Top Banner
Lecture 5 Lecture 5 Diffusion & Crystal Structure
25

Lecture 5 - Stanford University

Dec 26, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 5 - Stanford University

Lecture 5Lecture 5

Diffusion & Crystal Structure

Page 2: Lecture 5 - Stanford University

Diffusion of an interstitial impurity atom in a crystal from one void to a neighboring void.

The impurity atom at position A must posses an energy E to push the The impurity atom at position A must posses an energy EA to push the host atoms away and move into the neighboring void at B.

Page 3: Lecture 5 - Stanford University

Rate for a Th ll A ti t d PThermally Activated Process

= Av exp(EA/kT)

EA = UA* UA

= frequency of jumps

EA UA* UA

frequency of jumpsA = a dimensionless constant that has only a weak

temperature dependence ib ti l fvo = vibrational frequency

EA = activation energyk = Boltzmann constant, T = temperature, p

UA* = potential energy at the activated state A*, UA = potential energy at state A.

Page 4: Lecture 5 - Stanford University

An impurity atom has four site choices for diffusion to a neighboring interstitial interstitial vacancy. After N jumps, the impurity atom would have been displaced

from the original position at O.g p

Page 5: Lecture 5 - Stanford University

Mean Square Displacement

L2 = a2t = 2DtL = “distance” diffused after time t, a = closest void to void

separation (jump distance), = frequency of jumps, t = time, D= diffusion coefficient diffusion coefficient

Diffusion coefficient is thermally activated

kTEDaD A

o exp221

kT2

D = diffusion coefficient, DO = constant, EA = activation energy k = Boltzmann constant T = temperatureenergy, k = Boltzmann constant, T = temperature

Page 6: Lecture 5 - Stanford University

Example: Diffusion of P atoms in Si (to make n type Si)(to make n-type Si)

To dope a Si wafer to make a PN junction, ions are usually implanted via a high energy accelerator (10 500 keV) Then implanted via a high energy accelerator (10-500 keV). Then, the wafer is annealed to even the distribution of ions and get

rid of any impurities.

If the aneel is done at 1100oC, what is the rms distance diffused by P atoms in 5 minutes? Take Do=10.5cm2/s and EA=3.69eV

scmxkTEDD A

o /103exp 213

L2 = 2Dt L = 13 μm

Assuming the distance between voids in Si is ~2.7 Angstroms, the rate of jumps a P atom makes is: g j p

= 2D/a2 = 823 jumps/sec

Page 7: Lecture 5 - Stanford University

Crystal Structures

Left: Galena is lead sulfide, PbS, and has a cubic crystal structure

Right: Cubic FeS2, iron sulfide, or pyrite, crystals. The crystals look brass-like (“fool’s gold”).

Page 8: Lecture 5 - Stanford University

Crystal Structures

Left: Opals are periodic, close-packed dielectric spheres with diameters on the order of the wavelength of light

Ri ht “ t t l l ” i t i f i di f ti i d Right: “structural color” in nature arises from periodic refractive index differences, also on the order of the wavelength

Page 9: Lecture 5 - Stanford University
Page 10: Lecture 5 - Stanford University

Face‐centered cubicFace centered cubic

(a) The crystal structure of copper is face centered cubic (FCC). The atoms are positionedat well defined sites arranged periodically and there is a long range order in the crystal.(b) An FCC unit cell with closed packed spheres. (c) Reduced sphere representation of the unit cell. Examples: Ag, Al, Au, Ca, Cu,(c) Reduced sphere representation of the unit cell. Examples: Ag, Al, Au, Ca, Cu, γ‐Fe (>912 ˚C), Ni, Pd, Pt, Rh. 

Page 11: Lecture 5 - Stanford University

Body‐centered cubicBody centered cubic

Example: Alkali metals (Li, Na, K, Rb), Cr, Mo, W, Mn, α‐Fe (< 912 ˚C), β‐Ti (> 882 ˚C)

(a) A BCC unit cell with closely packed hard spheres representing the Fe atoms.(b) A reduced‐sphere unit cell. 

Page 12: Lecture 5 - Stanford University

Hexagonally close‐packed

(a) The Hexagonal Close Packed (HCP) Structure. A collection of many Zn atoms. Color difference distinguishes layers (stacks)distinguishes layers (stacks).(b) The stacking sequence of closely packed layers is ABAB (c) A unit cell with reduced spheres (d) The smallest unit cell with reduced spheres.

Page 13: Lecture 5 - Stanford University

Di d C t l St tDiamond Crystal Structure

The diamond unit cell is cubic. The cell has eight atoms. Grey Sn (α‐Sn) and the Elemental semiconductors Ge and Si have this crystal structure. y

Page 14: Lecture 5 - Stanford University

Zinc BlendeZinc Blende

The Zinc blende (ZnS) cubic crystal structure. Many important compound crystal ( ) y y p p yStructures have the zinc blende structure. Examples: AlAs, GaAs, Gap, GaSb, InAs, InP,InSb, ZnS, ZnTe. 

Page 15: Lecture 5 - Stanford University

R k S ltRock Salt

Packing of coins on a table top to build a two dimensional crystal

Page 16: Lecture 5 - Stanford University

A possible reduced sphere unit cell for the NaCl (rock salt) crystal. An alternative Unit cell may have Na+ and Cl‐ interchanged. Examples: AgCl, CaO, CsF, LiF, LiCl,NaF, NaCl, KF, KCl, MgO.NaF, NaCl, KF, KCl, MgO.

Page 17: Lecture 5 - Stanford University

A possible reduced sphere unit cell for the CsCl crystal. An alternative unit cell may haveCs+ and Cl‐ interchanged. Examples: CsCl, CsBr, CsI, TlCl, TlBr, TlI. 

Page 18: Lecture 5 - Stanford University

Allotropy in Carbon

Page 19: Lecture 5 - Stanford University

From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw‐Hill, 2005)

Page 20: Lecture 5 - Stanford University
Page 21: Lecture 5 - Stanford University
Page 22: Lecture 5 - Stanford University

Labeling of crystal planes and typical examples in the cubic lattice

Page 23: Lecture 5 - Stanford University

Kate Nichols (local artist and TED fellow): Exploring structural colorExploring structural color

Page 24: Lecture 5 - Stanford University
Page 25: Lecture 5 - Stanford University