Top Banner
Lecture 11: I/O Management and Disk Scheduling
58

Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Lecture 11: I/O Management and Disk Scheduling

Page 2: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Categories of I/O Devices

• Human readable– Used to communicate with the user– Printers– Video display terminals

• Display

• Keyboard

• Mouse

Page 3: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Categories of I/O Devices

• Machine readable– Used to communicate with electronic

equipment– Disk and tap drives– Sensors– Controllers– Actuators

Page 4: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Categories of I/O Devices

• Communication– Used to communicate with remote devices– Digital line drivers– Modems

Page 5: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Differences in I/O Devices

• Data rate– May be differences of several orders of

magnitude between the data transfer rates

Page 6: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.
Page 7: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Differences in I/O Devices

• Application– Disk used to store files requires file-

management software– Disk used to store virtual memory pages

needs special hardware and software to support it

– Terminal used by system administrator may have a higher priority

Page 8: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Differences in I/O Devices

• Complexity of control

• Unit of transfer– Data may be transferred as a stream of bytes

for a terminal or in larger blocks for a disk

• Data representation– Encoding schemes

• Error conditions– Devices respond to errors differently

Page 9: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Differences in I/O Devices

• Programmed I/O– Process is busy-waiting for the operation to

complete

• Interrupt-driven I/O– I/O command is issued– Processor continues executing instructions– I/O module sends an interrupt when done

Page 10: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Techniques for Performing I/O

• Direct Memory Access (DMA)– DMA module controls exchange of data

between main memory and the I/O device– Processor interrupted only after entire block

has been transferred

Page 11: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Evolution of the I/O Function

• Processor directly controls a peripheral device

• Controller or I/O module is added– Processor uses programmed I/O without

interrupts– Processor does not need to handle details of

external devices

Page 12: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Evolution of the I/O Function

• Controller or I/O module with interrupts– Processor does not spend time waiting for

an I/O operation to be performed

• Direct Memory Access– Blocks of data are moved into memory

without involving the processor– Processor involved at beginning and end

only

Page 13: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Evolution of the I/O Function

• I/O module is a separate processor

• I/O processor– I/O module has its own local memory– Its a computer in its own right

Page 14: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Direct Memory Access

• Takes control of the system form the CPU to transfer data to and from memory over the system bus

• Cycle stealing is used to transfer data on the system bus

• The instruction cycle is suspended so data can be transferred

• The CPU pauses one bus cycle• No interrupts occur

– No need to save context

Page 15: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

DMA

Page 16: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

DMA

• Cycle stealing causes the CPU to execute more slowly

• Number of required busy cycles can be cut by integrating the DMA and I/O functions

• Path between DMA module and I/O module that does not include the system bus

Page 17: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

DMA

Page 18: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

DMA

Page 19: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

DMA

Page 20: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Operating System Design Issues

• Efficiency– Most I/O devices extremely slow compared

to main memory– Use of multiprogramming allows for some

processes to be waiting on I/O while another process executes

– I/O cannot keep up with processor speed– Swapping is used to bring in additional

ready processes, which is an I/O operation

Page 21: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Operating System Design Issues

• Generality– Desirable to handle all I/O devices in a

uniform manner– Hide most of the details of device I/O in

lower-level routines so that processes and upper levels see devices in general terms such as read, write, open, close, lock, unlock

Page 22: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

I/O Buffering

• Reasons for buffering– Processes must wait for I/O to complete

before proceeding– Certain pages must remain in main memory

during I/O

Page 23: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

I/O Buffering

• Block-oriented– Information is stored in fixed sized blocks– Transfers are made a block at a time– Used for disks and tapes

• Stream-oriented– Transfer information as a stream of bytes– Used for terminals, printers, communication

ports, mouse, and most other devices that are not secondary storage

Page 24: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Single Buffer

• Operating system assigns a buffer in main memory for an I/O request

• Block-oriented– Input transfers made to buffer– Block moved to user space when needed– Another block is moved into the buffer

• Read ahead

Page 25: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

I/O Buffering

Page 26: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Single Buffer

• Block-oriented– User process can process one block of data

while next block is read in– Swapping can occur since input is taking

place in system memory, not user memory– Operating system keeps track of assignment

of system buffers to user processes

Page 27: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Single Buffer

• Stream-oriented– Used a line at time– User input from a terminal is one line at a

time with carriage return signaling the end of the line

– Output to the terminal is one line at a time

Page 28: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Double Buffer

• Use two system buffers instead of one

• A process can transfer data to or from one buffer while the operating system empties or fills the other buffer

Page 29: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Circular Buffer

• More than two buffers are used

• Each individual buffer is one unit in a circular buffer

• Used when I/O operation must keep up with process

Page 30: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

I/O Buffering

Page 31: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

I/O Driver

• OS module that controls an I/O device• hides the device specifics from the above layers in the OS/kernel • translates logical I/O into device I/O (logical disk blocks into {track, head, sector})• performs data buffering and scheduling of I/O operations• structure: several synchronous entry points (device initialization, queue I/O requests, state control, read/write) and an asynchronous entry point (to handle interrupts)

Page 32: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Typical Driver Structuredriver_strategy(request)

{

if (empty(request-queue))

driver_start(request)

else

add(request, request-queue)

block_current_process; reschedule()

}

driver_start(request) {

current_request= request;

start_dma(request);

}

driver_ioctl(request) {

}

driver_init() {

}

driver_interrupt(state) /* asynchronous part */

{

if (state==ERROR) && (retries++<MAX) {

driver_start(current_request);

return;

}

add_current_process_to_active_queue

if (! (empty(request_queue))

driver_start(get_next(request_queue))

}

Page 33: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

User to Driver Control Flow

user

kernel

read, write, ioctl

special file ordinary file

File System

Buffer Cache

blockdevice

characterdevice

Character queue

driver_read/write driver-strategy

Page 34: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

I/O Buffering

• before an I/O request is placed, the source/destination of the I/O transfer must be locked in memory

• I/O buffering: data is copied from user space to kernel buffers, which are pinned to memory

• buffer cache: a buffer in main memory for disk sectors

• character queue: follows the producer/consumer model (characters in the queue are read once)

• unbuffered I/O to/from disk (block device): VM paging

Page 35: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Buffer Cache

• when an I/O request is made for a sector, the buffer cache is checked first• if it is missing from the cache, it is read into the buffer cache from the disk• exploits locality of reference as any other cache• usually, replacements are done in chunks (a whole track can be written back at once to minimize seek time)• replacement policies are global and controlled by the kernel

Page 36: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Replacement Policies

• buffer cache organized like a stack: replace from the bottom

• LRU: replace the block that has been in the cache longest with no reference to it (on reference a block is moved to the top of the stack)

• LFU: replace the block with the fewest references (counters that are incremented on reference; blocks move accordingly)

• frequency-based replacement: define a new section on the top of the stack, counter is unchanged while the block is in the new section

Page 37: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Least Recently Used

• The block that has been in the cache the longest with no reference to it is replaced

• The cache consists of a stack of blocks• Most recently referenced block is on the top of the

stack• When a block is referenced or brought into the cache,

it is placed on the top of the stack

Page 38: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Least Frequently Used

• The block that has experienced the fewest references is replaced

• A counter is associated with each block• Counter is incremented each time the block is

accessed• Block with smallest count is selected for replacement• Some blocks may be referenced many times in a short

period of time and then not needed any more

Page 39: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Application-Controlled File Caching• two-level block replacement: responsibility is split between kernel and user level• the global allocation policy performed by the kernel, which decides which process will free a block• the block replacement policy decided by the user:

kernel provides the candidate block as a hint to the process

the process can overrule the kernel’s choice by suggesting an alternative block

the suggested block is replaced by the kernel examples of alternative replacement policy:

most-recently used (MRU)

Page 40: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Sound Kernel-User Cooperation• oblivious processes should do no worse than under LRU• foolish processes should not hurt other processes• smart processes should perform better than LRU whenever possible and they should never perform worse

if kernel selects block A and user chooses B instead, the kernel swaps the position of A and B in the LRU list and places B in a “placeholder” that points to A (kernel’s choice)

if the user process misses on B (i.e. he made a bad choice), and B is found in the placeholder, then the block pointed to by the placeholder is chosen (prevents hurting other processes)

Page 41: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Performance Parameters

• To read or write, the disk head must be positioned at the desired track and at the beginning of the desired sector

• Seek time– time it takes to position the head at the

desired track

• Rotational delay or rotational latency– time its takes for the beginning of the

sector to reach the head

Page 42: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Performance Parameters

• Access time– Sum of seek time and rotational delay– The time it takes to get in position to read

or write

• Data transfer occurs as the sector moves under the head

Page 43: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk I/O Performance• disks are at least four orders of magnitude slower than the main memory• the performance of disk I/O is vital for the performance of the computer system as a whole• disk performance parameters

seek time (to position the head at the track): 20 ms

rotational delay (to reach the sector): 8.3 ms transfer time: 1-2 MB/sec

access time (seek time+ rotational delay) >> transfer time for a sector

the order in which sectors are read matters a lot

Page 44: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Scheduling Policies

• Seek time is the reason for differences in performance

• For a single disk, there will be a number of I/O requests

• If requests are selected randomly, we will get the worst possible performance

Page 45: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Scheduling Policies

• First-in, first-out (FIFO)– Process request sequentially– Fair to all processes– Approaches random scheduling in

performance if there are many processes

Page 46: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Scheduling Policies

• Priority– Goal is not to optimize disk use but to meet

other objectives– Short batch jobs may have higher priority– Provide good interactive response time

Page 47: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Scheduling Policies

• Last-in, first-out– Good for transaction processing systems

• The device is given to the most recent user in order to have little arm movement

– Possibility of starvation since a job may never regain the head of the line

Page 48: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Scheduling Policies

• Shortest Service Time First– Select the disk I/O request that requires the

least movement of the disk arm from its current position

– Always choose the minimum seek time

Page 49: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Scheduling Policies

• SCAN– Arm moves in one direction only, satisfying

all outstanding requests until it reaches the last track in that direction

– Direction is reversed

Page 50: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Scheduling Policies

• C-SCAN– Restricts scanning to one direction only– When the last track has been visited in one

direction, the arm is returned to the opposite end of the disk and the scan begins again

Page 51: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Scheduling Policies

• N-step-SCAN– Segments the disk request queue into

subqueues of length N– Subqueues are process one at a time, using

SCAN– New requests added to other queue when

queue is processed

• FSCAN– Two queues– One queue is empty for new request

Page 52: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

Disk Scheduling Policies• usually based on the position of the requested sector rather than according to the process priority• shortest-service-time-first (SSTF): pick the request that requires the least movement of the head• SCAN (back and forth over disk): good distribution• C-SCAN(one way with fast return):lower service variability but head may not be moved for a considerable period of time• N-step SCAN: scan of N records at a time by breaking the request queue in segments of size at most N• FSCAN: uses two subqueues, during a scan one queue is consumed while the other one is produced

Page 53: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

RAID• Redundant Array of Independent Disks (RAID)• idea: replace large-capacity disks with multiple smaller-capacity drives to improve the I/O performance• RAID is a set of physical disk drives viewed by the OS as a single logical drive• data are distributed across physical drives in a way that enables simultaneous access to data from multiple drives• redundant disk capacity is used to compensate the increase in the probability of failure due to multiple drives• size RAID levels (design architectures)

Page 54: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

RAID Level 0• does not include redundancy• data is stripped across the available disks

disk is divided into strips strips are mapped round-robin to consecutive disks a set of consecutive strips that map exactly one strip

to each array member is called stripe

strip 0 strip 3strip 2strip 1

strip 7strip 6strip 5strip 4

...

Page 55: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

RAID Level 1• redundancy achieved by duplicating all the data• each logical disk is mapped to two separate physical disks so that every disk has a mirror disk that contains the

same data

a read can be serviced by either of the two disks that contains the requested data (improved performance over RAID 0 if reads dominate)

a write request must be done on both disks but can be done in parallel

recovery is simple but cost is high

strip 0 strip 1strip 0strip 1

strip 3strip 2strip 3strip 2

...

Page 56: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

RAID Levels 2 and 3

...

• parallel access: all disks participate in every I/O request• small strips (byte or word size)• RAID 2: error correcting code (Hamming) is calculated across corresponding bits on each data disk and stored on log(data) parity disks; necessary only if error rate is high• RAID 3: a single redundant disk which keeps the parity bit

P(i) = X2(i) + X1(i) + X0(i)• in the event of failure, data can be reconstructed but only one request at the time can be satisfied

b0 b1 b2 P(b) X2(i) = P(i) + X1(i) + X0(i)

Page 57: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

RAID Levels 4 and 5

strip 0 P(0-2)strip 2strip 1

P(3-5)strip 5strip 4strip 3

• independent access: each disk operates independently, multiple I/O request can be satisfied in parallel• large strips• RAID 4: for small writes: 2 reads + 2 writes

example: if write performed only on strip 0:P’(i) = X2(i) + X1(i) + X0’1(i) =

X2(i) + X1(i) + X0’(i) + X0(i) + X0(i) =

P(i) + X0’(i) + X0(i)

• RAID 5: parity strips are distributed across all disks

Page 58: Lecture 11: I/O Management and Disk Scheduling. Categories of I/O Devices Human readable –Used to communicate with the user –Printers –Video display terminals.

UNIX SVR4 I/O