Top Banner

of 10

Lec15_SectionA

Jul 06, 2018

Download

Documents

Nishant Mysore
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/16/2019 Lec15_SectionA

    1/10

    5/17/16

    1

    Today:

    Static equilibrium The tragedy of Romeo and Juliet 

    Stability of equilibria. 

    Physics 2A Olga DudkoUCSD Physics 

    Lecture 15 

    What keeps the bridge and the house from falling? 

    1. Support from belowagainst Fgrav => !F = 0. 

    2. No tendency to tipin any direction => !" = 0. 

    San Diego-Coronado bridge  Fallen Star, UCSD 

  • 8/16/2019 Lec15_SectionA

    2/10

    5/17/16

    2

    Equilibrium. Static equilibrium. 

    • 

    A body is in equilibrium w hen the net external forceand torque on the body are both zero: 

    • 

    If, in addition, the body isstationary, then it is in staticequilibrium.

    F!  = d  ! 

     p

    dt  = 0 

    !   !  = d  ! 

     L

    dt  = 0 

    COM of rigid bodyhas a=0

    no tendency to start rotating 

    about any point 

    Fallen Star, UCSD 

    Center of Gravity (CG) 

    • 

    The CG of a rigid bodyis the point at whichthe gravitational forceseems to act.

    • 

    CG = average location of the weight of an object. 

    • 

    CG coincides with COM when gravitational field isuniform (i.e., for objects whose size is

  • 8/16/2019 Lec15_SectionA

    3/10

    5/17/16

    3

    Center of Gravity • A body whose CG is above the area of support willbe stable if a vertical line projected down from CGfalls within the area of support.

    •  Fnormal (balancing Fg) can only be exerted within areaof contact. If Fg acts beyond that area, a net torquewill topple the object. 

    area of support area of support area of support

    CG CG 

    CG 

    Does the Leaning Tower of Pisa

    “defy laws of physics”? 

    • 

    Currently leans at a4.7° angle to the vertical 

    • 

    d = 7 m, height = 55 m 

    • The center of gravitylies within the base as

    long as the angle is < 7.3° •  It’s the laws of physicsthat are holding it up!

  • 8/16/2019 Lec15_SectionA

    4/10

    5/17/16

    4

    How to avoid tipping over: 

    Have low center of gravity 

    + large area of support 

     N o w  e x t

     i n c t ! 

    Calculating torques •

     

    When more than one torque is acting on an object,remember to take vector sum of the torques, !".

    •  The pivot point is the point where rotation isoccurring or where rotation may occur. 

    • 

    Sometimes you are free to choosethe pivot point (the ruler) andsometimes you are not (the door). 

    •  When calculating torque values, itis useful to draw “an extendedforce diagram”. 

    pivot point 

    biceps 

     t r  i c e p

     s 

  • 8/16/2019 Lec15_SectionA

    5/10

    5/17/16

    5

    Extended force diagram 

    Example: a ladder rests on africtionless vertical wall. The floor isnot frictionless. Draw the extendedforce diagram for the ladder. 

    Fnormal,floor onladder 

    Fnormal, wall on ladder 

    Fgravity, Earth on ladder 

    Ffriction, floor on ladder 

    • 

    Indicate the forces acting on the object AND wherethey act. 

    CG 

    40o 40o 

    50o 

    50o 

    •  To calculatetorques, we canchoose a pivotpoint at anylocation, sincethe object isnot rotating. 

    50o 

    10 m 

    Solving Equilibrium Problems 

    1) Choose an appropriate coordinate system. (x,y) 

    2) Make an extended force diagram. 

    3) Formulate equilibrium equations to apply. 

    !Fx = 0 !Fy = 0 !" = 0 

    4) Choose appropriate pivot point for torquecalculations. 

    5) Do algebra. 

  • 8/16/2019 Lec15_SectionA

    6/10

    5/17/16

    6

    Static Equilibrium 

    Example

    Romeo is trying to reach Julietby climbing an 8.00m, 200Nuniform ladder which restsagainst a smooth wall andmakes a 50.0o angle with theground. Romeo weighs 800N.The coefficient of staticfriction between the ladderand the ground is 0.600.

    Will Romeo reach Juliet beforethe ladder begins to slip? 

    50° 

       8   m

     

    moat with hungryalligators

     Juliet

    The tragedy of Romeo and Juliet(A physicist’s perspective) 

    Static Equilibrium 

    Solution •

     

    Define a coordinate system. • Draw extended force diagram: 

    Fnormal, flooron ladder 

    Fnormal, wallon ladder 

    Fgravity,Earth onladder 

    Ffriction, floor on ladder 

    Fcontact, Romeoon ladder 

     w h e r e ? ?

     ? 

    50° 

       8   m

     

    +x 

    +y 

    • 

    Wall is smooth => no friction (idealization!). 

    • If ladder is on the verge of slipping, static frictionforce btw ladder and floor will be at maximum: 

    F   friction  = µ  s F   N, floor 

    (ladder onthe vergeof slipping) 

  • 8/16/2019 Lec15_SectionA

    7/10

    5/17/16

    7

    Static Equilibrium Solution (cont

     

    d) 

    • 

    Static equilibrium: 

    • #Fy = 0 FN, floor = Fg + FRomeo 

    FN, floor = 200N + 800N = 1,000N 

    => max. static friction (when ladder is about to slip): 

    =  0 . 600 (  )  1 , 000 N (  ) = 600 N F   friction = µ  s F   N, floor 

    !!   = 0! F  = 0

    = FN,floor– Fg – FRomeo 

    Fnormal,floor onladder 

    Fnormal, wallon ladder 

    Fgravity,Earth onladder 

    Ffriction, floor on ladder 

    Fcontact, Romeoon ladder 

    • #Fx = 0 

    FN,wall = Ffriction 

    = Ffriction – FN,wall 

    = 600N 

    Static Equilibrium 

    Solution (cont 

    d) 

    • 

    Turn to the nettorque. 

    • 

    Choose pivotpoint…

    FN, floor on ladder 

    Fgravity,Earth on ladder 

    Ffriction,floor on ladder 

    Fcontact,Romeo on ladder 

     =   ? 

    50° 

       8   m

     

    P i v o t   p o i n t  

    FN, wall on ladder 

    at thebase (eliminates!  N,floor and !  friction). 

    !   !  = !  wall + !  grav + !   Romeo = 0 

    50° r wall F   N,wall sin + r grav F  grav sin 40° - = 0

    ccw  cw cw 

    F   Romeo sin 40° - r  Romeo 

    =    L   

    =   L  /  2  =   d     

    d =

     L F   N,wall sin  50°   L / 2 F  grav sin 40° -

    F   Romeo sin 40° 

    40o 

    50o 

    40o 

    50o

     

  • 8/16/2019 Lec15_SectionA

    8/10

    5/17/16

    8

    Romeo’s Fate? Answer  

      =   F f r i

     c t

    d =8m 600 N   0.766  4 m  200 N  -

    800 N  

    0.643 

    0.643 = 6.15 m 

    => Distance that Romeo climbed upthe ladder before it began to slip: 

    d =

     L F   N,wall sin  50° 

     L / 2 F  grav sin 40° -

    F   Romeo sin 40°  50° 

       8   m

     

    "For never was a story of more woeTan this of Juliet and her Romeo."

    - William Shakespeare, Romeo and Juliet, 5.3 

    => At 6.15m up the ladder Romeo loses equilibrium ! 

    • What could Romeo have done?  Taken PHYS 2A! 

    Stability of Equilibria 

    • To examine each, turn to potential energy, U. 

    • 

    Force is related to theassociated potential energy as  F  = - 

    dU  

    dx 

    • 

    In equilibrium: dU  

    dx = 0 

    • 

    Stable equilibrium:

    •  Unstable equilibrium:

    • 

    Stability? Look atd  

    2 U  

    dx 2 

    a small deviation fromthe equilibrium creates a restoring force thatdrives the system back  to the equilibrium.

    a small deviation fromthe equilibrium creates a force that drivesthe system away  from the equilibrium.

  • 8/16/2019 Lec15_SectionA

    9/10

    5/17/16

    9

    • 

    Equilibrium pointson the U(x) curve: 

    • 

    At x = 2: unstableequilibrium.

    Stability of Equilibria 

    F  = - dU  

    dx = 0

    • At x = 4: stableequilibrium.

                                                                                                                                                                                                                                                                           U                 (    

                                                                                                                                                                                   x                 )    

     x 0 2 4 6

    0

    2

    4

    • 

    Mathematically: take the second derivative of thepotential energy in order to determine the stability 

    d  2 U  

    dx 2  > 0  - stable

    equilibrium 

    d  2 U  

    dx 2   0 

    x 0 

    => x=0 is stable equilibrium(local minimum). 

    x 0 

    U  (  x ) = 1 

    2 kx 

    2 - 

    dU  dx  =  kx ; - 

    d  2 U  

    dx 2  = k  -  x=0 is unstable equilibrium

    (local maximum). 

    Example 2 

    dU  dx 

    = 0  at x=0 Equilibrium? 

    Stability? 

    Equilibrium? 

    Stability? 

    dU  dx 

    = 0  at x=0 

    (k > 0) 

    (k > 0) 

  • 8/16/2019 Lec15_SectionA

    10/10

    5/17/16

    10

    Three identical uniform rods are each acted on by twoor more forces, all perpendicular to the rods and allequal in magnitude (F). Which of these rods is inequilibrium? 

    Clicker Question 

    A) 

    rod 1. 

    B) rod 2. 

    C) rod 3. 

    D) None of these rods are in equilibrium. 

    E) All these rods are in equilibrium. 

    F F

    F

    F

    F

    F F

    F

    rod 1 rod 2 rod 3

    For Next Time: 

    • 

    Read Chapter 14 

    •  Study AS HARD AS YOU CAN for Quiz 8 (Ch.14) 

    • 

    Do homework for Chapter 14