Top Banner
ECE212AN: Principles of Nanoscience ECE212AN: Principles of Nanoscience Prof. Jie Xiang Fall 2010 1 9/24/2010
50

Lecture 1 UCSD

Apr 16, 2015

Download

Documents

Brian Lewis

UCSD ECE 230A L1
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lecture 1  UCSD

ECE212AN: Principles of NanoscienceECE212AN: Principles of Nanoscience

Prof. Jie XiangFall 2010

19/24/2010

Page 2: Lecture 1  UCSD

What is Nano?

Page 3: Lecture 1  UCSD

What is Nano?

nano ≡ 10-9

1 nanometer = 10-9 meter

Nanotechnology is the understanding and control of matter at dimensions of roughly 1 to 100of matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel applications.novel applications.

- National Nanotechnology Initiative, nano.gov

Page 4: Lecture 1  UCSD

Thing

Things gs natur

man-mral ade

4

Page 5: Lecture 1  UCSD

Why Nano? Feynman’s Vision

“I would like to describe a field, in which little has been done, but in which an enormous 

t b d i i i l Thi fi ld iamount can be done in principle. This field is not quite the same as the others in that it will not tell us much of fundamental physics (in the sense of, ``What are the strange particles?'') f g p )but it is more like solid‐state physics in the sense that it might tell us much of great interest about the strange phenomena that occur in complex situations Furthermore aoccur in complex situations. Furthermore, a point that is most important is that it would have an enormous number of technical applications.”

“There’s Plenty of Room at the Bottom” Richard Feynman Dec

“What I want to talk about is the problem of manipulating and controlling things on a small 

l “

5

Bottom , Richard Feynman, Dec. 1959

scale. “

Page 6: Lecture 1  UCSD

Stamping nanostructures

• “We would just have to press the same metal plate again into the plastic and we would have another copy.”

PDMS Stamp

technology

Copyright (c) Stuart Lindsay 2008

Page 7: Lecture 1  UCSD

Electron and Ion Beam Lithography

• “A source of ions, sent through the lens in reverse, could be focused to a very small spot.”

(Courtesy of FEI Inc.)(Nature Nanotechnology,2, 622,2007) ( y )( gy, , , )

Journal of applied physics 104 (2008) 024312 Nanotechnology 18 (2007) 155303

Page 8: Lecture 1  UCSD

Molecular structure by direct imaging

• “The wavelength of an electron is only 1/20 of an Å. So it should be possible to see the individual atoms.”

Structure of epsilon15 bacteriophagereveals genome organization and DNA packaging/injection apparatusDNA packaging/injection apparatus From: http://ncmi.bcm.edu/ncmi/movies/ /bsotievcrbec_2008_07_29.4.mov

(Wah Chu)

Cryo‐EM reconstruction of the Ribosome(LeBarron et al., 2008, made available by Joachim Frank)

(Wah Chu)

Copyright (c) Stuart Lindsay 2008

Page 9: Lecture 1  UCSD

Tiny Machines

“Consider the possibility that we too can make a thing very small which does what we want – thatthing very small, which does what we want that we can manufacture an object that maneuvers at that level! …… Consider any machine – for yexample, an automobile- and ask about the problems of making an infinitesimal machine like i ”it.”

World’s smallest motor (Zettl Lab)(Courtesy of Professor Alex Zettl)

(High_res_rotor2.gif)

Copyright (c) Stuart Lindsay 2008

Page 10: Lecture 1  UCSD

Materials from atomic layers

• “So, you simply evaporate until you have a block of stuff which has the elements…… What could we do with layered materials with just the right layers?”

(Reprinted from Journal of Crystal Growth, Volume 271, T. Aoki, M. Takeguchi, P. Boieriu, R. Singh, C. Grein, Y. Chang, S. Sivananthan and David J. Smith, "Microstructural characterization of HgTe/HgCdTe superlattices" g / g pPages 29‐36, Copyright 2004, with permission from Elsevier. )

Copyright (c) Stuart Lindsay 2008

Page 11: Lecture 1  UCSD

Atomic scale synthesis by “pushing atoms”

• “We can arrange atoms the way we want.”

(Courtesy of Proessor Wilson Ho)

Copyright (c) Stuart Lindsay 2008

Page 12: Lecture 1  UCSD

Nanobots in the Media

12

Page 13: Lecture 1  UCSD

Molecular Nanotechnology – a Controversial Idea that Started All

MNTs are machines at the molecular scale designed and built atom-by-atomscale designed and built atom by atom

• Replicating nanorobots

B ild l t thi th t th l f• Build almost anything that the laws of nature allow to exist

Major Drawback:j

• Issues with energy and information transport• Steering hampered by Brownian motion• Steering hampered by Brownian motion• ‘Fat and sticky fingers’ dilemma• Essentially must be restricted to a water-based life-form similar to enzymes, limiting

13

its capability Eric Drexler, 1986

D. M. Berube, Nano-Hype, 2005

Page 14: Lecture 1  UCSD

I N H ?Is Nano a Hype?

14

Page 15: Lecture 1  UCSD

Hype Cycle for Emerging Technologies

15

Page 16: Lecture 1  UCSD

Perception/Visibility

16

Maturity

Page 17: Lecture 1  UCSD

Perception/Visibility One example:Graphene - ascending h / t tihype/expectations

‘06 ‘10

Nanotechnology and Carbon nanotubes - entering maturity

17

Maturity(Google Trends Data)

‘10‘04

Page 18: Lecture 1  UCSD

A Real-World Example of Nanoscience Principles:

C t T h lComputer Technology

18

Page 19: Lecture 1  UCSD

Faster Computing

Source: Intel

Page 20: Lecture 1  UCSD

21st century is the Nanoelectronics Era

Intel 32nm process transistor with high‐k

Source: Intel

transistor with high k and metal gate22 nm in 2011

Page 21: Lecture 1  UCSD

Intel 22 nmSRAM

• 2.9 billion transistors per chip

21

p p• High-k and metal gate stack • Announced 9-22-09• On track for end of 2011 production

Page 22: Lecture 1  UCSD

International Technology Roadmap for SemiconductorWhat’s in store for the next two decades and beyond?What s in store for the next two decades and beyond?

ITRS 2009

Page 23: Lecture 1  UCSD

What’s in store for the next two decades?Transistor Gate Length Transistor Active Volume and # of Dopants(per m)

25

PIDS09 Projection Fit Moore's Law

300 10-184

681000

Transistor Gate Length Transistor Active Volume and # of Dopants(per m)

20

15nm)

300x10

200um (c

m^3

)

8100

2

4 Num

ber of do15

10

Lg (n

100

l Vol

ume

per u

2

4

6

opant atoms

5

02024202020162012

0C

hann

e

2024202020162012

4

6810

2024202020162012

Year (ITRS 2009, PIDS HP)

2024202020162012

Year (ITRS 2009, PIDS HP)

23

Page 24: Lecture 1  UCSD

Statistical Fluctuations in Small SystemsTransistor Active Volume and # of Dopants(per m)

300 10-184

681000

Transistor Active Volume and # of Dopants(per m)

300x10

200um (c

m^3

)

8100

2

4 Num

ber of do

100

l Vol

ume

per u

2

4

6

opant atoms

0C

hann

e

2024202020162012

4

6810

2024202020162012

Year (ITRS 2009, PIDS HP)

Examples

24

Page 25: Lecture 1  UCSD

A Quantum Mechanical Description of ElectronsTransistor Gate LengthTransistor Gate Length

From crystals (many periodic atoms) and band structure

And nanostructures in-between

H

25To molecules and orbitals

H2

Page 26: Lecture 1  UCSD

Moore's Law: Before and After

Ray Kurzweil, 2001

A historical view of paradigm shifts: New material, new physics are imminent

Page 27: Lecture 1  UCSD

Future Nanoelectrics

27ITRS 2007

Page 28: Lecture 1  UCSD

Nanoscience: Quantum and Stat Mech

• Quantum Mechanical description in scaled dimensions– Quantum confined electronic structure: artificial atomsQuantum confined electronic structure: artificial atoms– Coherent electron-wave propagation– Discreet nature of unit electron charge

Q t i f ti i ( bit )– Quantum information processing (qubits)

• Statistical Fluctuations– Biosystems: Engines of Darwinian evolution– Solid-state systems: Parameter spread

Quantum systems: Destruction of quantum phase coherence– Quantum systems: Destruction of quantum phase coherence

28

Page 29: Lecture 1  UCSD

Course Topics

• Introduction to Quantum Mechanics

• Electronic structure in low-dimensional systemsy

• Quantum confinement effects

• Ballistic transportIn-depth

• Phase coherence

• Quantum tunneling

In-depth

• Single electron phenomena

• Experimental techniques: fabrication and characterization

• Example 2D and 1D systems: Carbon nanotubes and graphene;• Example 2D and 1D systems: Carbon nanotubes and graphene;

Semiconductor nanowires

• Nanophotonics: near-field and sub-wavelength optical phenomena

Topical

• Nanomechanics: forces and motion at nanoscale

29

Page 30: Lecture 1  UCSD

Quantum Confinement in Semiconductor Quantum Dots

Photoluminescence of CdSe nanocrystals of different diameters

Particle-in-a-box

30Evident Technologies, Inc.

Page 31: Lecture 1  UCSD

Quantum Dot in-vivo Imaging Targetting Cancer Cells

31Nature Biotechnology 22, 969 - 976 (2004)

Page 32: Lecture 1  UCSD

Pioneers of Nanoscience: Imaging Atoms

• 1982, Scanning Tunneling Microscoy (STM) allows imaging of individual atoms (Gerd Binnig, Heinrich Rohrer at IBM)

• Nobel Prize Winners in Physics 1986. First Nanotechnology Nobel Prize.

• 1986, Atomic Force Microscope (AFM) allows atomic imaging in air and at room temperat re (Cal in Q ate Christopher Gerber Stanford IBM)

32

temperature (Calvin Quate, Christopher Gerber, Stanford, IBM)

Page 33: Lecture 1  UCSD

Pioneers of Nanoscience: Imaging Atoms

Omicron,2004

IBM Zurich1982

Si (111) 7x7 surface reconstruction

STM: Exploring topography at atomic dimensions

33

Page 34: Lecture 1  UCSD

Imaging coherent electron flow with AFM

34Topinka, Nature 410, 183 (2001)

Page 35: Lecture 1  UCSD

Manipulation of Atoms

Fe atoms on Cu

Quantum Corral: wave-like nature of electrons at metal surface shows oscillatory standing wave features

35MF. Crommie (UC Berkeley), Science, 262, 218 (1993)

Don Eigler, IBM Almaden

Page 36: Lecture 1  UCSD

Ballistic Transport

Diffusive:

ConductivityConductance

= neG = I/V = A/L

Ballistic:

Conductance G = 2e2/hConductance

Quantized in units of ~ 1/(13k)Not dependent on length L

G 2e /h

36JJAP, 42, 2063 (2003)

p g

Page 37: Lecture 1  UCSD

Ballistic Transport in Nanowire Electron Waveguide

e22 nTheG 2

• Ballistic transport: the ultimate in transistor performance• Device dimension ~ electron

l th ti d d t

37Xiang,, Nature Nanotech. (2006)

wavelength quantized conductance

Page 38: Lecture 1  UCSD

Single Electron Phenomena

38

Only 1e required to change charge state of the island

Page 39: Lecture 1  UCSD

Single Electron Transistors

GeNanowire GaAs

N=0

151050

-5VSD

(mV

)

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5

5-10-15

V

Vg(V)

I( A

)

-2-1012

Vg=6V1210864

G (

S)

39Vg(V)

-0.4 0.0 0.4VSD(V)

420-10 -5 0 5 10

T=4.7KHu, Nature Nanotech. 2, 622 (2007), Sasaki, Nature 405, 764‐767

Page 40: Lecture 1  UCSD

Quantum Information Processing: Solid State Spin Qubits

Classical: 0 or 1, two pieces of informationof information

Quantum: |0>+|1>, both at the same time, infinite

Petta et al., Science 309, 2180 (2005)Johnson et al.,  Nature 435, 925 (2005) Taylor, Nature Physics 1, 177 (2005)

possibilities

Page 41: Lecture 1  UCSD

Top Down Approach to Materials and Fabrication

41IBM, Sandia National Lab

Page 42: Lecture 1  UCSD

Bottom-Up Paradigm

42R. Kershner, Nature Nanotech 4, 557‐561 (2009 ), http://cmliris.harvard.edu

Page 43: Lecture 1  UCSD

Bottom-Up Paradigm

Information StorageComputing

Hierarchical assemblyInformation Storage

SensingFundamental properties

Photonics

Building blocks

Nanowires

Materials

NanowiresCarbon nanotubesQuantum dotsMolecules

Quantum mechanical view:Nanoelectronic, Optoelectronic

Biotechnology &Bi di l li ti

Communications

……Optoelectronic,

Photonic,…… 

Biomedical applications

Page 44: Lecture 1  UCSD

Course GoalECE212AN == ECE212A

• Our Goal is a bottom-up approach to principles basics in solid state and• Our Goal is a bottom-up approach to principles, basics in solid state and quantum mechanics to facilitate students in future research

• This course provides an introduction to and in-depth treatment of physicalThis course provides an introduction to and in depth treatment of physical phenomena that occur in nanoscale solid-state structures, and some of their consequences in electronic, photonic, and other types of devices.

• Concepts from mathematical physics, quantum mechanics, solid state physics and electromagnetic theory will be introduced as appropriate.

44

Page 45: Lecture 1  UCSD

Course Schedule• Lectures: Tu Th 12:30a - 1:50p• Location: TM 102

Webpage:http://ece-classweb.ucsd.edu/fall10/ece212an/

InstructorP f Ji Xi

Teaching Fellow• Prof. Jie Xiang• Email: [email protected]• Phone: x27659

• Han-Ping Chen• Email: [email protected]• Phone: x20951

• Office: EBU-1 3208• Office hours: Thursdays 2:00 ~ 3:30

PM or by appointment

• Office: EBU-1 3710• Office hours: tba

4545

Page 46: Lecture 1  UCSD

Textbook MaterialsR i d T t N• Required Text: None.

• Notes, uploaded research papers, several reference books will be used throughout the course.

• Recommended References:

1. S. M. Lindsay, Introduction to Nanoscience (Oxford, 2010)2. David A.B. Miller, Quantum Mechanics for Scientists and Engineers

(Cambridge 2008)(Cambridge, 2008)3. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge ,1997).4. K. Goser, P. Glosekotter, J. Dienstuhl, Nanoelectronics and Nanosystems

(Springer 2004)5 Thomas Hein el Mesoscopic Electronics in Solid State5. Thomas Heinzel, Mesoscopic Electronics in Solid State

Nanostructures (Wiley-VCH, 2007)6. John H. Davies, The Physics of Low-dimensional Semiconductors: An

Introduction (Cambridge University Press, 1997).7 L N t B H ht P i i l f N O ti (C b id 2007)7. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge, 2007)8. C. Kittel, Introduction to Solid State Physics, Eighth Edition (John Wiley &

Sons, 2005).9. J. J. Sakurai, Modern Quantum Mechanics (Addison Wesley, 1993).

46

Page 47: Lecture 1  UCSD

Structure and Grading(25 pts) Homework• (25 pts) Homework

– Bi-weekly homework, ~5 /quarter– Due dates announced in class, usually 9~10 days after issued. – Late homework credit C(t) = C(0)*exp(-t/10), t: number of days overdue– Homework collaboration is encouraged. You can share anything that can be

communicated with spoken words. Written solutions cannot be shared.

• (25 pts) Mid-term Exam– In class exam– Closed book, any loose-page note allowed, no books.

• (35 pts) Final Exam(35 pts) Final Exam– 3 hours in length– Closed book, any loose-page note allowed, no books.

• (15 pts) Collaborative Research Project (Nanoscience Social Networking)• (15 pts) Collaborative Research Project (Nanoscience Social Networking)– Researching literature for a topic– Write an essay and publish on the course Wiki site identifying the principles of

nanoscience in the research topicJ i di i ll th Wiki it i l di ti /di i f– Join discussions on all pages on the Wiki site, including commenting/discussion of homework problems, course lecture notes etc.

– Profit !

47

Page 48: Lecture 1  UCSD

Thursday, September 23, 201012:39 PM

L1 Sep 23 Page 1

Page 49: Lecture 1  UCSD

L1 Sep 23 Page 2

Page 50: Lecture 1  UCSD

L1 Sep 23 Page 3