Top Banner
J. Sehested Haldor Topsoe A/S CINF Summer School 2016, Kysthusene, Tinkerup Strandvej 8a, Gilleleje Fundamental and Industrial aspects of heterogeneous catalysis
49

Launch of MK-181 - fysik.dtu.dk

Mar 21, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Launch of MK-181 - fysik.dtu.dk

J. Sehested

Haldor Topsoe A/S

CINF Summer School 2016, Kysthusene, Tinkerup Strandvej 8a,Gilleleje

Fundamental andIndustrial aspects ofheterogeneous catalysis

Page 2: Launch of MK-181 - fysik.dtu.dk

2

From nano to mega and back again

Reactor1m

Catalyst from0,001m = 1mm

Pore structure0,000000001m = 1nm

Active phase0,0000000001m = 1Å

Page 3: Launch of MK-181 - fysik.dtu.dk

3

Our founder, Dr. Haldor Topsøe, had a strong passionfor science and determination to prove it could make a difference

Haldor Topsøe A/S in briefEstablished in 1940 by Dr. Haldor Topsøe.Private 100% family-owned company.2,600 employees in 10 countries.Headquarters in Copenhagen, Denmark.Production in Denmark, USA, China, and Brazil.Spends around 10% of revenue on R&D.Revenue 2015 ~850 M$

Page 4: Launch of MK-181 - fysik.dtu.dk

4

Industrial methanol production

Page 5: Launch of MK-181 - fysik.dtu.dk

5

Fundamental and industrial aspects of heterogeneous catalysis

• Industrial methanol production – equipment for producing synthesis gas

• Properties of nickel steam reforming catalysts• Sintering (stability of Ni particles)• Carbon formation over Ni catalysts

• Methanol synthesis catalysts:• How Zn helps Cu make methanol

• Conclusions

Industrial methanol production

Page 6: Launch of MK-181 - fysik.dtu.dk

6

TODAY

FUTURE

Why methanol?!Essential bulk chemical – C1 building block

2015 demand: 71.6 MMT

2019 demand: >90 MMT

Source: IHS, 2015

Page 7: Launch of MK-181 - fysik.dtu.dk

7

Typical methanol process ~ 2500 MTPDSteam

Pre-reformer

Secondaryreformer

Steam

Steam

Oxygen

Makeupcomp.

Light ends to fuel

Methanolreactor

Water

Rawmethanol

Raw methanol storage

Condensate

Steam reformer

Sulphur removal

Hydrogenator

Naturalgas

Productmethanol

Page 8: Launch of MK-181 - fysik.dtu.dk

8

Pre-reformer; Primary reformer; Secondary reformer; ATR

Process Gas

O2 / Air

CH4 + H2O CO + 3H2 (-DH0298 = -206 kJ/mol)

CnHm + n H2O n CO + (n+m/2) H2 (-DH0298 < 0)

CO + H2O CO2 + H2 (-DH0298 = 41 kJ/mol)

CH4 + 1.5O2 CO + 2H2O (-DH0298 = 520 kJ/mol)

Page 9: Launch of MK-181 - fysik.dtu.dk

9

Steam reforming and methane conversion

400 500 600 700 800 900 400 500 600 700 800 900

S/C = 5.0S/C = 2.5S/C = 1.0

S/C = 5.0S/C = 2.5S/C = 1.0

Reforming equilibrium temperature, °C

0

20

40

60

80

100Methane conversion, %

1 bar abs 20 bar abs

1000

CH4 + H2O CO + 3H2 (-DH0298 = -206 kJ/mol)

Page 10: Launch of MK-181 - fysik.dtu.dk

10

Adiabatic pre-reforming

• Temperatures typically 400-600°C• Feed flexibility – conversion of HHC• Reducing size of down stream reformers• Removes traces of sulphur

Natural Gasand Steam

CH4, CO, CO2, H2

Page 11: Launch of MK-181 - fysik.dtu.dk

11

Tubular steam reforming

Heat

Heat

Heat

Heat

Heat

Feed

Catalyst

~500°C

~900°C

Page 12: Launch of MK-181 - fysik.dtu.dk

12

Autothermal reforming/secondary reforming

Combustion zoneCH4 + 1½O2 CO + 2H2O

Thermal and catalytic zonesCH4 + H2O CO + 3H2CO + H2O CO2 + H2

Air or Oxygen

Natural gas,or reformed gas+ steam

burner

Synthesis gas

Page 13: Launch of MK-181 - fysik.dtu.dk

13

The heart in steam reforming is the nickel catalysts

Ni(111),0.20nm

Ni(200),0.18nm

CnH2n+2 + nH2O nCO + (2n + 1) H2

CH4 + H2O CO + 3H2

CO + H2O CO2 + H2

Ni

Ni

Ni

ProcessGas

O2 /Air

Page 14: Launch of MK-181 - fysik.dtu.dk

14

Fundamental and industrial aspects of heterogeneous catalysis

• Industrial methanol production – equipment for producing synthesis gas

• Properties of nickel steam reforming catalysts• Sintering (stability of Ni particles)• Carbon formation over Ni catalysts

• Methanol synthesis catalysts:• How Zn helps Cu make methanol

• Conclusions

Industrial methanol production

Page 15: Launch of MK-181 - fysik.dtu.dk

15

Environmental TEM (ETEM)

Philips CM300-ST FEG

gas path:x = 5.4mm

x

FEG

Sample

Detectors- Tietz F114 CCD- GIF2000

Gas handling

QMS

FEG

Sample

Gas handling

Aberrationcorrector

Detectors-US1000 & Tridiem 863

§ 1-20mbar, 10-50Nml/min, 600-900oC

FEI Titan 80-300 Cs-corr

Adv. Catal. 50, 77 (2006)

4mm

S. Helveg

Page 16: Launch of MK-181 - fysik.dtu.dk

16

Sintering of metal catalysts

Ni/MgAl2O4

H2O:H2 = 1:1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

Time (hours)

Rel

ativ

eN

iare

a

800 °C

650 °C

Nickel steam reforming catalysts

H2O:H2 = 1:1, 30 bar g

Page 17: Launch of MK-181 - fysik.dtu.dk

17

Sintering in steam reforming

Tubular reformingPrereforming Autothermal reforming

400-600°C 500-900°C 900-1200°CHigh steam partial pressures

2 mbar H2,750°C, 5h

2 mbar H2:H2O=1:1750°C, 5h

2 mbar H2,500°C, red.

T. Hansen PhD thesis (2006)Ni/MgAl2O4

Page 18: Launch of MK-181 - fysik.dtu.dk

18

Thermal stability of nickel catalysts

Sintering

Ni MgAl2O4 orAl2O3

Nickel steam reforming catalystsdeactivates over time due tothermal sintering

H2, 700°CNi/MgAl2O4

Page 19: Launch of MK-181 - fysik.dtu.dk

19

Is it possible to reduce sintering?

After aging at 850°C, 30 bar g and H2O/H2 = 6 during 10 days

Huge Ni particles > 200 nm

Ni bimetallicparticles 5 – 50nm

Ni/Al2O3 Ni/Al2O3 + 11mol% precious metal

• Alloy with another metal:

F.Morales-Cano et al. (2012)

NiNi Ni

Promotor

carrier carrier

Page 20: Launch of MK-181 - fysik.dtu.dk

20

Rings retrieved after 6months in an ATR

• Promoted catalysts tested in an ATR for 6 months• Ni volatilization and sintering are suppressed in

the presence of precious metal promotorNi/Al2O3

p-Ni/Al2O3

Catalyst after 6 months ATR operation

Ni/Al2O3 Ni/Al2O3 + preciousmetalF.Morales-Cano et al. (2012)

InventionExposure to Industrial Conditions

Page 21: Launch of MK-181 - fysik.dtu.dk

21

Fundamental and industrial aspects of heterogeneous catalysis

• Industrial methanol production – equipment for producing synthesis gas

• Properties of nickel steam reforming catalysts• Sintering (stability of Ni particles)• Carbon formation over Ni catalysts

• Methanol synthesis catalysts:• How Zn helps Cu make methanol

• Conclusions

Industrial methanol production

Page 22: Launch of MK-181 - fysik.dtu.dk

22

Effect of whisker carbon formation

Decreasing H2O/CH4

Page 23: Launch of MK-181 - fysik.dtu.dk

23

How does a carbon fiber grow?

Graphitewhisker

4 2

Ni

20nm

Ni

C fiber

Ni

C fiber 1

2

Baker et al, J. Catal. 26, 51 (1972), ibid.30, 86 (1973)

?

Page 24: Launch of MK-181 - fysik.dtu.dk

24

Imaging of carbon formation

• CH4:H2=1:1, 2.1mbar, 536°C• Image size: 22x22nm2

• 10 frames/s (display rate x2.5)• Growth rate ~1nm/s

Nature 427 (2004) 426

Page 25: Launch of MK-181 - fysik.dtu.dk

25

Graphene Formation at Ni Steps

5nm

0s 0.2s 0.4s 0.6s

0.8s 1.0s 1.2s 1.4s

§ Spontaneous formation of mono-atomic Ni step sites§ Transport of C and Ni atoms

Page 26: Launch of MK-181 - fysik.dtu.dk

26

Surface dynamics

§ CH4:H2=1:1, 2.1 mbar, 525°C§ Image size: 21.3x21.3nm2, 10 frames/s

(display rate x2.5)

Nature 427 (2004) 426; Phys. Rev. B 73, 115419 (2006)

C H2

CH4

NiIIIIII

Ni

I: Surface transport ofC 1.42eV

II: Subsurfacetransport of C 1.55eV

III: Bulk C transport 2.33eV

Experimental GrowthBarriers 1.3-1.5eV

DFT - energy barriers for C transport

Page 27: Launch of MK-181 - fysik.dtu.dk

27

Effect of Ni particle size on the limits for carbon formation

Bengaard et al. J. Catal. 209, 354 (2002)

Carbon formation in a mixture ofC4H10/H2/H2O/He

99

100

101

102

103

104

575 625 675 725 775 825 875Temperature (K)

Rel

ativ

ew

eigh

t(%

)15%Ni/MgAl2O4

0.92%Ni/MgAl2O4

dNi = 102 nm

dNi = 7 nm99

100

101

102

103

104

575 625 675 725 775 825 875Temperature (K)

Rel

ativ

ew

eigh

t(%

)15%Ni/MgAl2O4

0.92%Ni/MgAl2O4

dNi = 102 nm

dNi = 7 nm

Graphitewhisker

NiNi

Page 28: Launch of MK-181 - fysik.dtu.dk

28

Effect of nanoparticle size

§ Energy gained by forming carbon layers

§ Stablizing interactions between the carbon layers

§ Bending the layers offsets the stabilization

Peng, Somodi, Helveg, Kisielowski,Specht, Bell, J. Catal. 2012, 286, 22.

Pt/MgO exposed to C2H6:H2:He=12:15:33 mL/min 600 oC

Pt NPsca. 2nm

Pt NPsca. 4nm

Page 29: Launch of MK-181 - fysik.dtu.dk

29

Fundamental and industrial aspects of heterogeneous catalysis

• Industrial methanol production – equipment for producing synthesis gas

• Properties of nickel steam reforming catalysts• Sintering (stability of Ni particles)• Carbon formation over Ni catalysts

• Methanol synthesis catalysts:• How Zn helps Cu make methanol

• Conclusions

Industrial methanol production

Page 30: Launch of MK-181 - fysik.dtu.dk

30

7 m

~4 cm

Industrial methanol synthesis

Methanol synthesis from CO, CO2, H2

CO2 + 3 H2 → CH3OH + H2OCO + 2 H2 → CH3OHCO + H2O ↔ CO2 + H2

H2, CO, CO2

CH3OH

T range: 200-300oCP range: 50-100 barCatalyst pellets 4-6 mm

CH3OH

RecycleCompressor Purge

Make-upgas

Rawmethanol

Rawproductseparator

MethanolReactor

Page 31: Launch of MK-181 - fysik.dtu.dk

31

Laboratory and pilot testing of methanol catalysts

Piteå, SwedenRavnholm, Denmark

Page 32: Launch of MK-181 - fysik.dtu.dk

32

The methanol catalystCu/ZnO/Al2O3

• Catalyst consists of Cu, ZnO, and Al2O3

ZnO

Cu

Al2O3

Zn: Increase dispersion,stabilizer, promotor

Al: Increase dispersion, stabilizer

Cu: Active metal

Page 33: Launch of MK-181 - fysik.dtu.dk

33

How does Zn help Cu make methanol?Cu/ZnO/Al2O3

• The role of ZnO:

- ZnOx over-layers?

Lunkenbein et. al. Angew. Chem. Int. Ed. 54 (2015) 4544–4548

Schott et. al. Angew. Chem. Int. Ed. 52 (2013) 11925 –11929

Page 34: Launch of MK-181 - fysik.dtu.dk

34

How does Zn help Cu make methanol?Cu/ZnO/Al2O3

• The role of ZnO:

- ZnOx over-layers?

- Morphology changes?

Grunwaldt et al. J. Catal. 194 (2000) 452–460 Hansen et al. Science 295 (2002) 2053-2055

Page 35: Launch of MK-181 - fysik.dtu.dk

35

How does Zn help Cu make methanol?Cu/ZnO/Al2O3

• The role of ZnO:

- ZnOx over-layers?

- Morphology changes?

- Surface alloying?

Sano et al. J. Phys. Chem. B 106 (2002) 7627–7633Behrens et al. Science 336 (2012) 893 -897

Page 36: Launch of MK-181 - fysik.dtu.dk

36

Combining UHV and plug-flow reactor

Fixed bed reactorHPC+UHV systemMeOH catalyst

Parallel approach

Characterization

HydrogenH

1HydrogenH

1

H2-treatment

:16h

• Characterization:X-ray Photoelectron Spectroscopy (XPS)Temperature Programmed Desorption of Hydrogen (H2-TPD)Reactive Frontal Chromatography by Nitrous Oxide (N2O-RFC)

Kuld et al. Angew. Chem. Int. 126 (2014) 5941–5945

Page 37: Launch of MK-181 - fysik.dtu.dk

37

ResultsX-ray Photoelectron Spectroscopy (XPS)

• Analysis is focused on the Zn LMM Auger line• Quantify relative fractions of Zn and ZnO• Zn is increasing with H2 partial pressure

1200 1000 800 600 400 200 0

OK

LL

Cu

2p

Zn2p

Cu

LVV

ZnLM

M

O1s

C1s

Zn3p

Cu

3p

Cu

3s

Zn3s

Al Ka = 1486.6 eV

Inte

nsity

[cou

nts/

s]

Binding energy / [eV]

HPC+UHV system

Kuld et al. Angew. Chem. Int. 126 (2014) 5941–5945

510 505 500 495 490 485

Inte

nsity

Binding energy/ [eV]

ZnO

Zn LMM

ZnpH2 = 1 bar

pH2 = 0.3 barpH2 = 0.1 bar

pH2 = 0.06 bar

pH2 = 0.01 baroxidized

505 500 495 490 485

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

Inte

nsity

/a.u

.

Binding energy / eV

Al Ka 1486.6 eV Zn L3M4,5M4,5

Page 38: Launch of MK-181 - fysik.dtu.dk

38

Cu

CharacterizationThe fixed bed reactor system

Fixed bed reactor

Kuld et al. Angew. Chem. Int. 126 (2014) 5941–5945

H2-TPD

Page 39: Launch of MK-181 - fysik.dtu.dk

39

Zn

Cu

CharacterizationThe fixed bed reactor system

H2-TPD

Fixed bed reactor

Kuld et al. Angew. Chem. Int. 126 (2014) 5941–5945

N2O -RFC

Page 40: Launch of MK-181 - fysik.dtu.dk

40

ResultsComparison of data

• Comparing the data from two systems showquantitatively same results

• Tool to measure the Zn coverage

lr

HPC+UHV systemFixed bed reactor

Kuld et al. Angew. Chem. Int. 126 (2014) 5941–5945

Page 41: Launch of MK-181 - fysik.dtu.dk

41

Status

• Incorporation of Zn atoms in the surface of Cu nanoparticles• Relatively fast process (few hours)• Occurs under very mild conditions (PH2 ≥ 0.01bar/220°C)

• What is in the Zn coverage during synthesis?!• What is the influence on activity?

Nakamura et al. J. Catal. 160 (1996) 65-75

Model catalyst

Page 42: Launch of MK-181 - fysik.dtu.dk

42

Modeling of Zn in CO, CO2, H2 atmospheresCuZn alloy formation

• ZnO reduces and alloys with Cu in synthesis via:

ZnO(s) + CO = ZnCu + CO2 (1)ZnO(s) + H2 = ZnCu + H2O (2)

• The amount of Zn in a Cu NP:

• Zn coverage is established by segregation energies:

Cu

ZnOCO, CO2 Zn

Cu

ZnCu

Zn

ZnO + CO + Cu = ZnCu + CO2

ln X =−

− ln(γ ) − ln +4γ

ρ−

4γρ

=(1 − )(1 − )

ZnCu,bulk + CuCu,surf = ZnCu,surf + CuCu,bulk

Kuld et al. Science 352 (2016) 969-974

Page 43: Launch of MK-181 - fysik.dtu.dk

43

Modeling qZn for Cu nanoparticlesEffect of CO/CO2 ratio

• Segregation energies of Zn from bulk Cu toterraces, steps, and kinks are calculated by DFT

• Energies are corrected for Zn-Zn interaction

• qZn for a Cu nanoparticle is determined from thefraction of different surface sites in a cubo-octahedron1

Cu cubo-octrahedron size of dCu = 88Å (closest to the crystalsize of dCu = 85Å and dZnO = 87Å determined by XRD)

Kuld et al. Science 352 (2016) 969-9741Hardeveld and Hartog Surf. Sci. 15 (1969) 189-230

Page 44: Launch of MK-181 - fysik.dtu.dk

44

Measurement of the Zn coverageMeOH catalyst exposed to different well-defined gas mixtures

• Direct Steady state measurements of Zn coveragein model gas atmospheres.

• Catalyst samples exposed to different CO/CO2,H2O/H2, and synthesis gasmixtures

=/0.96 −

/0.96

Kuld et al. Science 352 (2016) 969-974

Page 45: Launch of MK-181 - fysik.dtu.dk

45

MeOH activity vs. qZn

Fixed bed reactorMeOH catalyst

Kuld et al. Science 352 (2016) 969-974

• Zn coverage established by H2-treatment• MeOH activity at 1 bar, CO/CO2/H2 = 18/18/64

and T: [90–140°C]• Relative MeOH activity was established at 130°C

(ramp down)• Strong dependency of qZn on activity

Page 46: Launch of MK-181 - fysik.dtu.dk

46

Model predictionsEffect of particle size

• Thermodynamic model of Cu/Zn alloying:

• Combined with a second-order polynomial fit ofqZn and ActMeOH

• A huge increase in activity is seen when the ZnOparticle size is decreased

Kuld et al. Science 352 (2016) 969-974

ln X =−

− ln(γ ) − ln +4γ

ρ−

4γρ

CO/CO2 = 0.5

Page 47: Launch of MK-181 - fysik.dtu.dk

47

Fundamental and industrial aspects of heterogeneous catalysis

• The mechanisms for sintering of nickel particles can be used to develop new catalysts

• Whisker carbon formation involves surface diffusion of carbon.

• Whisker carbon limits depends on particle size

• ZnO forms a surface alloy in Cu particles

• The Zn coverage in Cu is controlled by the gas environment during synthesis

• Zn in Cu boosts the activity

• Possibility to engineer better methanol catalysts

Industrial methanol production - conclusions

Page 48: Launch of MK-181 - fysik.dtu.dk

48

AcknowledgementsAuthors, contributorsHaldor Topsoe A/S• Sebastian Kuld

• Max Thorhauge

• Stig Helveg

• Christian F. Elkjær

• Hanne Falsig

• Bodil Voss

• Poul Georg Moses

Technical University of Denmark, DTU• Ib Chorkendorff

• Christian Conradsen

• Thomas W. Hansen

Stanford University• J.K. Nørskov

• F. Abild-Pedersen

University of New Mexico• A.K. Datye

• A.T Delariva

• S.R Challa

Page 49: Launch of MK-181 - fysik.dtu.dk

Thank you for your attention