Top Banner
Performance of a Semi- Implicit, Semi- Lagrangian Dynamical Core for High Resolution NWP over Complex Terrain L.Bonaventura D.Cesari
14

L.Bonaventura D.Cesari

Jan 01, 2016

Download

Documents

zelda-turner

Performance of a Semi-Implicit, Semi-Lagrangian Dynamical Core for High Resolution NWP over Complex Terrain. L.Bonaventura D.Cesari. Outline of discretization approach. Semi-implicit, semi-lagrangian two time level discretization (2d tests: Bonaventura JCP 2000) - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: L.Bonaventura D.Cesari

Performance of a Semi-Implicit, Semi-Lagrangian Dynamical Core

for High Resolution NWP over Complex Terrain

L.Bonaventura D.Cesari

Page 2: L.Bonaventura D.Cesari

Outline of discretization approach

• Semi-implicit, semi-lagrangian two time level discretization (2d tests: Bonaventura JCP 2000)

• Finite volume approach for the divergence• Weakly nonlinear system Ax+f(x)=b, symmetric

and well-conditioned for any orography• 2nd order in time, 4th order in space SL

advection scheme • Improved interpolation at the boundary for SL

advection (joint work with G.Rosatti, University of Trento)

Page 3: L.Bonaventura D.Cesari

Computational grid

Page 4: L.Bonaventura D.Cesari

Application to open channel flow

Page 5: L.Bonaventura D.Cesari

2D Gallus-Klemp lee wave test case

Vorticity=O(10e-4)

Page 6: L.Bonaventura D.Cesari

3D linear lee waves

Page 7: L.Bonaventura D.Cesari

Setup of tests for comparison of numerical efficiency

• 180*180*40 =O(1.3e+6) gridpoints• dx=2 km, dz=300 m, dt=40 s• Some 1000 m high mountains• A -8 K temperature anomaly (cold bubble) on top of

each mountain• IBM SP4 of CINECA (48 nodes with 16 CPUs each,

1.5 Ghz for each CPU)• native xlf90 compiler and all standard optimizations

switched on• Comparison against LokalModell of DWD

Page 8: L.Bonaventura D.Cesari

Parallel run with 16 processors

Total CPU time for 1 hour

CPU time solver

COMM time solver

CPU time advection

COMM time advection

Fastest

/slowest

ratio

SE 328 s 91 s 13.4 s 156 s 40.8 s 1.07

SI Z

207 s 119 s 13.4 s 65.4 s 7.4 s 1.02

Page 9: L.Bonaventura D.Cesari

Parallel run with 36 processors(3D lee wave test)

Total CPU time for 1 hour

CPU time solver

COMM

time solver

Fastest

/slowest

ratio

SE 88.95 s 45.03 s 11.95 s 1.4 s

SI Z

56.40 s 26.16 s 5.12 s 1.03 s

Page 10: L.Bonaventura D.Cesari

Comparison of speed up

Page 11: L.Bonaventura D.Cesari

Comparison with terrain following semi-implicit LM

• Difficulty of a fair comparison (different stopping criteria and implementation details)

• Slower convergence of iterative solver for terrain following semi-implicit

Residual 1%

of initial value

Residual 0.1% of initial value

Residual 0.01% of initial value

SI iterations 6 21 50

SIZ iterations 8 17 21

Page 12: L.Bonaventura D.Cesari

Conclusions

• Semi-implicit, semi-lagrangian method using finite volume discretization of the divergence and improved lower boundary condition

• Gain in efficiency over terrain following coordinates, good parallel performance

Page 13: L.Bonaventura D.Cesari

Development plans

• Further testing (Boulder storm, Scania test)

• ARPA-SMR: development of a full SI-SL NWP model in the framework of the COSMO consortium adapting the LokalModell physics

• MPI: test tube for numerical methods to be used in ICON, the new global nonhydrostatic dynamical core

Page 14: L.Bonaventura D.Cesari