Top Banner

of 61

Lec_fourierSeries

Apr 05, 2018

Download

Documents

Najwa Ishak
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/2/2019 Lec_fourierSeries

    1/61

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Fourier Series

    Dr. Yosza Dasril

    Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya 76100, Melaka

    Dr. Yosza Dasril Fourier Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    2/61

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Outline

    1 Periodic Functions

    2 Even and Odd Functions

    3 Fourier SeriesTrigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    4 Fourier Series for Even and Odd FunctionsFourier Cosine Series

    Fourier Sine Series5 Half-Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    6

    Exercises 2.1Dr. Yosza Dasril Fourier Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    3/61

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Periodic Functions

    A function f(x) is said to be periodic if f(x + T) = f(x) x and for some positive number T.

    Definition

    A function f(x) is periodic with period T for all domain values x if

    f(x + T) = f(x), forT > 0 (1)

    The smallest value of T is called the fundamental period of f. Aconstant function is a periodic function with an arbitrary periodbut no fundamental period.

    Dr. Yosza Dasril Fourier Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    4/61

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Periodic Functions

    Example

    1. The graph of sine could be present as

    Figure: 1.1 sine graph

    Solution The periods of sin(x) are 2, 4, 6,... wheresin(x + 2) = sin(x + 4) = sin(x + 6) = sin(x).

    So, the fundamental period of sin(x) is 2.Dr. Yosza Dasril Fourier Series

    P i di F i

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    5/61

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Periodic Functions

    Notes 1. If T is the period of f(x) then nT is also period of f forany integer n.

    Notes 2. Function h(x) = af(x) + bg(x) has period T if f(x) andg(x) have period T. Here a and b are constants.

    Example

    2. if h(x) = a cos x + bsin x, then

    h(x + 2) = a cos(x + 2) + bsin(x + 2)

    = a cos x + bsin x = h(x)

    Dr. Yosza Dasril Fourier Series

    P i di F ti

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    6/61

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Periodic Functions

    Notes 3. If f(x) is a periodic function of period T, then f(ax)with a = 0, is a periodic function of period T

    a.

    Example3. sin(2x) has period 22 = . cos(3x) has period

    23 , and so on.

    Exercise 1.1

    For the given functions, determine whether it is a periodic function

    or not.

    a) f(x) = cos(x)

    b) g(x) = x2

    Dr. Yosza Dasril Fourier Series

    Periodic Functions

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    7/61

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Periodic Functions

    Notes 4. The period of the sum of a number of periodic functionsis the least common multiple of the periods.

    Example

    4. f(x) = sin x+ 12 sin(2x) +13 sin(3x) +

    14 sin(4x). Note that sin x,

    sin2x, sin 3x, sin 4x have periods 2, , 22 and

    2 respectively.Then the period of f(x) is 2 which is the L.C.M. of these periods.

    Exercise 1.1

    For the given functions, determine whether it is a periodic functionor not.

    a) f(x) = cos(x)

    b) g(x) = x2

    Dr. Yosza Dasril Fourier Series

    Periodic Functions

    http://find/
  • 8/2/2019 Lec_fourierSeries

    8/61

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Outline

    1 Periodic Functions

    2 Even and Odd Functions

    3 Fourier SeriesTrigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    4 Fourier Series for Even and Odd FunctionsFourier Cosine Series

    Fourier Sine Series5 Half-Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    6 Exercises 2.1

    Dr. Yosza Dasril Fourier Series

    Periodic Functions

    http://find/
  • 8/2/2019 Lec_fourierSeries

    9/61

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Even and Odd Functions

    Definition

    A function f(x) is said to be even if

    f(x) = f(x). (2)The graph of an even function is symmetric about the y-axis.

    Figure: 1.2 Even function

    Dr. Yosza Dasril Fourier Series

    Periodic Functions

    http://find/
  • 8/2/2019 Lec_fourierSeries

    10/61

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Even and Odd Functions

    Definition

    A function f(x) is said to be odd if

    f(x) = f(x). (3)

    The graph of an odd function is symmetric about the origin.

    Figure: 1.3 Odd function

    Dr. Yosza Dasril Fourier Series

    Periodic Functions

    http://find/
  • 8/2/2019 Lec_fourierSeries

    11/61

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Even and Odd Functions

    Properties of Even and Odd Functions

    a) The product of two even functions is even

    b) The product of two odd functions is even

    c) The product of an even function and an odd functionis odd

    d) The sum (difference) of two even functions is even

    e) The sum (difference) of two odd functions is odd

    f) If f(x) is even function, thenL

    Lf(x)dx = 2

    L

    0 f(x)dx

    g) If f(x) is odd function, then

    L

    Lf(x)dx = 0

    Dr. Yosza Dasril Fourier Series

    Periodic Functions

    http://find/
  • 8/2/2019 Lec_fourierSeries

    12/61

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Even and Odd Functions

    Exercise 1.2

    Determine whether the function is even, odd, or neither

    a) f(x) = x4 + x2

    b) g(x) = x4 + x

    c) f(x) = cos(x), < x <

    d) f(x) = ex + ex

    e) f(x) = sin(x), < x <

    f) g(x) = 2x5 + x

    g) f(x) = 2x5 + x2

    h) g(x) = tan(x)

    Dr. Yosza Dasril Fourier Series

    Periodic Functions

    http://find/
  • 8/2/2019 Lec_fourierSeries

    13/61

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Outline

    1 Periodic Functions

    2 Even and Odd Functions

    3 Fourier SeriesTrigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    4 Fourier Series for Even and Odd FunctionsFourier Cosine Series

    Fourier Sine Series5 Half-Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    6 Exercises 2.1

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsO

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    14/61

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Fourier Series

    A Fourier series decomposes any periodic function or periodicsignal into the sum of a (possibly infinite) set of simple oscillating

    functions, namely sines and cosines (or complex exponentials).The study of Fourier series is a branch of Fourier analysis. Fourierseries were introduced by Joseph Fourier (1768 1830) for thepurpose of solving the heat equation in a metal plate.

    Fourier Theorem: A periodic function that satisfies certainconditions can be express as the sum of a number of sine functionsof different amplitudes, phases & periods.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsE d Odd F i

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    15/61

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Fourier Series

    That is, if f(x) is a periodic function with period T, then

    f(x) = A0 + A1 sin(x + 1) + A2 sin(2x + 2)

    + + An sin(nx + n) + (4)where the As & s are constant and = 2

    Tis the frequency of

    f(x).

    A1 sin(x + 1) is called the fundamental mode, their

    frequency is = original function f(x).An sin(nx + n) is the nth harmonic, their frequency (n)

    An denotes the amplitude of the nth harmonic

    n is its phase angle, measuring the lead of the nth harmonicwith reference to a pure sine wave of the same frequency.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsE d Odd F ti s

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    16/61

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Fourier Series

    Since

    An sin(nx + n) (An cos n)sin(nx) + (An sin(n)) cos(nx)

    bn sin(nx) + an cos(nx)

    where bn = An cos(n) and an = An sin(n).The expansion of (4) may be written as

    f(x) = 12

    a0 +

    n=1

    an cos(nx) +

    n=1

    bn sin(nx) (5)

    where a0 = 2A0. Equation (5) is called Fourier series expansionand an & bn is called Fourier coefficients.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    17/61

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Fourier Series

    In electrical engineering an and bn is called respectively as thein-phase and phase quadrature components of the nth harmonic.This terminology arising from the use of the phasor notation

    einx = cos(nx) + isin(nx)

    This is an alternative form of the Fourier series (4) with amplitude

    and phase are An =

    a2n + b2n, n = tan

    anbn

    .

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    18/61

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Trigonometric Series

    If the period T of the periodic function f(x) is taken to be 2then = 1, and the series (5) becomes.

    f(x) =

    1

    2 a0 +

    n=1

    an cos(nx) +

    n=1

    bn sin(nx) (6)

    where the constants an and bn are called the coefficients.

    Notes 5. Let n and m be integers, n = 0, m = 0, for m = n.

    a)+2

    cos mx cos nxdx = 0.

    b)+2

    sin mx sin nxdx = 0.

    c) +2

    sin mx cos nxdx = 0.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    T i i S i

    http://find/
  • 8/2/2019 Lec_fourierSeries

    19/61

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Trigonometric Series

    d) +2

    cos mxdx = 0.

    e)

    +2

    sin mxdx = 0.

    For m = n

    a)+2

    cos mx cos nxdx =+2

    cos2 mxdx = .

    b) +2 sin2 mxdx = .c)+2

    cos mx sin mxdx = 0.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    T i t i S i

    http://find/
  • 8/2/2019 Lec_fourierSeries

    20/61

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Eulers (Fourier-Euler) Formulae

    Let f(x), a periodic function with period 2 defined in the interval

    (, + 2), be the sum of a trigonometric series i.e.,

    f(x) =1

    2a0 +

    n=1

    an cos(nx) + bn sin(nx)

    (7)

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Trigonometric Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    21/61

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Eulers (Fourier-Euler) Formulae

    To determine the coefficient a0, integrate (7) w.r.t x from to + 2. Then

    +2

    f(x)dx =

    +2

    a02

    dx +

    +2

    n=1

    an cos nx + bn sin nx

    =a0

    2

    x+2

    +

    n=1

    an +2

    cos nx dx

    +bn

    +2

    sin nx dx

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Trigonometric Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    22/61

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Eulers (Fourier-Euler) Formulae

    Form the Notes 5, the last two integrals for all n will be zero. Thus

    +2

    f(x) dx =a02 2 = a0.

    Hence

    a0 =

    1

    +2 f(x) dx (8)

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Trigonometric Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    23/61

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Eulers (Fourier-Euler) Formulae

    To determine coefficient an, for n = 1, 2, .... Multiplying both sidesof (7) by cos mx and integrating w.r.t x in [, + 2], we get

    +2

    f(x)cos mxdx =+2

    ao2 cos mx dx++2

    n=1

    an cos nxcos mx

    dx +

    +2

    n=1

    bn sin nxcos mx

    dx

    For (m = n), all integrals vanish except for an.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    F i S iTrigonometric Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    24/61

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Trigonometric SeriesEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Eulers (Fourier-Euler) Formulae

    Thus

    an =1

    +2

    f(x)cos nx dx, for n = 1, 2, ... (9)

    Similarly,

    bn =1

    +2

    f(x)sin nx dx, for n = 1, 2,... (10)

    These are knows as Euler formulae, and a0, an and bn are knownas Fourier coefficients of f(x).

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    F i S iTrigonometric Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    25/61

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    gEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Functions of Period 2

    Dirichlet Conditions

    Let f(x) be a periodic function with period 2. Let f(x) piecewisecontinuous, and bounded in the interval (, + 2) with finite

    number of critical points. Then at the points of continuity, theFourier series of f(x) in eq. (7) converges to f(x) (LHS of (7)).At the pints of discontinuity, x0, the Fourier series of f(x)

    converges to the arithmetic mean of the left and right hand limits

    of f(x) at x0 i.e.

    f(x0) =12 (f(x0) 0) + f(x0) + 0).

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesTrigonometric Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    26/61

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    gEulers (Fourier-Euler) FormulaeFunctions of Period 2

    Functions of Period 2

    Notes 6: Leibnitzs rule:

    u v dx = uv1 uv2 + uv3 uv4 + ..., where denotesdifferentiation and suffix integration w.r.t x.

    cos n = (1)n

    sin n = 0

    cos(2n + 1)2 = 0 and

    sin(2n + 1)2 = (1)n.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesTrigonometric Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    27/61

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Eulers (Fourier-Euler) FormulaeFunctions of Period 2

    Functions of Period 2

    Example

    2. Find the Fourier series of

    f(x) = 0, x 0

    x2, 0 x

    Which is assumed to be periodic with period 2.

    Solution The Fourier series is given by (7). Here

    a0 = 1

    f(x)dx =

    0

    0dx +

    0x2dx

    =1

    x3

    3

    0=

    3

    3=

    2

    3

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesTrigonometric Series

    ( )

    http://find/
  • 8/2/2019 Lec_fourierSeries

    28/61

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Eulers (Fourier-Euler) FormulaeFunctions of Period 2

    Functions of Period 2

    an =1

    f(x)cos nx dx

    =

    0

    0cos nx dx+

    0x2 cos nx dx

    =1

    2

    n2

    cos n

    =2

    n2(1)n, for n = 1, 2,...

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesTrigonometric SeriesE l (F i E l ) F l

    http://find/
  • 8/2/2019 Lec_fourierSeries

    29/61

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Eulers (Fourier-Euler) FormulaeFunctions of Period 2

    Functions of Period 2

    bn =1

    f(x)sin nx dx =1

    0x2 sin nx dx

    =

    0

    0cos nx dx+

    0x2 cos nx dx

    =1

    2

    ncos n +

    2

    n3cos(n 1)

    =

    n(1)n + 2

    n3

    (1)n 1

    , for n = 1, 2,...

    =

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesTrigonometric SeriesE l (F i E l ) F l

    http://find/
  • 8/2/2019 Lec_fourierSeries

    30/61

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Eulers (Fourier-Euler) FormulaeFunctions of Period 2

    Functions of Period 2

    Substituting a0, an and bn, we get

    f(x) =2

    6+ 2

    n=1

    2

    n2(1)n cos nx +

    n=1

    n(1)n +

    2

    n3(1)n 1 sin nx.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesTrigonometric SeriesEulers (Fourier Euler) Formulae

    http://find/
  • 8/2/2019 Lec_fourierSeries

    31/61

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Euler s (Fourier-Euler) FormulaeFunctions of Period 2

    Functions of Period 2

    Example

    3. Obtain the Fourier series expansion of the periodic functionf(x) of period 2 defined by

    f(x) = x, (0 < x < 2), f(x) = f(x + 2)

    Solution: The graph of f(x) over interval 4 < x < 4 isshown in Fig.1.3

    Figure: 1.4 Graph of f(x) = x over (4, 4)Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesTrigonometric SeriesEulers (Fourier Euler) Formulae

    http://find/
  • 8/2/2019 Lec_fourierSeries

    32/61

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Euler s (Fourier-Euler) FormulaeFunctions of Period 2

    Functions of Period 2

    a0 =1

    0+20

    xdx = 2

    an =1

    20

    xcos(nx)dx

    =1

    xsin(nx)

    n

    +cos(nx)

    n2

    2

    0

    =1

    2

    nsin(2nx) +

    1

    n2cos(2nx)

    cos(0)

    n2

    = 0.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    F i S i f E d Odd F i

    Trigonometric SeriesEulers (Fourier-Euler) Formulae

    http://find/
  • 8/2/2019 Lec_fourierSeries

    33/61

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Euler s (Fourier Euler) FormulaeFunctions of Period 2

    Functions of Period 2

    Example

    4. Find the Fourier series for the given function

    f(x) =

    1, < x < 0x, 0 < x <

    Solution

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    F i S i f E d Odd F ti

    Trigonometric SeriesEulers (Fourier-Euler) Formulae

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    34/61

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Euler s (Fourier Euler) FormulaeFunctions of Period 2

    Functions of Period 2

    Example

    5. Given g(x) =

    0, 5 < x < 03, 0 < x < 5

    1) Determine the Fourier coefficients

    2) Find the Fourier series for the given function.

    Solution

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fo rier Series for E en and Odd F nctionsFourier Cosine SeriesFo rier Sine Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    35/61

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Fourier Sine Series

    Outline

    1 Periodic Functions

    2 Even and Odd Functions

    3 Fourier SeriesTrigonometric Series

    Eulers (Fourier-Euler) FormulaeFunctions of Period 2

    4 Fourier Series for Even and Odd FunctionsFourier Cosine Series

    Fourier Sine Series5 Half-Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    6 Exercises 2.1

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsFourier Cosine SeriesFourier Sine Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    36/61

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Fourier Sine Series

    Fourier Series for Even and Odd Functions

    Now, we consider f(x) be a periodic function with period arbitraryperiod 2L defined in the interval c < x < c + 2L. Introduce a newvariable z as

    x

    2L=

    z

    2or x =

    Lz

    or z =

    x

    L. (11)

    At x = c z = 2cL

    = d say.At x = c + 2L z =

    L(c + 2L) = c

    L+ 2 = d + 2.

    Thus as c < x < c + 2L, the new variable z lies in the intervald < z < d + 2.So z varies in the interval (d, d + 2L) of length 2.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsFourier Cosine SeriesFourier Sine Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    37/61

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Fourier Sine Series

    Fourier Series for Even and Odd Functions

    Substituting for x from (11), we get

    f(x) = f

    Lz

    = F(z) (12)

    Let the Fourier series of F(z) defined in the interval (d, d + 2)and with period 2 be

    F(z) =1

    2a0 +

    n=1

    an cos(nz) + bn sin(nz) (13)where

    a0 =1

    d+2L

    d

    F(z)dz.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsFourier Cosine SeriesFourier Sine Series

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    38/61

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Fourier Sine Series

    Fourier Series for Even and Odd Functions

    Changing the variable to x

    a0 =1

    c+2L

    c

    f(x)

    Ldx

    .

    Since dz =

    L dx. Thus

    a0 =1

    L

    c+2L

    c

    f(x) dx. (14)

    Similarly,

    an =1

    d+2L

    d

    F(z) cos(nz)dz

    =1

    c+2L

    c

    f(x)cos

    nx

    L

    Ldx

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsFourier Cosine SeriesFourier Sine Series

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    39/61

    ou e Se es o e a d Odd u ct o sHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    ou e S e Se es

    Fourier Series for Even and Odd Functions

    So,

    an =1

    L

    c+2L

    c

    f(x)cosnx

    L

    dx (15)

    In similar way,

    bn =1L

    c+2L

    c

    f(x)sin

    nxL

    dx (16)

    Hence, the Fourier series expansion for a function f(x) with period2L is

    f(x) = F(z)

    =a02

    +n=0

    an cos

    nxL

    + bn sin

    nxL

    with coefficients given by (14), (15) and (16).

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsFourier Cosine SeriesFourier Sine Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    40/61

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Fourier Cosine Series

    For an even function f(x), in (L, L), we only need to determinethe values of a0 and an, (bn = 0). Then the Fouriers seriesbecomes

    f(x) =

    a0

    2 +

    n=1

    an cosnx

    L

    (17)

    where

    a0 =2

    L L

    0f(x)dx (18)

    an =2

    L

    L

    0f(x)cos

    nxL

    dx (19)

    Equation (17) is called the Fourier Cosine Series.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsFourier Cosine SeriesFourier Sine Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    41/61

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Fourier Cosine Series

    Example

    6. Find the Fourier Cosine Series for the given function

    f(x) =

    1, 0 < x < 1x, 1 < x < 2

    Solution

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsFourier Cosine SeriesFourier Sine Series

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    42/61

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Fourier Sine Series

    For an odd function f(x), the values a0 = an = 0. We need only todetermine the value of bn.

    f(x) =n=1

    bn sinnx

    L

    (20)

    where

    bn =

    2

    LL

    0 f(x)sinnx

    L

    dx (21)

    Equation (20) is called Fourier Sine Series.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsH lf R E i F i C i & F i Si S i

    Fourier Cosine SeriesFourier Sine Series

    http://find/
  • 8/2/2019 Lec_fourierSeries

    43/61

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Fourier Sine Series

    Example

    5. Find the Fourier Sine Series for the given function

    g(x) =

    1 x, 0 < x < 10, 1 < x < 2

    Solution

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsH lf R E i F i C i & F i Si S i

    Fourier Cosine SeriesFourier Sine Series

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    44/61

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Fourier Series for Even and Odd Functions

    Procedure

    1) Identify whether the given function f is even or odd

    function in the given interval.2) If f is even, calculate only a0 and ans from (12) and

    (13). It doesnt need to calculate bns. The Fourierseries is given by (11).

    3) If f is odd, calculate only bns from (15). TheFourier sine series is given by (14).

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    45/61

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Outline

    1 Periodic Functions

    2 Even and Odd Functions

    3 Fourier SeriesTrigonometric Series

    Eulers (Fourier-Euler) FormulaeFunctions of Period 2

    4 Fourier Series for Even and Odd FunctionsFourier Cosine SeriesFourier Sine Series

    5 Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesHalf-Range Expansions in Fourier Cosine SeriesExamples

    6 Exercises 2.1

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/
  • 8/2/2019 Lec_fourierSeries

    46/61

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Half-Range Expansions: Fourier Cosine & Fourier Sine

    Series

    So far we have considered the Fourier expansion of a functionwhich is periodic with periods 2 and 2L, defined in an interval c

    to c + 2L of length 2L. This time we consider the procedure toexpand a non-periodic function f(x) defined in half of the aboveinterval, say (0, L) of length L. Such expansion are known as halfrange expansion or half range Fourier series.In particular, a half range expansion constraining only cosine termsis known as half range Fourier cosine series of f(x) in interval(0, L). In similar way half range Fourier sine expansion containsonly sine terms.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/
  • 8/2/2019 Lec_fourierSeries

    47/61

    Half Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Half-Range Expansions in Fourier Cosine Series

    Note that the given function f(x) is neither periodic nor even norodd. In order to obtain a Fourier cosine series for f(x) in theinterval (0, L), we construct a new function g(x) such that:

    i) g(x) f(x) in the interval (0, L), see Fig. 2.1 below.ii) g(x) is even function in (L, L) and is periodic with

    period 2L. Fig. 2.1.

    Here

    g(x) = f(x), in (0, L)

    = f(x), in (L, 0)

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    48/61

    Half Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Half-Range Expansions in Fourier Cosine Series

    Figure: 2.1 Graph of f(x)

    Figure: 2.2 g(x) is an Even Periodic Continuation of f(x)

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    49/61

    g pExercises 2.1

    Half-Range Expansions in Fourier Cosine Series

    Function g(x) is called as Even Periodic Continuation (Expansion)of f(x). The Fourier cosine series for g(x) valid in (L, L) or infact x is readily obtained as

    g(x) =a

    02 +

    n=1

    an cosnx

    L

    (22)

    where

    a0 =2

    L

    L

    0

    g(x)dx =2

    L

    L

    0

    f(x)dx (23)

    an =2

    L

    L

    0g(x)cos

    nxL

    dx =

    2

    L

    L

    0f(x)cos

    nxL

    dx (24)

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    50/61

    g pExercises 2.1

    Half-Range Expansions in Fourier Sine Series

    Important Note: The series expansion of f(x) given by (22) isvalid for f(x) only in the interval (0, L) but not outside this

    interval.A similar way, to obtain the half range Fourier sine series for f(x)in (0, L), define h(x) such that:

    i) h(x) f(x) in (0, L), see Fig. 2.3 and

    ii) h(x) is an odd function in (

    L,

    L), periodic withperiod 2L. See Fig. 2.4.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine Series

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    51/61

    Exercises 2.1

    Half-Range Expansions in Fourier Sine Series

    Figure: 2.3 Graph of f(x)

    Figure: 2.4 h(x) is an Odd Periodic Continuation of f(x)

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesE i 2 1

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    52/61

    Exercises 2.1

    Half-Range Expansions in Fourier Sine Series

    The new function, h(x) as called as an odd periodic expansion off(x). The Fourier sine series and their coefficients are given by

    h(x) =

    n=1

    bn sinnxL (25)

    where

    bn =2

    L

    L

    0

    h(x)sinnxLdx = 2

    L

    L

    0

    f(x)sinnxLdx (26)

    As usual, this expansion is valid for f(x) only in the interval (0, L).As conclusion, a given non periodic function f(x) can be expandedin cosine or sine series.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesE i 2 1

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    53/61

    Exercises 2.1

    Examples

    Example

    2.1. If f(x) = 1 xL

    in 0 < x < L, find:

    a) Fourier cosine series, andb) Fourier sine series of f(x). Sketch the corresponding

    continuation of f(x).

    Solution. a) Construct a new function g(x) such that

    i) g(x) = f(x) in (0, L)

    ii) g(x) is even periodic function in (L, L).

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2 1

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    54/61

    Exercises 2.1

    Example

    Define

    g(x) = f(x) = 1 xL

    in 0 < x < L

    = 1 +x

    Lin L < x < 0.

    and g(x + 2L) = g(x)

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2 1

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    55/61

    Exercises 2.1

    Example

    We get,

    a0 =2

    L

    L

    0

    1

    x

    L

    dx = 1.

    an =2

    L

    L

    0

    1

    x

    L

    cos

    nxL

    dx

    =2

    L1 x

    L L

    n

    sinnx

    L

    1

    L

    L2n22

    cos

    nx

    L

    L0

    =2

    n

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2 1

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    56/61

    Exercises 2.1

    Example

    Since

    g(x) =a02

    +n=1

    an cosnx

    L

    We get

    g(x) =1

    2+

    2

    2]n=1

    (1 (1)n)

    n2cos

    nxL

    Thus the required Fourier cosine series of f(x) in (0,

    L) is

    f(x) = g(x) =1

    2+

    2

    2]n=1

    (1 (1)n)

    n2cos

    nxL

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    57/61

    Exercises 2.1

    Examples

    b) Fourier sine series of f(x) in (0, L). Define new function h(x)such that

    i) h(x) = f(x) in (0, L) and

    ii) h(x) is odd periodic function. Define

    h(x) = f(x) = 1x

    Lin (0, L)

    = 1 xL in (L, 0)

    and h(x + 2L) = h(x). Thus h(x) is odd periodic function in(L, L) with period 2L.

    Dr. Yosza Dasril Fourier Series

    Periodic FunctionsEven and Odd Functions

    Fourier SeriesFourier Series for Even and Odd Functions

    Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesExercises 2.1

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    58/61

    Examples

    The Fourier sine series expansion of f(x) in the interval (L, L) isdetermined as follows.

    bn =2

    L

    L

    0

    1

    x

    L

    sinnx

    L

    dx

    =2

    L1

    x

    L(1)

    cos

    nx

    L L

    n

    1

    L

    L2

    n22sin nx

    L

    L

    0= 2

    n.

    Dr. Yosza Dasril Fourier Series

    Periodic Functions

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    Half-Range Expansions in Fourier Cosine SeriesExamples

    http://find/http://goback/
  • 8/2/2019 Lec_fourierSeries

    59/61

    Examples

    So,

    h(x) =2

    n=1

    1

    n

    sinnxL.

    Thus the required Fourier sine series of f(x) in the interval (L, L)is

    h(x) = f(x) =2

    n=1

    1

    n

    sinnxL.

    Dr. Yosza Dasril Fourier Series

    Periodic Functions

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    http://find/
  • 8/2/2019 Lec_fourierSeries

    60/61

    Outline

    1 Periodic Functions2 Even and Odd Functions

    3 Fourier SeriesTrigonometric Series

    Eulers (Fourier-Euler) FormulaeFunctions of Period 2

    4 Fourier Series for Even and Odd FunctionsFourier Cosine SeriesFourier Sine Series

    5 Half-Range Expansions: Fourier Cosine & Fourier Sine SeriesHalf-Range Expansions in Fourier Cosine SeriesExamples

    6 Exercises 2.1

    Dr. Yosza Dasril Fourier Series

    Periodic Functions

    Even and Odd FunctionsFourier Series

    Fourier Series for Even and Odd FunctionsHalf-Range Expansions: Fourier Cosine & Fourier Sine Series

    Exercises 2.1

    http://find/
  • 8/2/2019 Lec_fourierSeries

    61/61

    Exercises

    1) Expand f(x) = x in (0, ) by (a) Fourier sine series.(b) Fourier Cosine series.

    2) Find the two half range expansion of

    f(x) =

    2kxL

    , if0 < x < L22k(Lx)

    L, ifL2 < x < L

    3) Obtain the Fourier cosine series of f(x) = sin x in the

    interval 0 < x < .

    Dr. Yosza Dasril Fourier Series

    http://find/