Top Banner
Mechanics Physics 151 Lecture 3 Lagrange’s Equations (Goldstein Chapter 1) Hamilton’s Principle (Chapter 2)
27

Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Jul 29, 2018

Download

Documents

nguyenhuong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

MechanicsPhysics 151

Lecture 3Lagrange’s Equations

(Goldstein Chapter 1)

Hamilton’s Principle(Chapter 2)

Page 2: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

What We Did Last Time

! Discussed multi-particle systems! Internal and external forces

! Laws of action and reaction

! Introduced constraints! Generalized coordinates

! Introduced Lagrange’s Equations! ... and didn’t do the derivation

" Let’s pick it up and start from there

Page 3: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Today’s Goals

! Derive Lagrange’s Eqn from Newton’s Eqn! Use D’Alembert’s principle! There will be a few assumptions

! Will make them clear as we go

! Introduce Hamilton’s Principle! Equivalent to Lagrange’s Equations

! Which in turn is equivalent to Newton’s Equations! Does not depend on coordinates by construction! Derivation in the next lecture

Page 4: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Lagrange’s Equations

! Express L = T – V in terms of generalized coordinates, their time-derivatives , and time t

! The potential V = V(q, t) must exist! i.e. all forces must be conservative

0j j

d L Ldt q q ∂ ∂− = ∂ ∂ !

( , , )L q q t T V≡ −!Kinetic energy

Potential energyLagrangian

Recipe

{ }jq { }jq!

Page 5: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Virtual Displacement

! Consider a system with constraints! Ordinary coordinates ri (i = 1...N)! Generalized coordinates qj (j = 1...n)

! Imagine moving all the particlesslightly

! Note that δri must satisfy the constraints

1 1 1 2

2 2 1 2

1 2

( , ,..., , )( , ,..., , )

( , ,..., , )

n

n

N N n

q q q tq q q t

q q q t

= = =

r rr r

r r"

i i iδ→ +r r r

Virtual displacement

ii j

j j

qq

δ δ∂=∂∑ rr

3N coordinates not independent

n coordinates independent

j j jq q qδ→ +

Page 6: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

! From Newton’s Equation of Motion

! Part of the force Fi must be due to constraints

! Applied force is “known”

! Constraint force fi (usually) does no work! Movement is perpendicular to the force! Exception: friction

! Now multiply by δri and sum over i

( )ai i i= +F F f

D’Alembert’s Principle

i i=F p! 0i i− =F p!

( ) ( )1 2( , ,..., ,..., , )a a

i i i N t=F F r r r r

“applied” force “constraint” force

0i iδ =f r

( ) 0ai i i+ − =F f p!

Page 7: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

D’Alembert’s Principle

! Force of constraints dropped out because! Called D’Alembert’s Principle (1743)

! Now we switch from ri to qj

! Unit of Qj not always [force]! Qj qj is always [work]

( )( ) 0ai i i

i

δ− =∑ F p r!

0i iδ =f r

1st term ii j j j

i j jj

q Q qq

δ δ∂= =∂∑ ∑ ∑rF i

j ii j

Qq

∂≡∂∑ rF

Generalized force

“constraint” force is out of the game.You can forget (a)

Page 8: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

D’Alembert’s Principle

! A bit of work can show

! D’Alembert’s Principle becomes

,2nd term i i

i i i j i i ji i j i jj j

q m qq q

δ δ δ∂ ∂= = =∂ ∂∑ ∑ ∑ ∑r rp r p r! ! !!

2 2

2 2i i i

ij j j

v vdq dt q q

∂ ∂ ∂→ − ∂ ∂ ∂

rr!!!

jj j j

d T T qdt q q

δ ∂ ∂ = − ∂ ∂

∑ !

0j jj j j

d T T Q qdt q q

δ ∂ ∂ − − = ∂ ∂

∑ !

2

2i

i

mvT ≡∑

Page 9: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Lagrange’s Equations

! Generalized coordinates qj are independent

! Assume forces are conservative

0j jj j j

d T T Q qdt q q

δ ∂ ∂ − − = ∂ ∂

∑ !These are free

jj j

d T T Qdt q q ∂ ∂− = ∂ ∂ !

Almost there!

i iV= −∇F

i ij i i

i ij j j

VQ Vq q q

∂ ∂ ∂≡ = − ∇ = −∂ ∂ ∂∑ ∑r rF

Throw thisback in

Page 10: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Lagrange’s Equations

! Assume that V does not depend on

( ) 0j j

T Vd Tdt q q ∂ −∂ − = ∂ ∂ !

jq! 0j

Vq

∂ =∂ !

0j j

d L Ldt q q ∂ ∂− = ∂ ∂ !

Finally ( , , ) ( , )j j jL T q q t V q t= −!

Done!

Page 11: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Assumptions We Made

! Constraints are holonomic! We always assume this

! Constraint forces do no work! Forget frictions

! Applied forces are conservative! Lagrange’s Eqn. itself is OK if V depends explicitly on t

! Potential V does not depend on

1 2( , ,..., , )i i nq q q t=r r

0i iδ =f r

i iV= −∇F

jq! 0j

Vq

∂ =∂ !

Will review the last assumption later

Page 12: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Example: Time-Dependent

! Transformation functions may depend on t! Generalized coordinate system may move! E.g. coordinate system fixed to the Earth

! An example

( , )i i jq t=r r

mass m on a rail

spring constant Knatural length l

angular velocity αl + r

Page 13: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Example: Time-Dependent

! Transformation functions:

! Kinetic energy

! Potential energy

( ) cos( )sin

x l r ty l r t

αα

= + = +

{ } { }2 2 2 2 2( )2 2m mT x y r l r α= + = + +! ! !

2

2KV r=

{ }2 2 2 2( )2 2m KL r l r rα= + + −!

2 ( ) 0d L L mr m l r Krdt r r

α∂ ∂ − = − + + = ∂ ∂ !!

!Lagrange’s Equation

Page 14: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Example: Time-Dependent

! If K > mα2, a harmonic oscillator with! Center of oscillation is shifted by

! If K < mα2, moves away exponentially! If K = mα2, velocity is constant

! Centripetal force balances with the spring force

2 ( ) 0d L L mr m l r Krdt r r

α∂ ∂ − = − + + = ∂ ∂ !!

!2

22( ) 0m lmr K m r

K mαα

α

+ − − = − !!

2K mm

αω −=

Page 15: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Note on Arbitrarity

! Lagrangian is not unique for a given system! If a Lagrangian L describes a system

! One can prove

( , )dF q tL Ldt

′ = + works as well for any function F

0d dF dFdt q dt q dt ∂ ∂ − = ∂ ∂ !

dF F Fqdt q t

∂ ∂= +∂ ∂!using

Page 16: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Assumptions We Made

! Constraints are holonomic! We always assume this

! Constraint forces do no work! Forget frictions

! Applied forces are conservative! Lagrange’s Eqn. itself is OK if V depends explicitly on t

! Potential V does not depend on

1 2( , ,..., , )i i nq q q t=r r

0i iδ =f r

i iV= −∇F

jq! 0j

Vq

∂ =∂ !

Let’s review the last assumption

Page 17: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Velocity-Dependent Potential

! We assumed and so that

! We could do the same if we had

0j

Vq

∂ =∂ !

jj j

d T T Qdt q q ∂ ∂− = ∂ ∂ !

( ) ( ) 0j j

d T V T Vdt q q ∂ − ∂ −− = ∂ ∂ !

This had to be 0

jj j

U d UQq dt q

∂ ∂= − + ∂ ∂ !( , , )j jU U q q t= !

Generalized, or velocity-dependent“potential”

( , , ) ( , , )j j j jL T q q t U q q t= −! !

jj

VQq

∂= −∂

Page 18: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

EM Force on Particle

! Lorentz force on a charged particle

! E and B fields are given by

! Force is v-dependent " Need a v-dependent potential

! Lagrangian is

[ ( )]q= + ×F E v B

tφ ∂= −∇ −

∂AE = ∇×B A

U q qφ= − ⋅A v works check

212

L mv q qφ= − + ⋅A v

Velocity-dependent. Can’t find a usual

potential V

Physics 15b

Page 19: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Monogenic System

! If all forces in a system are derived from a generalized potential,its called a monogenic system! U is a function of! Lorentz force is monogenic

! A monogenic system is conservative only if

! Or

! Lagrange’s Equation works on a monogenic system

jj j

U d UQq dt q

∂ ∂= − + ∂ ∂ !, ,q q t!

( )U U q=

0U Uq t

∂ ∂= =∂ ∂!

Page 20: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Hamilton’s Principle

! We derived Lagrange’s Eqn from Newton’s Eqn using a “differential principle”! D’Alembert’s principle uses infinitesimal displacements

! It’s possible to do it with an “integral principle”

Hamilton’s Principle

Page 21: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Configuration Space

! Generalized coordinates q1,...,qn fully describe the system’s configuration at any moment

! Imagine an n-dimensional space! Each point in this space (q1,...,qn)

corresponds to one configuration of the system! Time evolution of the system " A curve in the

configuration space

configurationspace

real space configuration space

Page 22: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Action Integral

! A system is moving as! Lagrangian is

! Action I depends on the entire path from t1 to t2

! Choice of coordinates qj does not matter! Action is invariant under coordinate transformation

( ) 1...j jq q t j n= =

( , , ) ( ( ), ( ), )L q q t L q t q t t=! !

integrate2

1

t

tI Ldt= ∫ Action, or action integral

Page 23: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Hamilton’s Principle

! This is equivalent to Lagrange’s Equations! We will prove this

! Three equivalent formulations! Newton’s Eqn depends explicitly on x-y-z coordinates! Lagrange’s Eqn is same for any generalized coordinates! Hamilton’s Principle refers to no coordinates

! Everything is in the action integral

The action integral of a physical system is stationaryfor the actual path

We will also define “stationary”

Hamilton’s Principle is more fundamental probably...

Page 24: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Stationary

! Consider two paths that are close to each other! Difference is infinitesimal

! Stationary means that thedifference of the action integrals iszero to the 1st order of δq(t)! Similar to “first derivative = 0”

! Almost same as saying “minimum”! It could as well be maximum

configuration space

1t

2t

( )q t

( ) ( )q t q tδ+2 2

1 1

( , , ) ( , , ) 0t t

t tI L q q q q t dt L q q t dtδ δ δ= + + − =∫ ∫! ! !

1 2( ) ( ) 0q t q tδ δ= =

Page 25: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Infinitesimal Path Difference

! What’s δq(t)?! It’s arbitrary … sort of! It has to be zero at t1 and t2

! It’s well-behaving

! Have to shrink it to zero! Trick: write it as

! α is a parameter, which we’ll make " 0! η(t) is an arbitrary well-behaving function

configuration space

1t

2t

( )q t

( ) ( )q t q tδ+Continuous, non-singular,continuous 1st and 2nd derivatives

( ) ( )q t tδ αη=

1 2( ) ( ) 0t tη η= =

Don’t worry too much

Page 26: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Hamilton " Lagrange

! To derive Lagrange’s Eqns from Hamilton’s Principle

! Define

! δI is then

! We must show that leads to Lagrange’s Eqns

2

1

( ) ( ( ) ( ), ( ) ( ), )t

tI L q t t q t t t dtα αη αη≡ + +∫ ! !

2 2

1 1

( , , ) ( , , ) 0t t

t tI L q q q q t dt L q q t dtδ δ δ= + + − =∫ ∫! ! !

[ ]0

lim ( ) (0)I Iα

α→

−0

I dα

αα =

∂ ∂

0

0I

αα =

∂ = ∂

A bit of work. Will do it on Thursday

Page 27: Lecture 3 Lagrange’s Equations - Harvard University ...users.physics.harvard.edu/~morii/phys151/lectures/Lecture03.pdf · Today’s Goals! Derive Lagrange’s Eqn from Newton’s

Summary

! Derived Lagrange’s Eqn from Newton’s Eqn! Using D’Alembert’s Principle Differential approach

! Assumptions we made:! Constraints are holonomic " Generalized coordinates! Forces of constraints do no work " No frictions! Other forces are monogenic " Generalized potential

! Introduced Hamilton’s Principle! Integral approach! Defined the action integral and “stationary”! Derivation in the next lecture

jj j

U d UQq dt q

∂ ∂= − + ∂ ∂ !