Top Banner
Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons G. Hoekstra Section Computational Science, Faculty of Science University of Amsterdam [email protected] 28/09/2007
21

Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Aug 11, 2019

Download

Documents

dinhcong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Lattice-Boltzmann Simulations of ParticleSuspensions in Sheared Flow

Eric Lorenz, Alfons G. Hoekstra

Section Computational Science, Faculty of ScienceUniversity of Amsterdam

[email protected]

28/09/2007

Page 2: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Outline

• Lattice-Boltzmann Method (LBM)• Suspension Modeling with LBM• Lees-Edwards Boundary Conditions (LEBC) for LBM Suspensions• Rheology of Suspensions (Validation of LEBC)• Some Cluster Properties

1

Page 3: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Lattice-Boltzmann Method (LBM)

2

Page 4: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

LBM’s Predecessor: Lattice-Gas Automaton

• identical particles on a lattice (space, time AND velocities discrete)• propagation• collision: particles reshuffled, mass and momentum conserved

• Frisch, Hasslacher, Pommeau (1986): LGA on hexagonal lattice→ Navier-Stokes

3

Page 5: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Lattice-Boltzmann method

• particles replaced by their ensemble average (reduction of noise):distribution function fi(r, t), giving the probability of finding a particle at site r attime t flying with velocity ci

• evolution follows the Boltzmann-equation for a dilute gas,

∂tfi(x, v, t) + v∇xf(x, v, t) +F

mf(x, v, t) = coll(f(x, v, t)),

in its discretized form (here, the simplest LBGK scheme, single-relaxation time)

fi(r + ei, t+ 1)− fi(r, t) + Fi =1

τ(f

eqi (r, t)− fi(r, t))

where:r lattice citeei velocity, pointing to adjacent nodeτ relaxation time.

• kinematic viscosity ν = (2τ − 1)/6

4

Page 6: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Lattice-Boltzmann method

• moments of fi: density, momentum, momentum flux density

ρ(r, t) =

QXi

fi(r, t)

ρ(r, t) · u(r, t) =

QXi

eifi(r, t)

Π =

QXi

eieifi(r, t)

• equilibrium function (for a weakly compressible fluid) for Ma� 1

feqi (r, t) = ρ(r, t)

“Ai + Bi(ei · u) + Ci(ei · u)

2+Diu

2”

agrees with Maxwell-Boltzmann distribution up to O(u2)

• direction dependent coefficients determined by conservation of mass, momentumand kinetic energy (total energy ρθ + ρuu for thermal LBM)

5

Page 7: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

D2Q9 LBM

• isotropy requires at least 9 velocities in 2dimensions

e0 = ( 0, 0),e1 = ( 1, 0), e2 = ( 0, 1),e3 = (−1, 0), e4 = ( 0,−1),e5 = ( 1, 1), e6 = (−1, 1),e7 = (−1,−1), e8 = ( 1,−1)

847

3

6 2 5

1

• coefficients in f eqi

Ai Bi Ci Di

i = 0 4/9 0 0 -2/3i = 1, 2, 3, 4 1/9 1/3 1/2 -1/6i = 5, 6, 7, 8 1/36 1/12 1/8 -1/24

6

Page 8: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Modelling of Suspensions with LBM

7

Page 9: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

The ALD method for suspended particles

(Aidun, Lu, Ding, 2003)

• particles mapped to lattice→ broken links

• virtual fluid inside shell• arbitrary surfaces possible

• solid-fluid interaction: (bounce-back at the links with moving wall)

fi(x, t+ 1) =

f−i(x, t

+) + 2ρBiub · ei if BL

fi(x + e−i, t+) else

• momentum exchange, force, torque:

δpi = 2ei[fi(x, t+ 1)− ρBiub · ei]

Fi(x, t0 +1/2) = δpi/∆t, Ti(x, t0 +1/2) = (x−X(t0)×Fi(x, t0 +1/2))

8

Page 10: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Lees-Edwards Boundary Conditions for LBMSuspensions

9

Page 11: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Lees-Edwards Boundaries for Suspensions

wu

f5

Procedure for boundary-crossing densities:- Mapping to off-grid copy (distribute f over destination nodes according to sub-gridshift ratio):

f5(x, 1) = (1−mod1[ut]) · f5(x+ int[x− ut], ymax)

+ mod1[ut] · f5(x+ int[x− ut− 1], ymax)

10

Page 12: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Lees-Edwards Boundaries for Suspensions

wu

f5

Galilei-Transformation of boundary-crossing densities to new reference frame

• difference in fi to get momentum transfer right (all macroscopic variables and theirderivatives will stay the same, image is moving as block at const velocity)

∆f5 = f5(u + uw)− f5(u)

≈ feq5 (u + uw)− f eq

5 (u)

−τ(∂t[feq5 (u + uw)− f eq

5 (u)] + u5∂r[feq5 (u + uw)− f eq

5 (u)])

≈ feq5 (u + uw)− f eq

5 (u)

• last step: only u-dependence kept, skip O(∂) terms because their 0th and 1stmoments neglectible (Wagner, Pagonabarraga, 2006)

11

Page 13: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Lees-Edwards Boundaries for Suspensions

wu

f5

Sub-grid Boundary Reflection (according to sub-grid shift ratio):

• modification of distribution step to allow fluid-solid interaction

fi(x, t+ 1) = (1−mod1[uwt]) ·fi(x− int[x− uwt] + ei, t

+)

f−i(x, t+)− ρBiub · ei if BL

+ mod1[uwt] ·fi(x− int[x− uwt+ 1] + ei, t

+)

f−i(x, t+)− ρBiub · ei if BL

12

Page 14: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Rheology of Suspensions

13

Page 15: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Apparent Viscosity, Dependence on Concentration φ

• for a dilute dispersed suspension (Einstein, 1906): νapp = νf(1 + 2.5φ)

assumptions: no hydrodynamical interaction (∼ φ2) , Brownian motion insignificant• semi-empirical Krieger-Dougherty relation:

νapp = νf

„1−

φ

φmax

«−[η]φmax

(1)

• simulation results for R = 8, Re = 0.001

0

1

2

3

4

5

6

7

0 0.1 0.2 0.3 0.4 0.5

ν app

/νf

φ

Krieger-DoughertyEinstein

Re=0.001

14

Page 16: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

App. Viscosity νapp as a Function of Shear Rate γ

• generic behaviour

νlo

g

I II III IV V

log γ

φ

– I - Newtonian plateau: Brownian motion dominates– II - shear-thinning: increasing shear decreases disorder of particle structure– III - Newtonian plateau: particles strongly orientated– IV - shear-thickening: local structures, broken by shear, momentum transfer via

particles dominates– V - unknown: some experimental results show repeated shear-thinning

15

Page 17: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Shear-Thickening

• Rp = 8, Lx,y = 259 ≈ 16 · 2Rp, φ = 0.40, νf = 0.0125, uw < 0.0864

Lees-Edwards vs. planar Couette scheme

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

-2.5 -2 -1.5 -1 -0.5 0 0.5

ν eff/

(1-φ

s/φ m

ax)-[

η]φ m

ax

log(Reshear,p)

φ=0.40 (Kromkamp+)φ=0.40 (Lees-Edwards)

φ=0.40 Couette

0

20

40

60

80

100

-2.5 -2 -1.5 -1 -0.5 0

τ s,f/

τ T

log(Reshear,p)

solidfluid

0.8

0.85

0.9

0.95

1

1.05

1.1

0 50 100 150 200 250

φ(y)

/<φ>

y

Couette, φ=0.40, Re=1.8Lees-Edwards, φ=0.40, Re=1.8

-1

-0.5

0

0.5

1

0 50 100 150 200 250

u x(y

)/uw

y

Couette, φ=0.40, Re=1.8Lees-Edwards, φ=0.40, Re=1.8

• clear: Couette scheme suffers from wall effects at higher shear rates γ– wall induces different particle structures→ depletion zone→ wall slip→ lower

apparent viscosity

16

Page 18: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Particle Clusters

17

Page 19: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Emerging Particle ClustersSnapshot of a sheared suspension

Rpart = 3.75, Reshear,part ≈ 0.1, φ = 0.431, red∼high pressure

18

Page 20: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Cluster Properties

30

20

10

0

10

20

30

25 20 15 10 5 0 5 10 15 20 25

angle distribution of particle in a cluster

0.0001

0.001

0.01

0.1

1

10

100

1 10 100

n(m

)

m

Re=1.0Re=0.1

• Definition: Cluster = agglomeration of particles,connected via links d < dcrit = 2.2Rp (Max in PDF)

• Angle distribution of linked particles shows stronganisotropy→ mostly aligned to a direction diagonal to shear

• Rod-like clusters in diagonal direction are perfect toolsto transport momentum through the system→ possibleexplanation for shear thickening behaviour

• KCM model (Raiskinmaki, 2004)– tube rotates in shear: particles initially uncorrelated,

density of centres of mass Poisson distributed– tube deformes, particles collide

n(m) ∼ m−1.5

exp(−m/m0)

m0 = 1/(λ− log(λ)− 1), λ = φ/φc(γ)

– cutoff cluster size m0 diverges when φ→ φc(γ)

19

Page 21: Lattice-Boltzmann Simulations of Particle Suspensionsjanke/CompPhys07/Folien/lorenz.pdf · Lattice-Boltzmann Simulations of Particle Suspensions in Sheared Flow Eric Lorenz, Alfons

Outlook

• integration into the COAST multi-scale environment

φ

γ.

u

Γν

Further objective: blood flow

• implementation of (deformable) RBC-like particles• implementation of walls, LCs and their sticking behaviour (LC rolling)

Thank you!

20