Top Banner
PHYS 461 & 561, Fall 2011-2012 1 10/04/2011 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.) Lecturer: Brigita Urbanc Office: 12-909 (E-mail: [email protected]) Course website: www.physics.drexel.edu/~brigita/COURSES/BIOPHYS_2011-2012/
21

Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

Oct 08, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 110/04/2011

Lecture 4: Mechanical and Chemical Equilibrium

In the Living Cell (Contd.)

Lecturer:Brigita Urbanc Office: 12-909(E-mail: [email protected])

Course website: www.physics.drexel.edu/~brigita/COURSES/BIOPHYS_2011-2012/

Page 2: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 210/04/2011

How do we find the equilibrium state or configuration?

Are thermal fluctuations important?

NO YES

minimize potential energy minimize free energy

Page 3: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 310/04/2011

Finding displacement/charge density that minimizesthe total potential energy

Page 4: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 410/04/2011

Potential energy function: f(u1, u

2)

Page 5: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 510/04/2011

Find a minimum:∂f(u

1, u

2)/ ∂u

1 = 0

∂f(u1, u

2)/ ∂u

2 = 0

For example:

f(u1, u

2) = ½ (A

11 u

1

2 + A22

u2

2 + 2A12

u1 u

2)

results in:A

11 u

1 + A

12 u

2 = 0

A12

u1 + A

22 u

2 = 0

Page 6: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 610/04/2011

Expansion in a Taylor series around local/global minima

Page 7: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 710/04/2011

Taylor expansion for cos(x) as a function of order n

Page 8: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 810/04/2011

Elastic stretching model: Young modulus E

➔ define strain: = L/L; note that in general, = (x,y,z)➔ F = - k a or F/A = E L/L (A … cross section area)➔ E measures the stiffness of the beam; F/A … stress➔ n

A = A/a

0

2, n=L/a0; F = n

A k a = A E L/L = AE a/a

0

E = k/a0

A nA n

Page 9: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 910/04/2011

Elastic deformation energy: a quadratic function of the strain

Estrain

= ½ EA ∫(L/L)2 dxEstrain

= ½ EA ∫[du(x)/dx]2 dx

F-actin filament

lipid bilayer

Page 10: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 1010/04/2011

Finding the macromolecule configuration that minimizesthe total Gibbs free energy

F = E – TS; S = kB ln W; W … # of microstates or multiplicity

Example: possible arrangements of Np proteins on a DNA

with N binding sites

Page 11: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 1110/04/2011

S = kB ln W(N

p; N)

W(Np; N) = N! / [N

p! (N – N

p)!]

For example: 10 copies of Lac repressor protein for 5 x 106

DNA binding sites within E. coli genome

N = 5 x 106; Np = 10 W ~ 3 x 1060

S = kB ln{N! / [N

p! (N – N

p)!]}

Using Stirling's approximation, we get: S/k

B≈N ln(N) – N – [N

p ln(N

p) – N

p] - [(N - N

p) ln(N - N

p) – (N – N

p)]

S/kB≈ – N [c ln(c) – (1-c) ln(1-c)], where c = N

p/N

Page 12: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 1210/04/2011

Entropy is maximal at c = ½

Page 13: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 1310/04/2011

Hydrophobic Effect is Related to Entropy of Water Molecules

Nonpolar (hydrophobic) molecules in solution deprive water molecules of the capacity to form hydrogen bonds and consequently take away part of their orientational entropy.

Page 14: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 1410/04/2011

Local tetrahedral arrangement of water molecules:6 possible orientations of central H

2O molecule

Page 15: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 1510/04/2011

When one of the four H2O neighbors is populated by a nonpolar(hydrophobic) molecule: 3 of 6 configurations are forbidden, thus:

Shydrophobic

= kB ln3 – k

B ln6 = - k

B ln2

Ghydrophobic

= n kBT ln2

n … # of water molecules adjacent to the nonpolar molecule

Ghydrophobic

= hydrophobic

Ahydrophobic

Examples: -oxygen molecule O2 in water: ~k

BT

-octane in water: ~ 15 kBT

Page 16: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 1610/04/2011

Isolated system: - can do no work on the environment and vice versa- no heat can flow from it or vice versa- no external fields- no particle flow

Macroscopic equilibrium of an isolated system ≡ a system witha maximal entropy, that is, the largest number of microscopic

realizations.

Consider three different isolated two-compartment systems suchThat the barrier separating the two compartments (1,2) permits:

(A) energy flow: E1 + E

2 = E

TOT = const.

(B) volume change: V1 + V

2 = V

TOT = const.

(C) particle flow: N1 + N

2 = N

TOT = const.

Examine the total entropy: STOT

= S1(E

1, V

1, N

1) + S

2(E

2,V

2, N

2)

Page 17: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 1710/04/2011

(A) Energy flow:

Maximal entropy principle:

dS = (∂S/∂E1) dE

1 + (∂S/∂E

2) dE

2 = [ (∂S/∂E

1) - (∂S/∂E

2)] dE

1 = 0

where we considered: dE2 = - dE

1

(dS/dE1,2

) = 1/T1,2

… thermodynamic definition of temperature

T1 = T

2

Page 18: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 1810/04/2011

(B) Volume change:

Maximal entropy principle:

dS = (∂S/∂V1) dV

1 + (∂S/∂V

2) dV

2 = [ (∂S/∂V

1) - (∂S/∂V

2)] dV

1 = 0

where we considered: dV2 = - dV

1

(∂S/∂V1,2

)E,N

= p1,2

/T … TD identity

p1 = p

2

Page 19: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 1910/04/2011

Maximal entropy principle:

dS = (∂S/∂N1) dN

1 + (∂S/∂N

2) dN

2 = [ (∂S/∂N

1) - (∂S/∂N

2)] dN

1 = 0

where we considered: dN2 = - dN

1

- (∂S/∂N1,2

)E,V

= 1,2

/T … TD definition of a chemical potential :

1 =

2

(C) Particle flow:

Page 20: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 2010/04/2011

Isolated versus closed system: Maximizing entropy versus Minimizing free energy

Closed system exchanges energy and work (volumechanges) with environment.

Open system exchanges energy, work (volume changes), andmatter with environment.

closed system + environment

=isolated system

Page 21: Lecture 4: Mechanical and Chemical Equilibrium In the Living ...10/04/2011 PHYS 461 & 561, Fall 2011-2012 1 Lecture 4: Mechanical and Chemical Equilibrium In the Living Cell (Contd.)

PHYS 461 & 561, Fall 2011-2012 2110/04/2011

maximizing the entropy of a closed system and environment ↔

minimizing the free energy of a closed system only:

dSTOT

= dSr + dS

s ≥ 0

dEr = T dS

r – p dV

r (first law of TD)

(heat added – work done) by reservoir dS

r = (dE

r + p dV

r )/T

dSTOT

= dSs + dE

r/T + p dV

r/T ≥ 0

dEr = − dE

s & dV

r = − dV

s

dSs − dE

s/T − p dV

s/T ≥ 0

↔ dG = d(Es + p V

s − T S

s) ≤ 0

At fixed T,p; the free energy G of a closed system is minimized!