Top Banner
Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg
42

Laurens W. Molenkamp - uoc.gr

Dec 18, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Laurens W. Molenkamp - uoc.gr

Laurens W. Molenkamp

Physikalisches Institut, EP3Universität Würzburg

Page 2: Laurens W. Molenkamp - uoc.gr

Overview

- HgTe/CdTe bandstructure, quantum spin Hall effect- Dirac surface states of strained bulk HgTe- Josephson junctions and SQUIDs

Page 3: Laurens W. Molenkamp - uoc.gr

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.76.6

1.0

1.5

0.5

0.0

-0.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

5.5

Bandgap vs. lattice constant(at room temperature in zinc blende structure)

Ban

dgap

ene

rgy

(eV

)

lattice constant a [Å]0 © CT-CREW 1999

MBE-Growth

HgTe-Quantum Wells

Page 4: Laurens W. Molenkamp - uoc.gr

band structure

D.J. Chadi et al. PRB, 3058 (1972)

fundamental energy gap

meV 30086 EE meV 30086 EE

semi-metal or semiconductor

HgTe

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

-1000

-500

0

500

1000

E(m

eV) 8

6

7

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

-1000

-500

0

500

1000

E(m

eV) 8

6

7

Eg

Page 5: Laurens W. Molenkamp - uoc.gr

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

-1000

-500

0

500

1000

E(m

eV)

HgTe

8

6

7

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

Hg0.32Cd0.68Te

-1500

-1000

-500

0

500

1000

E(m

eV)

6

8

7

VBO

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

-1000

-500

0

500

1000

E(m

eV)

HgTe

8

6

7

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

Hg0.32Cd0.68Te

-1500

-1000

-500

0

500

1000

E(m

eV)

6

8

7

VBO

BarrierQW

VBO = 570 meV

HgTe-Quantum Wells

Page 6: Laurens W. Molenkamp - uoc.gr

Layer Structure

gate

insulator

cap layer

doping layer

barrier

barrierquantum well

doping layer

buffer

substrate

Au

100 nm Si N /SiO

3 4 2

25 nm CdTe

CdZnTe(001)

25 nm CdTe10 nm HgCdTe x = 0.79 nm HgCdTe with I10 nm HgCdTe x = 0.74 - 12 nm HgTe10 nm HgCdTe x = 0.7 9 nm HgCdTe with I10 nm HgCdTe x = 0.7

symmetric or asymmetricdoping

Carrier densities: ns = 1x1011 ... 2x1012 cm-2

Carrier mobilities: = 1x105 ... 1.5x106 cm2/Vs

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 80

100

200

300

400

500

µ=1.06*106cm2(Vs)-1

nHall=4.01*1011cm-2

Q2134a_Gate

B[T]

Rxx

[]

-15000

-10000

-5000

0

5000

10000

15000

Graph2

Rxy

[]

Page 7: Laurens W. Molenkamp - uoc.gr

Type-III QW

VBO = 570 meV

HgCdTeHgCdTeHgTe

HgCdTe

HH1E1

QW < 63 Å

HgTe

inverted normal

band structure

conduction band

valence band

HgTe-Quantum Wells

Page 8: Laurens W. Molenkamp - uoc.gr

123456

k (0.01 -1)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

Ener

gyE(

k)(e

V)

k || (1,1)k || (1,0)k = (kx,ky)

k || (1,1)k || (1,0)k = (kx,ky)

4 nm QW 15 nm QW

normal

semiconductor

inverted

semiconductor

1 2 3 4 5 6

k (0.01 -1)

-0.20

-0.15

-0.10

-0.05

0.00

0.50

0.10

0.15

0.20

E2

H1H2

E1L1

0.6 0.8 1.0 1.2 1.4

dHgTe (100 )

E2E2

E1E1H1H1

H2H2H3H3

H4H4 H5H5

H6H6L1L1

Band Gap Engineering

A. Pfeuffer-Jeschke, Ph.D. Thesis, Würzburg University (2000)

Page 9: Laurens W. Molenkamp - uoc.gr

Bandstructure HgTe

E

k

E1

H1

invertedgap

4.0nm 6.2 nm 7.0 nm

normalgap

H1

E1

B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

Page 10: Laurens W. Molenkamp - uoc.gr
Page 11: Laurens W. Molenkamp - uoc.gr

Topological Quantization

C.L.Kane and E.J. Mele, Science 314, 1692 (2006)

C.L.Kane and E.J.Mele, PRL 95, 146802 (2005)C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)A.Bernevig and S.-C. Zhang, PRL 96, 106802 (2006)

Page 12: Laurens W. Molenkamp - uoc.gr

QSHE, Simplified Picture

normalinsulator

bulk

bulkinsulating

entire sampleinsulating

m > 0 m < 0

QSHE

Page 13: Laurens W. Molenkamp - uoc.gr

Experimental Signature

normal insulator state

QSHI

Page 14: Laurens W. Molenkamp - uoc.gr

Observation of QSHI state

M. König et al., Science 318, 766 (2007).

Page 15: Laurens W. Molenkamp - uoc.gr

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0103

104

105

106

G = 2 e2/h

Rxx

/

(VGate- Vthr) / V

Observation of QSH Effect

(1 x 0.5) m2

(1 x 1) m2(2 x 1) m2

(1 x 1) m2

non-inverted

Page 16: Laurens W. Molenkamp - uoc.gr

1 m 2 m

1 2 3

6 5 4

1 m

1 m

5 m

1 2

34

(a) (b)

Verify helical edge state transport

Multiterminal /Non-local transport samples

Page 17: Laurens W. Molenkamp - uoc.gr

Multi-Terminal Probe

210001121000012100001210000121100012

T

heIG

heIG

t

t

2

23

144

2

14

142

232

generally

22 2)1(

ehnR t

3exp4

2 t

t

RR

heG t

2

exp,4 2

Landauer-Büttiker Formalism normal conducting contacts no QSHE

Page 18: Laurens W. Molenkamp - uoc.gr

0.0 0.5 1.0 1.5 2.00

5

10

15

20

25

R (k

)

V* (V)

I: 1-4V: 2-3

1

3

2

4

R14,23=1/4 h/e2

R14,14=3/4 h/e2

Non-Local data on H-bar

A. Roth et al., Science 325, 294 (2009).

Page 19: Laurens W. Molenkamp - uoc.gr

Configurations would be equivalent in quantum adiabatic regime

-1 0 1 2 30

5

10

15

20

25

30

35

40

R (k

)

V* (V)

I: 1-4V: 2-3

R14,23=1/2 h/e2

R14,14=3/2 h/e2

I: 1-3V: 5-6

R13,13=4/3 h/e2

R13,56=1/3 h/e2

-1 0 1 2 3 4

V* (V)

Multi-Terminal Measurements

A. Roth et al., Science 325, 294 (2009).

Page 20: Laurens W. Molenkamp - uoc.gr

QSHE and iSHE as spin injector and detector

Split-gated H-bar

Page 21: Laurens W. Molenkamp - uoc.gr

Detect iSHE through QSHI edge channels

I

U

Gate in 3-8 leg is scanned, 2-9 leg is n-type metallic,

current passed between contacts 2 and 9.

C. Brüne et al., Nature Physics 8, 486–491 (2012)

Page 22: Laurens W. Molenkamp - uoc.gr

Detect QSHI throughinverse iSHE

I

U

Gate in 3-8 leg is scanned, 2-9 leg is n-type metallic,

current passed between contacts 3 and 8 C. Brüne et al., Nature Physics 8, 486–491 (2012).

Page 23: Laurens W. Molenkamp - uoc.gr
Page 24: Laurens W. Molenkamp - uoc.gr

Scanning SQUID

K.C. Nowack et al., Nature Materials 12, 787 (2013).(with Kam Moler group, Stanford)

Page 25: Laurens W. Molenkamp - uoc.gr
Page 26: Laurens W. Molenkamp - uoc.gr

Bulk HgTe as a 3-D Topological ‚Insulator‘

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

-1000

-500

0

500

1000

E(m

eV) 8

6

7

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

-1000

-500

0

500

1000

E(m

eV) 8

6

7

Bulk HgTe is semimetal,

topological surface state overlaps w/ valenceband.

k(1/a)

E-E

F(eV

)

ARPES: Yulin Chen, ZX Shen,

StanfordC. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011).

Page 27: Laurens W. Molenkamp - uoc.gr

70 nm layer on CdTe substrate:coherent strain opens gap

Page 28: Laurens W. Molenkamp - uoc.gr

0 2 4 6 8 10 12 14 160

2000

4000

6000

8000

10000

12000

14000

16000

0

2000

4000

6000

8000

10000

12000

14000

Rxx (SdH)

R

xx in

Ohm

B in Tesla

Rxy (Hall)

Rxy

in O

hm

Bulk HgTe as a 3-D Topological ‚Insulator‘

@ 20 mK: bulk conductivity almost frozen out - Surface state mobility ca. 35000 cm2/Vs

C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011).

Page 29: Laurens W. Molenkamp - uoc.gr

3D HgTe-calculations

2 4 6 8 10 12 14 160

2000

4000

6000

8000

10000

2.73.54.45.67.69.711 33.94.96.78.510.112

experiment

Rxx

in O

hm

B in Tesla

n=3.7*1011 cm-2

n=4.85*1011 cm-2

n=(4.85+3.7)*1011 cm-2

DO

S

Red and blue lines : DOS for each of the Dirac-cones with the corresponding fixed 2D-density,Green line: the sum of the blue and red lines

C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011).

Page 30: Laurens W. Molenkamp - uoc.gr

Experiments on a gatedHallbar

Page 31: Laurens W. Molenkamp - uoc.gr

0 2 4 6 8 10 12 14 16

-10

12

34

5 0

5

10

15

20

25

Vgate [V]

B [T]

Rxy

[k

]

Rxy from -1.5V to 5V

C. Brüne et al., Phys. Rev. X 4, 041045 (2014).

Page 32: Laurens W. Molenkamp - uoc.gr

0 2 4 6 8 10 12 14 16-3-2-1012345

7 3

5

6

5

4

3

2

V g [V]

B [T]

n=1

Two distinct Landau fans

Different gate efficiency, large dielectric constant. Note the absence of spin splitting.

C. Brüne et al., Phys. Rev. X 4, 041045 (2014).

Page 33: Laurens W. Molenkamp - uoc.gr

Different mobilitiesfor top and botttom

C. Brüne et al., Phys. Rev. X 4, 041045 (2014).

Page 34: Laurens W. Molenkamp - uoc.gr

More plots

Constant (small) deviation Berry phase for Dirac fermions

Transport exclusively through surface states, for all gate voltages.Cause: Dirac systems have different screening properties from parabolic bands,resulting in a smaller dielectric constant(cf. E.H. Wang, S. das Sarma, Phys. Rev B 75, 205418 (2007), D. DiVincenzo, G. Mele, Phys. Rev B 29, 1685 (1984).

Page 35: Laurens W. Molenkamp - uoc.gr
Page 36: Laurens W. Molenkamp - uoc.gr
Page 37: Laurens W. Molenkamp - uoc.gr

Sample "Quad", device ADevice with improved HgTe-Nb interfaces.

Nb Nb

CdTe

70 nm strained HgTe

I

V

W=

2 m

stra

ined

HgT

e

Nb Nb

L = 1000 nm

D=

200

nm

V

I

J. Oostinga et al., Phys. Rev. X 3, 021007 (2013).

Page 38: Laurens W. Molenkamp - uoc.gr

Supercurrent regimeAt T = 25 mK, 200 mK, 500, 800 mK

-6 -4 -2 0 2 4 6

x 10-6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x 10-4 I-V at different temperatures

I / A

Usa

mpl

e / V

800 mK500 mK200 mK

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 10-5

-5

-4

-3

-2

-1

0

1

2

3

4

5x 10-4 I - V at B = 0 mT, T = 25 mK

I / A

Usa

mpl

e / V

20120411_004 (<-)20120412_001 (<-)20120412_002 (->)

sI

sIrI

rI

Switching current depends on sweeping direction (origin unknown):

Retrapping current does not depend on sweeping direction:

ss II rr II

IcRN 0.15-0.2 mV

At T = 25 mK:Ic Is 3-4 A

RN 50

Page 39: Laurens W. Molenkamp - uoc.gr

T 25 mKJust DC

Could of course just be inhomogeneouscurrent injection.

Need otherexperiments toidentify exoticsuperconductivity.

J. Oostinga et al., Phys. Rev. X 3, 021007 (2013).

Sample with two contacts shows somewhat irregular ‚Fraunhofer‘ pattern.

Page 40: Laurens W. Molenkamp - uoc.gr

AC SQUIDs

Scanning SQUID: Ilya Sochnikov(with Kam Moler group, Stanford)

0 500 10000

0.2

0.4

0.6

0.8

1

0 500 10000

0.05

0.1

0.15

0.2

0.25

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

I (μA

)

Applied flux (Φ0)

Applied flux (Φ0)

I/Ic

(a)

(b)

L = 200 – 600 nm

Nb

HgTe

Asy

mm

etry

Junctions length (μm)Junctions length (μm)

I c(μ

A)

(c) (d)

200 nm300 nm400 nm500 nm600 nm

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1

200 nm300 nm400 nm500 nm600 nm

Clearly non-sinusoidal I- curve

Ballistic junction?Exotic superconductivity? .

T=450 mK

I. Sochnikov et al., Phys. Rev. Lett. 114, 066801 (2015).

Page 41: Laurens W. Molenkamp - uoc.gr

Contacting the edge channelsin quantum wells

S. Hart et al., Nature Physics 10, 638–643 (2014).(with Amir Yacoby & group, Harvard)

Gate induces QSH regime,infer current distribution fromFraunhofer pattern.

Page 42: Laurens W. Molenkamp - uoc.gr

Conclusions– HgTe quantum wells: normal and inverted gap, linear (Dirac) dispersion

– show Quantum Spin Hall Effect

– demonstrated helical edge channels and spin polarization

– strained 3D layers show QHE of topological surface states

– In which a - very peculiar - supercurrent can be induced

Collaborators:Erwann Bocquillon, Christoph Brüne, Hartmut Buhmann, Markus König, Luis Maier, Matthias Mühlbauer, Jeroen Oostinga, Cornelius Thienel….Teun Klapwijk, David Goldhaber-Gordon, Kam Moler, Amir Yacoby, Andrei Pimenov, Marek Potemski, Seigo TaruchaTheory: Alena Novik, Ewelina Hankiewicz , Grigory Tkachov, BjörnTrauzettel (all @ Würzburg), Jairo Sinova (Mainz), Shoucheng Zhang, Xiaoliang Qi (Stanford), Chaoxing Liu (Penn State)

Funding: DFG (SPP Topological Insulators, DFG-JST FG Topotronics, Leibniz project), Humboldt Stiftung, EU-ERC AG “3-TOP”, DARPA