Top Banner

of 49

Lecture 05 EAILC

Jul 06, 2018

Download

Documents

AliAlMisbah
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/17/2019 Lecture 05 EAILC

    1/49

  • 8/17/2019 Lecture 05 EAILC

    2/49

  • 8/17/2019 Lecture 05 EAILC

    3/49

    Theorem (Persistent Excitation for FIR model):

    Assume that data are generated by the following FIR model:y(t) = g1 u(t − 1) + g2 u(t − 2) + · · · + gn u(t − n) + e(t)with   E 

    {e(t)

    } = 0,   and mutually independent e(t).

    Then, one can use Recursive Least Square algorithm with

    φ(t, n)T  =

    u(t − 1), u(t − 2), . . . , u(t − n)

    to estimate   θ0

    (n) = g1, g2, . . . , gnT .If the signal u(t) is persistently exciting of at least order n, theestimate is unbiased. Possible conditions to check is

    limN →∞

    1

    φ(n, n)T 

    φ(n + 1, n)T 

    ...

    φ(N, n)T 

    T  

    φ(n, n)T 

    φ(n + 1, n)T 

    ...

    φ(N, n)T 

    > 0

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 2/15

  • 8/17/2019 Lecture 05 EAILC

    4/49

    Persistence of Excitation (Def 1):

    Definition 1: Given a signal u(t), i.e. a sequence of numbers

    u(0), u(1), u(2), . . .

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 3/15

  • 8/17/2019 Lecture 05 EAILC

    5/49

    Persistence of Excitation (Def 1):

    Definition 1: Given a signal u(t), i.e. a sequence of numbers

    u(0), u(1), u(2), . . .

    It is called persistently exciting of order n if the limits exist

    c(k) = limN →∞

    1

    N i=1

    u(i)u(i − k), k  = 0,  1, . . . , n − 1

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 3/15

  • 8/17/2019 Lecture 05 EAILC

    6/49

    Persistence of Excitation (Def 1):

    Definition 1: Given a signal u(t), i.e. a sequence of numbers

    u(0), u(1), u(2), . . .

    It is called persistently exciting of order n if the limits exist

    c(k) = limN →∞

    1

    N i=1

    u(i)u(i − k), k  = 0,  1, . . . , n − 1and if

    C n  =

    c(0)   c(1)   . . . c(n

     − 1)

    c(1)   c(0)   . . . c(n − 2)...

    c(n − 1)   c(n − 2)   . . . c(0)

    > 0

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 3/15

  • 8/17/2019 Lecture 05 EAILC

    7/49

    Persistence of Excitation (Def 2):

    Definition 2: Given a signal u(t), i.e. a sequence of numbers

    u(0), u(1), u(2), . . .

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 4/15

  • 8/17/2019 Lecture 05 EAILC

    8/49

  • 8/17/2019 Lecture 05 EAILC

    9/49

  • 8/17/2019 Lecture 05 EAILC

    10/49

    Polynomial Conditions for Persistent Excitation:

    The signal with the property that limits

    c(k) = limN →∞

    1

    i=1 u(i)u(i − k), k  = 0,  1, . . . , n − 1exist, is PE of order n if and only if

    L = limN →∞

    1

    N k=1

    [A(q) u(k)]2 > 0

    for all non-zero polynomials of degree n − 1  or less.

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 5/15

  • 8/17/2019 Lecture 05 EAILC

    11/49

    Polynomial Conditions for Persistent Excitation:

    The signal with the property that limits

    c(k) = limN →∞

    1

    i=1 u(i)u(i − k), k  = 0,  1, . . . , n − 1exist, is PE of order n if and only if

    L = limN →∞

    1

    N k=1

    [A(q) u(k)]2 > 0

    for all non-zero polynomials of degree n − 1  or less.

    Proof: with   A(q) = a0 qn−1

    + · · · + an−1L = [a0, . . . , an−1]  C n   [a0, . . . , an−1]

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 5/15

  • 8/17/2019 Lecture 05 EAILC

    12/49

    Polynomial Conditions for Persistent Excitation:

    The signal with the property that limits

    c(k) = limN →∞

    1

    i=1 u(i)u(i − k), k  = 0,  1, . . . , n − 1exist, is PE of order n if and only if

    L = limN →∞

    1

    N k=1

    [A(q) u(k)]2 > 0

    for all non-zero polynomials of degree n − 1  or less.

    Proof: with   A(q) = a0 qn−1

    + · · · + an−1L = [a0, . . . , an−1]  C n   [a0, . . . , an−1]

    Corollary:   if u(t) satisfies a polynomial equation of degree nfor t ≥ t0  with some t0, then it can be at most PE of order n.c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 5/15

  • 8/17/2019 Lecture 05 EAILC

    13/49

  • 8/17/2019 Lecture 05 EAILC

    14/49

    Examples of computing order of PE:

    Example 1: The STEP signal

    u(t) = 0   for   t

  • 8/17/2019 Lecture 05 EAILC

    15/49

    Examples 3: order of PE for sinusoid

    Example 3: consider the signal

    u(t) = sin(ω0 t),   with   0 < ω0  < π

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 7/15

  • 8/17/2019 Lecture 05 EAILC

    16/49

    Examples 3: order of PE for sinusoid

    Example 3: consider the signal

    u(t) = sin(ω0 t),   with   0 < ω0  < π

    It is not hard to show   [using sin(a +  b) = sin(a) cos(b) + sin(b) cos(a)]that

    q2 − 2 q   cos(ω0) + 1

    u(t) = 0

    Hence, it can at most be PE of order 2

    .

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 7/15

  • 8/17/2019 Lecture 05 EAILC

    17/49

  • 8/17/2019 Lecture 05 EAILC

    18/49

  • 8/17/2019 Lecture 05 EAILC

    19/49

    Examples 3: order of PE for sinusoid

    Example 3: consider the signal

    u(t) = sin(ω0 t),   with   0 < ω0  < π

    It is not hard to show   [using sin(a +  b) = sin(a) cos(b) + sin(b) cos(a)]that

    q2 − 2 q   cos(ω0) + 1

    u(t) = 0

    Hence, it can at most be PE of order 2.

    Let us compute c(k):

    c(k) = limN →∞

    1

    N i=1

    sin(ω0 i) sin(ω0 i − ω0 k)

    = limN →∞

    1

    N i=1

    sin2(ω0 i) cos(ω0 k)−sin(ω0 i) cos(ω0 i) sin(ω0 k)c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 7/15

  • 8/17/2019 Lecture 05 EAILC

    20/49

    Examples 3: order of PE for sinusoid

    Example 3: consider the signal

    u(t) = sin(ω0 t),   with   0 < ω0  < π

    It is not hard to show   [using sin(a +  b) = sin(a) cos(b) + sin(b) cos(a)]that

    q2 − 2 q   cos(ω0) + 1

    u(t) = 0

    Hence, it can at most be PE of order 2.

    Let us compute c(k):

    c(k) = limN →∞

    1

    N i=1

    sin(ω0 i) sin(ω0 i − ω0 k)

    = limN →∞

    1

    N i=1

    12 cos(ω0 k)−12 cos(2 ω0 i) cos(ω0 k)−12 sin(2 ω0 i) sin(ω0 k)c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 7/15

  • 8/17/2019 Lecture 05 EAILC

    21/49

    Examples 3: order of PE for sinusoid

    Example 3: consider the signal

    u(t) = sin(ω0 t),   with   0 < ω0  < π

    It is not hard to show   [using sin(a +  b) = sin(a) cos(b) + sin(b) cos(a)]that

    q2 − 2 q   cos(ω0) + 1

    u(t) = 0

    Hence, it can at most be PE of order 2.

    Let us compute c(k):

    c(k) = limN →∞

    1

    N i=1

    sin(ω0 i) sin(ω0 i − ω0 k)

    = limN →∞

    1

    N i=1

    12 cos(ω0 k) −  12 cos(2 ω0 i + ω0 k)c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 7/15

  • 8/17/2019 Lecture 05 EAILC

    22/49

    Examples 3: order of PE for sinusoid

    Example 3: consider the signal

    u(t) = sin(ω0 t),   with   0 < ω0  < π

    It is not hard to show   [using sin(a +  b) = sin(a) cos(b) + sin(b) cos(a)]that

    q2 − 2 q   cos(ω0) + 1

    u(t) = 0

    Hence, it can at most be PE of order 2.

    Let us compute c(k):

    c(k) = limN →∞

    1

    N i=1

    sin(ω0 i) sin(ω0 i − ω0 k)

    = limN →∞

    1

    N constant +N i=1

    1

    2 cos(ω0 k)c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 7/15

  • 8/17/2019 Lecture 05 EAILC

    23/49

    Examples 3: order of PE for sinusoid

    Example 3: consider the signal

    u(t) = sin(ω0 t),   with   0 < ω0  < π

    It is not hard to show   [using sin(a +  b) = sin(a) cos(b) + sin(b) cos(a)]that

    q2 − 2 q   cos(ω0) + 1

    u(t) = 0

    Hence, it can at most be PE of order 2.

    Let us compute c(k):

    c(k) = limN →∞

    1

    N i=1

    sin(ω0 i) sin(ω0 i − ω0 k)c(k) =

      1

    2cos(ω0 k)

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 7/15

  • 8/17/2019 Lecture 05 EAILC

    24/49

  • 8/17/2019 Lecture 05 EAILC

    25/49

    Examples 3: order of PE for sinusoid

    Example 3: consider the signal

    u(t) = sin(ω0 t),   with   0 < ω0  < π

    It is not hard to show   [using sin(a +  b) = sin(a) cos(b) + sin(b) cos(a)]that

    q2 − 2 q   cos(ω0) + 1

    u(t) = 0

    Hence, it can at most be PE of order 2.

    Let us compute c(k):

    c(k) = limN →∞

    1

    N i=1

    sin(ω0 i) sin(ω0 i − ω0 k)

    c(k) =

      1

    2 cos(ω0 k) =⇒   C 2 =   1  1

    2 cos(ω0)

    12 cos(ω0) 1

     > 0c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 7/15

  • 8/17/2019 Lecture 05 EAILC

    26/49

    Frequency domain characterization of PE signals

    Definition: A signal u(t) is called stationary if the limit

    R u(k) = limt→∞

    1

    t

    t+m−1

    i=mu(i) u(i − k)

    exists uniformly in m.

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 8/15

  • 8/17/2019 Lecture 05 EAILC

    27/49

    Frequency domain characterization of PE signals

    Definition: A signal u(t) is called stationary if the limit

    R u(k) = limt→∞

    1

    t

    t+m−1

    i=mu(i) u(i − k)

    exists uniformly in m.

    Note:   R u(k) = R u(−k)   and   R u(k) = c(k)   is calledcovariance   of   u(t).

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 8/15

  • 8/17/2019 Lecture 05 EAILC

    28/49

    Frequency domain characterization of PE signals

    Definition: A signal u(t) is called stationary if the limit

    R u(k) = limt→∞

    1

    t

    t+m−1

    i=mu(i) u(i − k)

    exists uniformly in m.

    Note:   R u(k) = R u(−k)   and   R u(k) = c(k)   is calledcovariance   of   u(t).

    Definition: The Fourier transform of the covariance, Φu(ω), iscalled the frequency spectrum of u(t):

    R u(k) =   12 π

       π−π

    e j ω k Φu(ω) dω, j  = √ −1

    Φu(ω) =

    +∞

    k=−∞

    R u(k) e− j ω k = 12 π  

      +∞

    −∞

    u(t) e− j ω t dt2

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 8/15

  • 8/17/2019 Lecture 05 EAILC

    29/49

    Frequency domain characterization of PE signals

    Example: for the signal

    u(t) = sin(ω0 t),   with   0 < ω0  < πwe have

    R u(k) =  1

    2cos(ω0 k),   Φu(ω) =

      π

    2

    δ(ω−ω0)+δ(ω+ω0)

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 9/15

  • 8/17/2019 Lecture 05 EAILC

    30/49

  • 8/17/2019 Lecture 05 EAILC

    31/49

    Frequency domain characterization of PE signals

    Example: for the signal

    u(t) = sin(ω0 t),   with   0 < ω0  < πwe have

    R u(k) =  1

    2cos(ω0 k),   Φu(ω) =

      π

    2

    δ(ω−ω0)+δ(ω+ω0)

    Lemma: A stationary signal is PE of order n if its frequencyspectrum is non zero for at least n points.

    Example: white noise is PE of any order, while the signal

    u(t) =mi=1

    Ai   sin(ωi t+ϕi),   with   0 < ωi  < π, ωi = ω j

    is PE of order 2 m.

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 9/15

  • 8/17/2019 Lecture 05 EAILC

    32/49

    Theorem (Persistent Excitation for ARMA model):

    Assume that data are generated by the following ARMA model:qn + a1 q

    n−1 + · · · + an

         A(q)

    y(t) =

    b1 qm−1 + b2 q

    m−2 + · · · + bm

         B(q)

    u(t)

    with   n > m. Then, one can use RLS algorithm with

    φ(t−1)T  =  − y(t − 1), . . . ,−y(t − n), u(t − n + m − 1), . . . , u(t − n)to estimate   θ0 =

    a1, . . . , an, b1, . . . , bm

    T .

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 10/15

  • 8/17/2019 Lecture 05 EAILC

    33/49

    Theorem (Persistent Excitation for ARMA model):

    Assume that data are generated by the following ARMA model:qn + a1 q

    n−1 + · · · + an

         A(q)

    y(t) =

    b1 qm−1 + b2 q

    m−2 + · · · + bm

         B(q)

    u(t)

    with   n > m. Then, one can use RLS algorithm with

    φ(t−1)T  =  − y(t − 1), . . . ,−y(t − n), u(t − n + m − 1), . . . , u(t − n)to estimate   θ0 =

    a1, . . . , an, b1, . . . , bm

    T .

    The estimate is unbiased if the signal u(t) is such that

    limt→∞

    1

    t Φ(t−1)T  Φ(t−1)

      = lim

    t→∞

    1

    t

    φ(n)T 

    φ(n + 1)T 

    ...

    φ(t − 1)T 

    T  

    φ(n)T 

    φ(n + 1)T 

    ...

    φ(t − 1)T 

    > 0

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 10/15

  • 8/17/2019 Lecture 05 EAILC

    34/49

    Persistent Excitation for   A(q)y(t) = B(q)u(t)

    φ(t−1) =

    −y(t − 1). . .

    −y(t

     − n)

    u(t−n+m−1)

    . . .

    u(t

     − n)

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 11/15

  • 8/17/2019 Lecture 05 EAILC

    35/49

    Persistent Excitation for   A(q)y(t) = B(q)u(t)

    φ(t−1) =

    −y(t − 1). . .

    −y(t

     − n)

    u(t−n+m−1)

    . . .

    u(t

     − n)

    =

    −q−1y(t). . .

    −q−ny(t)

    q−n+m−1u(t)

    . . .

    q−nu(t)

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 11/15

  • 8/17/2019 Lecture 05 EAILC

    36/49

    Persistent Excitation for   A(q)y(t) = B(q)u(t)

    φ(t−1) =

    −y(t − 1). . .

    −y(t

     − n)

    u(t−n+m−1)

    . . .

    u(t

     − n)

    =

    −q−1y(t). . .

    −q−ny(t)

    q−n+m−1u(t)

    . . .

    q−nu(t)

    =  qm

    A(q)

    −q−1−mA(q)y(t). . .

    −q−n−mA(q)y(t)

    q−n−1A(q)u(t)

    . . .

    q−n−mA(q)u(t)

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 11/15

  • 8/17/2019 Lecture 05 EAILC

    37/49

    Persistent Excitation for   A(q)y(t) = B(q)u(t)

    φ(t−1) =

    −y(t − 1). . .

    −y(t − n)u(t−n+m−1). . .

    u(t

     − n)

    =

    −q−1y(t). . .

    −q−n

    y(t)q−n+m−1u(t)

    . . .

    q−nu(t)

    =  qm

    A(q)

    −q−1−m A(q)y(t). . .

    −q−n−m

    A(q)y(t)q−n−1A(q)u(t)

    . . .

    q−n−mA(q)u(t)

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 11/15

  • 8/17/2019 Lecture 05 EAILC

    38/49

    Persistent Excitation for   A(q)y(t) = B(q)u(t)

    φ(t−1) =

    −y(t − 1). . .

    −y(t

     − n)

    u(t−n+m−1)

    . . .

    u(t

     − n)

    =

    −q−1y(t). . .

    −q−ny(t)

    q−n+m−1u(t)

    . . .

    q−nu(t)

    =  qm

    A(q)

    −q−1−m B(q)u(t). . .

    −q−n−m

    B(q)u(t)q−n−1A(q)u(t)

    . . .

    q−n−mA(q)u(t)

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 11/15

  • 8/17/2019 Lecture 05 EAILC

    39/49

  • 8/17/2019 Lecture 05 EAILC

    40/49

    Persistent Excitation for   A(q)y(t) = B(q)u(t)

    φ(t−1) =

    −y(t − 1). . .

    −y(t

     − n)

    u(t−n+m−1)

    . . .

    u(t

     − n)

    =  qm

    A(q)

    −q−1−mB(q)u(t). . .

    −q−n−mB(q)u(t)

    q−n−1A(q)u(t)

    . . .

    q−n−mA(q)u(t)

    = S 

    −q−1v(t). . .

    −q−nv(t)

    q−n−1v(t)

    . . .

    q−n−mv(t)

    where   v(t) =  qm

    A(q)u(t)   and   S    is not singular in the

    case when A(q) and B(q) are relatively prime.

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 11/15

    A( ) ( ) ( ) ( )

  • 8/17/2019 Lecture 05 EAILC

    41/49

    Persistent Excitation for   A(q)y(t) = B(q)u(t)

    φ(t−1) =

    −y(t − 1). . .

    −y(t

     − n)

    u(t−n+m−1)

    . . .

    u(t

     − n)

    =  qm

    A(q)

    −q−1−mB(q)u(t). . .

    −q−n−mB(q)u(t)

    q−n−1A(q)u(t)

    . . .

    q−n−mA(q)u(t)

    = S 

    −v(t − 1). . .

    −v(t

     − n)

    v(t−n−1)

    . . .

    v(t−n−m)

           

    ψ(t−1)

    where   v(t) =  qm

    A(q)u(t)   and   S    is not singular in the

    case when A(q) and B(q) are relatively prime.

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 11/15

    A( ) ( ) B( ) ( )

  • 8/17/2019 Lecture 05 EAILC

    42/49

    Persistent Excitation for   A(q)y(t) = B(q)u(t)

    φ(t−1) =

    −y(t − 1). . .

    −y(t

     − n)

    u(t−n+m−1)

    . . .

    u(t

     − n)

    =  qm

    A(q)

    −q−1−mB(q)u(t). . .

    −q−n−mB(q)u(t)

    q−n−1A(q)u(t)

    . . .

    q−n−mA(q)u(t)

    = S 

    −v(t − 1). . .

    −v(t

     − n)

    v(t−n−1)

    . . .

    v(t−n−m)

           

    ψ(t−1)

    where   v(t) =  qm

    A(q)u(t)   and   S    is not singular in the

    case when A(q) and B(q) are relatively prime.

    limt→∞

    1

    t Φ(t−1)T  Φ(t−1)

     = S 

     limt→∞

    1

    t Ψ(t − 1)T  Ψ(t − 1)

    S T  > 0

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 11/15

  • 8/17/2019 Lecture 05 EAILC

    43/49

    The conditions for parameter convergence, formulated in the

  • 8/17/2019 Lecture 05 EAILC

    44/49

    The conditions for parameter convergence, formulated in thecase of FIR model for the signal u(t), are similar in the case of

    ARMA model, but should be concerning the signal

    v(t) =  qm

    A(q)u(t)

    n > m, qm

    is stable, qm

    /A(q) is stable and minimum phase.

    Hence,   Φv(ω) =ejmω

    A(ejω)

    2Φu(ω)  .

    Theorem (Persistent Excitation for ARMA model):

    Suppose that

    1.   A(q) and B(q) are relatively prime,

    2.   A(q) is stable (i.e. all roots are inside the unite circle),

    3.   u(t) is a stationary signal such that  Φu(ω) is nonzero for atleast (n + m) points.

    Then, RLS algorithm converges to the correct value.

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 12/15

    Example

  • 8/17/2019 Lecture 05 EAILC

    45/49

    Example

    Consider the system

    y(t) + a1 y(t − 1) + a2 y(t − 2) = b1 u(t − 1) + b2 u(t − 2)

    Choose a nice (as simple as possible) input signal, which is richenough to ensure parameters convergence.

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 13/15

  • 8/17/2019 Lecture 05 EAILC

    46/49

    Example 2 12 (book)

  • 8/17/2019 Lecture 05 EAILC

    47/49

    Example 2.12 (book)

    Consider the system   y(t) + a y(t − 1) = b u(t − 1) + e(t)with a = −0.8, b = 0.5, e(t) – zero mean white noise withstandard deviation σ  = 0.5.

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 14/15

    Example 2 12 (book)

  • 8/17/2019 Lecture 05 EAILC

    48/49

    Example 2.12 (book)

    Consider the system   y(t) + a y(t − 1) = b u(t − 1) + e(t)with a = −0.8, b = 0.5, e(t) – zero mean white noise withstandard deviation σ  = 0.5.

    c   Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5   – . 14/15

    Next Lecture / Assignments:

  • 8/17/2019 Lecture 05 EAILC

    49/49

    Next Lecture / Assignments:

    Next meeting (April 19, 13:00-15:00, in A205Tekn): Recitations

    Homework problem: repeat the simulation for Example 2.12

    shown above (see pages 71–72), taking P (0) = 100 I 2  and

    θ̂(0) = 0.

    c Leonid Freidovich. A ril 15, 2010. Elements of Iterative Learnin and Ada tive Control: Lecture 5 – . 15/15