Top Banner
Lecture 19: Periodic Trends • Reading: Zumdahl 12.14-12.16 • Outline – Periodic Trends • Ionization Energy, Electron Affinity, and Radii – A Case Example
24

Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Lecture 19: Periodic Trends

• Reading: Zumdahl 12.14-12.16

• Outline– Periodic Trends

• Ionization Energy, Electron Affinity, and Radii

– A Case Example

Page 2: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

The Aufbau Principal (cont.)• Lithium (Z = 3)

1s 2s 2p

1s 2s 2p

• Berillium (Z = 4)

• Boron (Z = 5)

1s 2s 2p

1s22s1

1s22s2

1s22s22p1

Page 3: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

The Aufbau Principal (cont.)• Carbon (Z = 6)

1s 2s 2p

1s 2s 2p

• Nitrogen (Z = 7)

Hund’s Rule: Lowest energy configuration is the one in which the maximum number of unpaired electronsare distributed amongst a set of degenerate orbitals.

1s22s22p2

1s22s22p3

Page 4: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

The Aufbau Principal (cont.)• Oxygen (Z = 8)

1s 2s 2p

1s 2s 2p

• Fluorine (Z = 9)

1s22s22p4

1s22s22p5

1s 2s 2p

• Neon (Z = 10)

1s22s22p6

full

Page 5: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

The Aufbau Principal (cont.)

• This orbital filling scheme gives rise to the modern periodic table.

Page 6: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

The Aufbau Principal (cont.)

• After Lanthanum ([Xe]6s25d1), we start filling 4f.

Page 7: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

The Aufbau Principal (cont.)

• After Actinium ([Rn]7s26d1), we start filling 5f.

Page 8: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

The Aufbau Principal (cont.)

• Heading on column given total number of valence electrons.

Page 9: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends

• The valence electron structure of atoms can be used to explain various properties of atoms.

• In general, properties correlate down a group of elements.

• A warning: such discussions are by nature very generalized…exceptions do occur.

Page 10: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Ionization

• If we put in enough energy, we can remove an electron from an atom.

+Z

Z-

+Z

(Z-1)-

e-

Energy

• The electron is completely “removed” from the atom (potential energy = 0).

Page 11: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Ionization

• Generally done using photons, with energy measured in eV (1 eV = 1.6 x 10-19 J).

• The greater the propensity for an atom to “hold on” to its electrons, the higher the ionization potential will be.

• Koopmans’ Theorem: The ionization energy of an electron is equal to the energy of the orbital from where the electron came.

Page 12: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Ionization

• One can perform multiple ionizations:

Al(g) Al+(g) + e- I1 = 580 kJ/mol first

Al+(g) Al2+(g) + e- I2 = 1815 kJ/mol second

Al2+(g) Al3+(g) + e- I3 = 2740 kJ/mol third

Al3+(g) Al4+(g) + e- I4 = 11,600 kJ/mol fourth

Page 13: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Ionization

• First Ionization Potentials:

Column 1

Column 8

Page 14: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Ionization

• First Ionization Potentials:

• Increases as one goes from left to right.

• Decrease as one goes down a group.

• Reason: increased Z+

• Reason: increased distance from nucleus

Page 15: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Ionization

• Removal of valence versus core electrons

Na(g) Na+(g) + e- I1 = 495 kJ/mol

Na+(g) Na2+(g) + e- I2 = 4560 kJ/mol

[Ne]3s1 [Ne]

[Ne] 1s22s22p5

(removing “valence” electron)

(removing “core” electron)

• Takes significantly more energy to remove a core electron….tendency for core configurations to be energetically stable.

Page 16: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Electron Affinity• Electron Affinity: the energy change associated with the addition of an electron to a gaseous atom.

+Z

Z-

+Z

(Z+1)-

e-

Energy

Page 17: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Electron Affinity• We will stick with our thermodynamic definition, with energy released being a negative quantity.

Wow!

Page 18: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Electron Affinity

• Elements that have high electron affinity:

• Group 7 (the halogens) and Group 6 (O and S specifically).

Page 19: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Electron Affinity

• Some elements will not form ions:

• Orbital configurations can explain both observations.

N?

Page 20: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Electron Affinity

• Why is EA so great for the halogens?

F(g) + e- F-(g) EA = -327.8 kJ/mol

1s22s22p5 1s22s22p6 [Ne]

• Why is EA so poor for nitrogen?

N(g) + e- N-(g) EA > 0 (unstable)

1s22s22p3 1s22s22p4

(e- must go into occupied orbital)

Page 21: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Periodic Trends: Electron Affinity

• How do these arguments do for O?

O(g) + e- O-(g) EA = -140 kJ/mol

1s22s22p4 1s22s22p5

• What about the second EA for O?

O-(g) + e- O2-(g) EA > 0 (unstable)

1s22s22p5 1s22s22p6

[Ne] configuration, but electron repulsion is just too great.

Bigger Z+ overcomes e- repulsion.

Page 22: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Atomic Radii

• Atomic Radii are defined as the covalent radii, and are obtained by taking 1/2 the distance of a bond:

r = atomic radius

Page 23: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Atomic Radii

• Decrease to right due due increase in Z+

• Increase down column due to population of orbitals of greater n.

Page 24: Lecture 19: Periodic Trends Reading: Zumdahl 12.14-12.16 Outline –Periodic Trends Ionization Energy, Electron Affinity, and Radii –A Case Example.

Looking Ahead

• We can partition the periodic table into general types of elements.

Metals: tend to give up e-

non-Metals: tend to gain e-

Metalloids: can do either