Top Banner
Lecture 5 Biopotential Electrodes (Ch. 5)
45
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 5

Lecture 5Biopotential Electrodes

(Ch. 5)

Page 2: Lecture 5

Electrode – Electrolyte Interface

Electrode Electrolyte (neutral charge)

C+, A- in solutionC

C

C

A-

A-

C+

C+e-

e-

Current flow

C+ : Cation A- : Anion e- : electron

Fairly common electrode materials: Pt, Carbon, …, Au, Ag,…Electrode metal is use in conjunction with salt, e.g. Ag-AgCl, Pt-Pt black, or polymer coats (e.g. Nafion, to improve selectivity)

Page 3: Lecture 5

Electrode – Electrolyte Interface

meAA

neCCm

n

General Ionic Equations

a) If electrode has same material as cation, then this material gets oxidized and enters the electrolyte as a cation and electrons remain at the electrode and flow in the external circuit.

b) If anion can be oxidized at the electrode to form a neutral atom, one or two electrons are given to the electrode.

a)

b)

Current flow from electrode to electrolyte : Oxidation (Loss of e-)Current flow from electrolyte to electrode : Reduction (Gain of e-)

The dominating reaction can be inferred from the following :

Page 4: Lecture 5

Half Cell PotentialA characteristic potential difference established by the electrode and its surrounding electrolyte which depends on the metal, concentration of ions in solution and temperature (and some second order factors) .

Half cell potential cannot be measured without a second electrode.

The half cell potential of the standard hydrogen electrode has been arbitrarily set to zero. Other half cell potentials are expressed as a potential difference with this electrode.

Reason for Half Cell Potential : Charge Separation at InterfaceOxidation or reduction reactions at the electrode-electrolyte interface lead to a double-charge layer, similar to that which exists along electrically active biological cell membranes.

Page 5: Lecture 5

Measuring Half Cell Potential

Note: Electrode material is metal + salt or polymer selective membrane

Page 6: Lecture 5

Some half cell potentials

Standard Hydrogen electrode

Note: Ag-AgCl has low junction potential & it is also very stable -> hence used in ECG electrodes!

Page 7: Lecture 5

PolarizationIf there is a current between the electrode and electrolyte, the observed half cell potential is often altered due to polarization.

OverpotentialDifference between observed and zero-current half cell potentials

ResistanceCurrent changes resistance

of electrolyte and thus, a voltage drop results.

ConcentrationChanges in distributionof ions at the electrode-

electrolyte interface

ActivationThe activation energy barrier depends on the

direction of current and determines kinetics

ACRp VVVV Note: Polarization and impedance of the electrode are two of the most important electrode properties to consider.

Page 8: Lecture 5

Nernst Equation

BA

DC

aa

aa

nF

RTEE ln0

When two aqueous ionic solutions of different concentration are separated by an ion-selective semi-permeable membrane, an electric potential exists across the membrane.

For the general oxidation-reduction reaction neDCBA

The Nernst equation for half cell potential is

where E0 : Standard Half Cell Potential E : Half Cell Potential

a : Ionic Activity (generally same as concentration)

n : Number of valence electrons involved

Note: interested in ionic activity at the electrode(but note temp dependence

Page 9: Lecture 5

Polarizable and Non-Polarizable Electrodes

Perfectly Polarizable Electrodes

These are electrodes in which no actual charge crosses the electrode-electrolyte interface when a current is applied. The current across the interface is a displacement current and the electrode behaves like a capacitor. Example : Ag/AgCl Electrode

Perfectly Non-Polarizable Electrode

These are electrodes where current passes freely across the electrode-electrolyte interface, requiring no energy to make the transition. These electrodes see no overpotentials. Example : Platinum electrode

Example: Ag-AgCl is used in recording while Pt is use in stimulation

Page 10: Lecture 5

Ag/AgCl Electrode

eAgAg

AgClClAg

Ag+Cl-

Cl2

Relevant ionic equations

Governing Nernst Equation

Cl

sAg a

K

nF

RTEE ln0

Solubility product of AgCl

Fabrication of Ag/AgCl electrodes

1. Electrolytic deposition of AgCl

2. Sintering process forming pellet electrodes

Page 11: Lecture 5

Equivalent Circuit

Cd : capacitance of electrode-eletrolyte interfaceRd : resistance of electrode-eletrolyte interfaceRs : resistance of electrode lead wireEcell : cell potential for electrode

Frequency Response

Corner frequency

Page 12: Lecture 5

Electrode Skin Interface

Sweat glandsand ducts

Electrode

Epidermis

Dermis andsubcutaneous layer Ru

Ehe

Rs

RdCd

Gel

Re

Ese EP

RPCPCe

Stratum Corneum

Skin impedance for 1cm2 patch:200kΩ @1Hz

200 Ω @ 1MHz

Alter skin transport (or deliver drugs) by:

Pores produced by laser, ultrasound or by iontophoresis

Page 13: Lecture 5

Motion Artifact

Why

When the electrode moves with respect to the electrolyte, the distribution of the double layer of charge on polarizable electrode interface changes. This changes the half cell potential temporarily.

What

If a pair of electrodes is in an electrolyte and one moves with respect to the other, a potential difference appears across the electrodes known as the motion artifact. This is a source of noise and interference in biopotential measurements

Motion artifact is minimal for non-polarizable electrodes

Page 14: Lecture 5

Body Surface Recording Electrodes

1. Metal Plate Electrodes (historic)

2. Suction Electrodes

(historic interest)

3. Floating Electrodes

4. Flexible Electrodes

Electrode metal

Electrolyte

Page 15: Lecture 5

Commonly Used Biopotential Electrodes

Metal plate electrodes

– Large surface: Ancient, therefore still used, ECG

– Metal disk with stainless steel; platinum or gold coated

– EMG, EEG

– smaller diameters

– motion artifacts

– Disposable foam-pad: Cheap!

(a) Metal-plate electrode used for application to limbs. (b) Metal-disk electrode applied with surgical tape. (c)Disposable foam-pad electrodes, often used with ECG

Page 16: Lecture 5

Commonly Used Biopotential Electrodes

Suction electrodes- No straps or adhesives required- precordial (chest) ECG- can only be used for short periods

Floating electrodes- metal disk is recessed- swimming in the electrolyte gel- not in contact with the skin - reduces motion artifact

Suction Electrode

Page 17: Lecture 5

Double-sidedAdhesive-tapering

Insulatingpackage

Metal disk

Electrolyte gelin recess

(a) (b)

(c)

Snap coated with Ag-AgCl External snap

Plastic cup

Tack

Plastic disk

Foam padCapillary loops

Dead cellular material

Germinating layer

Gel-coated sponge

Commonly Used Biopotential Electrodes

Floating Electrodes

Page 18: Lecture 5

(a) Carbon-filled silicone rubber electrode. (b) Flexible thin-film neonatal electrode.(c) Cross-sectional view of the thin-film

electrode in (b).

Commonly Used Biopotential Electrodes

Flexible electrodes- Body contours are often irregular- Regularly shaped rigid electrodes may not always work.- Special case : infants - Material : - Polymer or nylon with silver - Carbon filled silicon rubber (Mylar film)

Page 19: Lecture 5

Internal Electrodes

Needle and wire electrodes for percutaneous measurement of biopotentials

(a) Insulated needle electrode. (b) Coaxial needle electrode. (c) Bipolar coaxial electrode. (d) Fine-wire electrode connected to hypodermic needle, before being inserted. (e) Cross-sectional view of skin and muscle, showing coiled fine-wire electrode in place.

The latest: BION – implanted electrode for muscle recording/stimulationAlfred E. Mann Foundation

Page 20: Lecture 5

Fetal ECG Electrodes

Electrodes for detecting fetal electrocardiogram during labor, by means of intracutaneous needles (a) Suction electrode. (b) Cross-sectional view of suction electrode in place, showing penetration of probe through epidermis. (c) Helical electrode, which is attached to fetal skin by corkscrew type action.

Page 21: Lecture 5

Electrode Arrays

Examples of microfabricated electrode arrays. (a) One-dimensional plunge electrode array, (b) Two-dimensional array, and (c) Three-dimensional array

ContactsInsulated leads

(b)Base

Ag/AgCl electrodes

Ag/AgCl electrodes

BaseInsulated leads

(a)

Contacts

(c)

Tines

Base

Exposed tip

Page 22: Lecture 5

Microelectrodes

Why

Measure potential difference across cell membrane

Requirements– Small enough to be placed into cell– Strong enough to penetrate cell membrane– Typical tip diameter: 0.05 – 10 microns

Types– Solid metal– Supported metal (metal contained within/outside glass needle)– Glass micropipette

Intracellular

Extracellular

Page 23: Lecture 5

Metal Microelectrodes

Extracellular recording – typically in brain where you are interested in recording the firing of neurons (spikes).

Use metal electrode+insulation -> goes to high impedance amplifier…negative capacitance amplifier!

Microns!

R

C

Page 24: Lecture 5

Metal Supported Microelectrodes

(a) Metal inside glass (b) Glass inside metal

Page 25: Lecture 5

Glass Micropipette

A glass micropipet electrode filled with an electrolytic solution (a) Section of fine-bore glass capillary. (b) Capillary narrowed through heating and stretching. (c) Final structure of glass-pipet microelectrode.

Intracellular recording – typically for recording from cells, such as cardiac myocyteNeed high impedance amplifier…negative capacitance amplifier!

heat

pull

Fill with intracellular fluid or 3M KCl

Page 26: Lecture 5

Electrical Properties of Microelectrodes

Metal microelectrode with tip placed within cell

Equivalent circuits

Metal Microelectrode

Use metal electrode+insulation -> goes to high impedance amplifier…negative capacitance amplifier!

Page 27: Lecture 5

Electrical Properties of Glass Intracellular Microelectrodes

Glass Micropipette Microelectrode

Page 28: Lecture 5

Stimulating Electrodes

– Cannot be modeled as a series resistance and capacitance (there is no single useful model)– The body/electrode has a highly nonlinear response to stimulation– Large currents can cause

– Cavitation – Cell damage – Heating

Types of stimulating electrodes1. Pacing2. Ablation3. Defibrillation

Features

Platinum electrodes:Applications: neural stimulation

Steel electrodes for pacemakers and defibrillators

Page 29: Lecture 5

Intraocular Stimulation Electrodes

Reference : Lutz Hesse, Thomas Schanze, Marcus Wilms and Marcus Eger, “Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat”, Graefe’s Arch Clin Exp Ophthalmol (2000) 238:840–845

Page 30: Lecture 5

Microelectronic technologyfor Microelectrodes

Bonding pads

Si substrateExposed tips

Lead viaChannels

Electrode

Silicon probe

Silicon chip

Miniatureinsulatingchamber

Contactmetal film

Hole

SiO2 insulatedAu probes

Silicon probe

Exposedelectrodes

Insulatedlead vias

(b)

(d)

(a)

(c)

Different types of microelectrodes fabricated using microfabrication/MEMS technology

Beam-lead multiple electrode. Multielectrode silicon probe

Multiple-chamber electrode Peripheral-nerve electrode

Page 31: Lecture 5

Michigan Probes for Neural Recordings

Page 32: Lecture 5

Neural Recording Microelectrodes

Reference :http://www.acreo.se/acreo-rd/IMAGES/PUBLICATIONS/PROCEEDINGS/ABSTRACT-KINDLUNDH.PDF

Page 33: Lecture 5

Multi-electrode Neural Recording

Reference :http://www.nottingham.ac.uk/neuronal-networks/mmep.htm

Reference :

http://www.cyberkineticsinc.com/technology.htm

Page 34: Lecture 5

WPI’s Nitric Oxide Nanosensor

Page 35: Lecture 5

Nitric Oxide Sensor• Developed at Dr.Thakor’s Lab, BME, JHU

• Electrochemical detection of NO

Left: Schematic of the 16-electrode sensor array. Right: Close-up of a single site. The underlying metal is Au and appears reddish under the photoresist. The dark layer is C (300µm-x-300µm)

Page 36: Lecture 5

Cartoon of the fabrication sequence for the NO sensor array A) Bare 4” Si wafer B) 5µm of photoresist was spin-coated on to the surface, followed by a pre-bake for 1min at 90°C. C) The samples were then exposed through a mask for 16s using UV light at 365nm and an intensity of 15mW/cm2. D) Patterned photoresist after development. E) 20nm of Ti, 150nm of Au and 50nm of C were evaporated on. F) The metal on the unexposed areas was removed by incubation in an acetone bath. G)A 2nd layer of photoresist, which serves as the insulation layer, was spun on and patterned. H) The windows in the second layer also defined the microelectrode sites.

A

B

C

D H

G

F

E

Page 37: Lecture 5

NO Sensor Calibration

Page 38: Lecture 5

NO Sensor Calibration

Page 39: Lecture 5

Multichannel NO Recordings

Page 40: Lecture 5

Problems

1. Describe one “innovative” scheme for recording breathing or respiration. The applications might be respirometry/spirometry, athelets knowing what their heart rate is, paralyzed individuals who have difficulty breathing needing a respiratory sensor to stimulate and control phrenic nerve. You may select one of these or other applications, and then identify a suitable sensor. The design (develop suitable circuit) for interfacing to the sensor to get respiratory signal.

2. We would like to have a quadriplegic automatic control over the lighting in the room. Design a basic circuit to detect room light level and turn on a lamp when the light level falls below a set limit. You may consider a suitable sensor for light and you should consider a design that compares the sensor output to some predetermined threshold and produces a high voltage or delivers power to the lamp.

Page 41: Lecture 5

3. Electrodes in biopotential measurements.Describe the construction of commercial ECG electrode (not the cheap polymer electrode used in the lab). What is the common electrode metal, and why is it preferred? So, you are an inventor who has a better idea. Describe an improvement • to make the electrode cheaper• more suitable for lower noise measurement for EEG• circumvent patents that are based on plastic/foam electrode body• attractive to consumers for use with their ECG machines at home• reduce artifact (minimize the motion of skin/electrode) in ambulatory recording 4. In a research laboratory, scientists want to record from single cells in a culture dish. They want to record action potentials from single, isolated heart cells. What kind of electrode would they need to use (describe material and design)? Give a simplified schematic (circuit model of the electrode) described in the notes given to you. What is the challenge involved in designing an amplifier for use with a microelectrode for single cell recording? I.e. what are the critical amplifier design characteristics and specifications (hint: this is not the usual differential/instrumentation amplifier) ?

Page 42: Lecture 5

4. Electrodes and Microelectrodes (miscellaneous) • How would you detect bacteria or other microorganisms in water supply? Make sure that your method distinguishes inert particulate matter from living cellular matter.

• Draw the equivalent circuit model of the skin and an ECG electrode. Identify the key sources of electrical interference and otherwise the elements that would likely contribute to the poor quality of recordings.

• Design an amplifier interface for the following two applications: Patch clamp ion channel current amplifier: Your goal is to amplify pA level current to produce 1 Volt output.

• Strain gauge sensor amplifier: Your goal is to convert 10 ohm change in resistance of a strain gauge to produce 1 volt output.

Page 43: Lecture 5

• You are asked to design a laboratory set up for a Professor who is interested in making very low level ion channel current measurements from single cardiac cells using the patch clamping technique. What are the likely sources of interference? What would you do to ensure that there is minimal noise in the laboratory set up?

• Draw the equivalent circuit of a patch clamp glass pipette. This electrode differs slightly from the conventional microelectrode that penetrates the cell and obtains intracellular potentials, in that it seals to the cell membrane and generally measures the whole cell current. Show all the equivalent circuit elements of the electrode and the cell.

• Design a very simple, small circuit to measure/transduce the whole cell current from the patch clamp electrode and convert into the amplified voltage signal. • For far too long the microelectrodes that have been used in the laboratory fall into two categories: glass or metal microelectrodes. These record from a single cell at a time. What is the current technology for recording from sites in the tissue from multiple cells at once (extracellularly OR intracellularly). Draw a schematic of such an electrode array. • List some other types of electrodes or microelectrodes that have been developed for laboratory and research use.

Page 44: Lecture 5

5. Electrodes and Microelectrodes Contrast the glass microelectrode that penetrates the cell versus patch clamp electrode. Which measures what (current/voltage) and of what magnitude? Which one is bigger/smaller? What is the impedance of microelectrode vs. patch electrode? Which one could be used to record from a single sub-micron sized ion channel? For a research application, a scientist comes up with the idea of optically measuring potential on cell membrane. His basic idea is to use a dye that binds to cell surface. When the dye is excited by a bright light (superluminscent LED), it gives out fluorescence proportional to cell membrane voltage. The optical signal is picked up by a photo detector. Draw the circuit to pass a very large (about 100 mA) pulse of current through the LED to intensely illuminate the cell for very brief duration and then detect nA ampere level photo current produced by the fluorescence signal You are asked to measure the impedance of the skin. In fact, lie detectors use changes in skin impedance (as a measure of autonomic reflex) to indicate whether a person is lying. Draw the equivalent circuit model of human skin and electrode. Based on reasonable estimates of the skin properties, sketch a rough frequency response of the skin (from dc to 100 kHz)

Now design a circuit to measure the impedance, taking care not to violate any safety consideration.

Page 45: Lecture 5

6. Neural electrodes/microelectrodes

You want to record from neurons in the brain. However, you want to record from dozens of neurons all at once from several closely spaced microelectrodes. What material and process would you use to make the microelectrode array?

•What metal would you prefer to use to make electrode arrays of about 10 micron square size to make electrical contacts with dozens of neurons?

•What metal would you prefer to use to stimulate dozens of neurons in a deep brain microelectrode based stimulator?

•(which metal provides good recording vs stimulating properties – and at the same time not be toxic to brain tissue)?

• You are asked to develop an experimental set up to record from rat brain cells using microelectrodes. What precautions would you take to minimize the electrical interference in your recording set up?