blbl�1

f 1σFpF 0(

f�µFσF

)dfR blbl�1

1σFpF 0(

f�µFσF

)df

=

R eblebl�1 (σF f 0 + µF ) pF 0(f0)df 0R eblebl�1 pF 0(f 0)df 0 = σFegl + µF (5)

From Eq. (5), the assumption ebl = (bl � µF ) /σF is justi�ed

bl = (gl + gl+1) /2 = σFebl + µFWen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 59 / 61

Page 60: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

MMAE Scalar Quantizer

Observe thatZ bl

bl�1jf � gl j p(f )df

=Z gl

bl�1(gl � f ) p(f )df +

Z bl

gl(f � gl ) p(f )df

= gl

Z gl

bl�1p(f )df �

Z gl

bl�1f p(f )df +

Z bl

glf p(f )df � gl

Z bl

glp(f )df

Then

∂glJ(b�, g�) =

∂gl

�Z bl

bl�1jf � gl j p(f )df

�=

Z gl

bl�1p(f )df �

Z bl

glp(f )df

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 60 / 61

Page 61: Lecture 6 Scalar and Vector Quantizationmapl.nctu.edu.tw/course/VC_2009/files/06.Lecture 6...Lecture 6 Scalar and Vector Quantization MMSE Scalar Quantizer High Rate Approximation

Lecture 6 Scalar and Vector Quantization Appendix

References

1 Y. Wang, et. al - Video Processing and Communications

2 Jayant, N. S., et. al - Digital Coding of Waveforms

3 B. Giord, http://www.stanford.edu/class/ee368b/Handouts/

Wen-Hsiao Peng, Ph.D (NCTU CS) MAPL May 2008 61 / 61