Top Banner
ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak power tracker Experiment 3
19

Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

Jun 11, 2018

Download

Documents

buique
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 1

Lecture 4ECEN 4517/5517

DC-DC converterBattery charge controller

Peak power tracker

Experiment 3

Page 2: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 2

Layout issues

Page 3: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 3

Page 4: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 4

Page 5: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 5

Page 6: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 6

Page 7: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 4

Averaged switch modelingBasic approach (CCM)

D1

Q1

R

+

V

+– C

L

Vg

Given a switching converter operating in CCM

Buck converter example

Separate the switching elements from the remainder of the converter

Define the terminal voltages and currents of the two-port switch network

R

+

V

+– C

L

Vg

D1Q1

+

v1

+

v2

Switchnetwork

i1 i2

Page 8: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 5

Terminal waveforms of the switch network

Relationship between average terminal waveforms:

Page 9: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 6

Averaged model of switch network

So

Modeling the switch network viaaveraged dependent sources

Page 10: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 7

Switch Library FileSpice simulation of averaged waveforms

.subckt CCM1 1 2 3 4 5

Et 1 6 value={(1-v(5))*v(3,4)/v(5)}

Vdum 6 2 0

Gd 4 3 value={(1-v(5))*i(Vdum)/v(5)}

.ends

Page 11: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 8

Basic CCM SEPIC ExampleFrequency Response

Ideal SEPIC frequency response.lib switch.libVg 1 0 dc 120VL1 1 2x 800uHRL1 2x 2 1UC1 2 3 100uFL2 3 0 100uHC2 4 0 100uFRL 4 0 40Vc 5 0 dc 0.4 ac 1Rc 5 0 1MXswitch 2 0 4 3 5 CCM1.ac DEC 201 10 100kHz.PROBE.end

Page 12: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 9

AC analysis in Spice

Given a nonlinear time-invariant circuit, as on the previous slide, we can get Spice to automatically perturb, linearize, and plot small-signal ac transfer functions:

• Use DC sources to set up the correct quiescent operating conditions• Include an AC source having amplitude 1• Perform an AC analysis: Spice will

• Do a DC analysis to find the quiescent operating point• Linearize all nonlinear elements at this point, to construct a linear model• Perform an AC (phasor) analysis at specified frequencies to find the

magnitudes and phases of all signals• Construct Bode plots of selected signals. With an input amplitude of 1,

the signal magnitude and phase plot is the transfer function.

Page 13: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 10

AC analysisSEPIC Example: Control-to-output transfer function

Magnitude

Phase

Page 14: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 11

Discontinuous Conduction Mode

R

+

V

+– C

L

Vg

D1Q1

+

v1

+

v2

Switchnetwork

i1 i2

• Again find average values of switch network terminal voltages and currents

• Eliminate variables external to the switch network

• Results on next slides

Page 15: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 12

Input (transistor) portAveraged equivalent circuit

i1(t) Ts= d 1

2(t) Ts

2L v1(t) Ts

i1(t) Ts=

v1(t) Ts

Re(d1)

Re(d1) = 2Ld 1

2 Ts

v1(t) Ts

i1(t) Ts

Re(d1)

+

Page 16: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 13

Output (diode) portAveraged equivalent circuit

i2(t) Ts= d 1

2(t) Ts

2Lv1(t) Ts

2

v2(t) Ts

i2(t) Tsv2(t) Ts

=v1(t) Ts

2

Re(d1)= p(t) Ts

p(t)

+

v(t)

i(t)

Page 17: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 14

Averaged modeling of CCM and DCM switch networks

+

1 : d(t)i1(t) Tsi2(t) Ts

+

v2(t) Tsv1(t) Ts

Averaged switch modelSwitch network

CCM

+

v2(t)

+

v1(t)

i1(t) i2(t)

i2(t) Ts

+

v2(t) Tsv1(t) Ts

i1(t) Ts

Re(d1)

+

DCM

+

v2(t)

+

v1(t)

i1(t) i2(t)p(t) Ts

Page 18: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 15

Spice model CCM-DCM1Combined CCM/DCM switch model

• This is one of the models inside switch.lib

• It automatically switches between CCM and DCM as necessary

Page 19: Lecture 4 - University of Colorado Boulderecee.colorado.edu/ecen4517/materials/Lecture4.pdf · ECEN 4517 1 Lecture 4 ECEN 4517/5517 DC-DC converter Battery charge controller Peak

ECEN 4517 16

LTspice simulationExp. 3 Part 1: open loop

• Use your PV model from Exp. 1

• Replace buck converter switches with averaged switch model

• CCM-DCM1 and other Spice model library elements are linked on the course web page

• Online module and quiz on D2L