Top Banner
Large scale configuration interaction calculations for nuclear structure Calvin Johnson, Department of Physics and Computational Science Research Center San Diego State University cjohnson @ mail . sdsu . edu Collaborators: W. Erich Ormand, Lawrence Livermore Plamen G. Krastev, SDSU/Harvard Ken McElvain, UC Berkeley/LBNL C. W. Johnson, W. E. Ormand, and P. G. Krastev, Comp. Phys. Comm. 184, 2761-2774 (2013)
125

Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Mar 02, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Large scale configuration interaction calculations for nuclear structure

Calvin Johnson, Department of Physics and Computational Science Research Center San Diego State University cjohnson @ mail . sdsu . edu Collaborators: W. Erich Ormand, Lawrence Livermore Plamen G. Krastev, SDSU/Harvard Ken McElvain, UC Berkeley/LBNL

C. W. Johnson, W. E. Ormand, and P. G. Krastev, Comp. Phys. Comm. 184, 2761-2774 (2013)

Page 2: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

THE BASIC PROBLEM

2  

The  basic  science  question  is  to  model  detailed  quantum  structure  of    many-­‐body  systems,  such  the  electronic  structure  of  an  atom,  or  structure  of  an  atomic  nucleus.  

To  answer  this,  we  attempt  to  solve  Schrödinger’s  equation:      

−2

2m∇2 + U(ri)

i∑ + V ( r i −

r j )i< j∑

%

& ' '

(

) * * Ψ( r 1, r 2, r 3…) = EΨ

Page 3: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

THE BASIC PROBLEM

3  

The  basic  science  question  is  to  model  detailed  quantum  structure  of    many-­‐body  systems,  such  the  electronic  structure  of  an  atom,  or  structure  of  an  atomic  nucleus.  

This  differential  equation  is  too  dif<icult  to  solve  directly      

ˆ H Ψ = E Ψ

−2

2m∇2 + U(ri)

i∑ + V ( r i −

r j )i< j∑

%

& ' '

(

) * * Ψ( r 1, r 2, r 3…) = EΨ

so we use the matrix formalism

Page 4: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

THE BASIC PROBLEM

4  

The  basic  science  question  is  to  model  detailed  quantum  structure  of    many-­‐body  systems,  such  the  electronic  structure  of  an  atom,  or  structure  of  an  atomic  nucleus.  

This  differential  equation  is  too  dif<icult  to  solve  directly      

ˆ H Ψ = E Ψ

−2

2m∇2 + U(ri)

i∑ + V ( r i −

r j )i< j∑

%

& ' '

(

) * * Ψ( r 1, r 2, r 3…) = EΨ

so we use the matrix formalism

Now the dimensions can be large, up to 2 x 1010!

Page 5: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

THE GOAL OF THIS TALK…

5  

…is  to  get  “under  the  hood”  of  a  shell-­‐model    con<iguration-­‐interaction  code  to  stimulate  discussion  of  ef<icient  algorithms….  

Page 6: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

THE GOAL OF THIS TALK…

6  

In  particular  I  will  compare    “matrix  storage”  codes:  -­‐-­‐  more  straightforward  -­‐-­‐  requires  more  memory  vs.  “on-­‐the-­‐6ly”  or  “factorization”  algorithms  -­‐-­‐  uses  less  memory  -­‐-­‐  more  complex  algorithmically  

Page 7: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

ANATOMY OF SHELL MODEL CODES

7  

Basis:  trade  off  between            “correlated”  bases  which                              contains  more  correlations  (physics)                                                and  thus  need  “fewer”  basis  states                            but  are  more  complicated  to  handle                            and  lead  to  slower  algorithm            e.g.  states  with  good  J  (“J-­‐scheme”)                          or  with  known  physics  such  as  deformation                                                                                    or              “uncorrelated”  bases  which                            are  easier  to  handle  -­‐>  fast  algorithms                                    but  need  more  states  to  build  up  correlations          e.g.    Slater  determinants  with  good  M  (“M-­‐scheme”)    

Page 8: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

ANATOMY OF SHELL MODEL CODES

8  

Basis:  trade  off  between            “correlated”  bases  which                              contains  more  correlations  (physics)                            but  are  more  complicated  to  handle                            and  lead  to  slower  algorithm            e.g.  states  with  good  J  (“J-­‐scheme”)                          or  with  known  physics  such  as  deformation                                                                                    or              “uncorrelated”  bases  which                            are  easier  to  handle  -­‐>  fast  algorithms                                    but  need  more  states  to  build  up  correlations          e.g.    Slater  determinants  with  good  M  (“M-­‐scheme”)    

It’s not our task here to pass judgement as to which is better but to

delineate strengths and weaknesses

Page 9: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

ANATOMY OF SHELL MODEL CODES

9  

Hamiltonian:  trade  off  between        “matrix  storage”  codes:  -­‐-­‐  more  straightforward  -­‐-­‐  requires  more  memory    vs.  “on-­‐the-­‐6ly”  or  “factorization”  algorithms  -­‐-­‐  uses  less  memory  -­‐-­‐  more  complex  algorithmically    

The more correlated the basis, the more this is indicated (especially since basis dimension is smaller)

Works more effectively with less correlated bases

Page 10: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

SOME SHELL-MODEL CODES Matrix storage: Oak Ridge-Rochester (small matrices) Glasgow-Los Alamos (M-scheme, stored on disk; introduced Lanczos) OXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM; plans for J-scheme, SU(3)-scheme w/LSU) MCSM/ Tokyo (J-scheme from selected states) Importance Truncation SM/Darmstadt (M-scheme from selected states) Sym Adapted SM / LSU (J-scheme + symplectic; see T. Dytrych’s talk)

10  

Factorization: ANTOINE Strasbourg (M-scheme; originator of factorization) NATHAN Strasbourg (J-scheme) EICODE (J-scheme) NuShell/NuShellX (J-scheme) MSHELL64 / KSHELL Tokyo (M-scheme) REDSTICK+BIGSTICK/ LSU-SDSU-Livermore

Page 11: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

THE KEY IDEAS Basic problem: find extremal eigenvalues of very large, very

sparse Hermitian matrix

Lanczos algorithm

fundamental operation is matrix-vector multiply

11  

                       

Despite sparsity, nonzero matrix elements can require TB of storage  

Only a fraction of matrix elements are unique; most are reused. Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

The  algorithms  described  today  are  best  applied  to  many  body  systems  with  (a) two  “species”  (protons  and  neutrons,  or  +1/2  and  -­‐1/2  electrons)  (b) single-­‐particle  basis  states  with  good  rotational  symmetry  (j,  m)  

Page 12: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm fundamental operation is matrix-vector multiply

12  

                       

ˆ H Ψ = E Ψ

we use the matrix formalism

Ψ = cα αα

Hαβ = α ˆ H β

Hαβcββ

∑ = Ecα if

α β = δαβ

Page 13: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm fundamental operation is matrix-vector multiply

13  

                       

Hαβ = α ˆ H β* H is generally a very large matrix – dimensions up to 1010 have been tackled. * H is generally very sparse. * We usually only want a few low-lying states

                        Lanczos algorithm!

Page 14: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm fundamental operation is matrix-vector multiply

14  

                       

Lanczos algorithm!

A v 1 =α1 v 1 + β1

v 2

A v 2 = β1 v 1 +α2

v 2 + β2 v 3

A v 3 =

β2 v 2 +α3

v 3 + β3 v 4

A v 4 =

β3 v 3 +α4

v 4 + β4 v 5

Page 15: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

Lanczos algorithm fundamental operation is matrix-vector multiply

15  

                       

Lanczos algorithm!

A v 1 =α1 v 1 + β1

v 2

A v 2 = β1 v 1 +α2

v 2 + β2 v 3

A v 3 =

β2 v 2 +α3

v 3 + β3 v 4

A v 4 =

β3 v 3 +α4

v 4 + β4 v 5

matrix-vector multiply

Page 16: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

16  

I need to quickly cover: • How the basis states are represented • How the Hamiltonian operator is represented • Why most matrix elements are zero • Typical dimensions and sparsity

THE BASIC PROBLEM

Page 17: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

HOW TO BUILD AN M-SCHEME BASIS

17  

(You probably already know this, my apologies! We might

still learn something.)

Page 18: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

18  

• How the basis states are represented

This  differential  equation  is  too  dif<icult  to  solve  directly      

−2

2m∇2 + U(ri)

i∑ + V ( r i −

r j )i< j∑

%

& ' '

(

) * * Ψ( r 1, r 2, r 3…) = EΨ

Can  only  really  solve  1D  differential  equation      

−2

2md2

dr2+U(r)

#

$ %

&

' ( φi(r) = εiφi(r)

HOW TO BUILD AN M-SCHEME BASIS

Usually assume spherical symmetry!

Page 19: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

19  

• How the basis states are represented

Can  only  really  solve  1D  differential  equation      

−2

2md2

dr2+U(r)

#

$ %

&

' ( φi(r) = εiφi(r)

φi( r ){ }

Single-particle wave functions labeled by, e.g., n, j, l, m Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc Nuclear: 0s1/2, 0p3/2, 0p1/2, 0d5/2, 1s1/2, 0d3/2, etc

HOW TO BUILD AN M-SCHEME BASIS

Page 20: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

20  

• How the basis states are represented

Can  only  really  solve  1D  differential  equation      

−2

2md2

dr2+U(r)

#

$ %

&

' ( φi(r) = εiφi(r)

φi( r ){ }

Ψ( r 1, r 2, r 3…) = φn1

( r 1)φn2( r 2)φn3

( r 3)…φnN( r N )

Product wavefunction (“Slater Determinant”)

HOW TO BUILD AN M-SCHEME BASIS

Page 21: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

21  

• How the basis states are represented

Ψ( r 1, r 2, r 3…) = φn1

( r 1)φn2( r 2)φn3

( r 3)…φnN( r N )

Product wavefunction (“Slater Determinant”)

Each many-body state can be uniquely determined by a list of “occupied” single-particle states = “occupation representation”

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0

HOW TO BUILD AN M-SCHEME BASIS

Page 22: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

22  

• How the basis is represented

“occupation representation”

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0ni 1 2   3   4   5   6   7  α=1   1   0   0   1   1   0   1  α=2   1   0   1   0   0   1   1  α=3   0   1   1   1   0   1   0  

HOW TO BUILD AN M-SCHEME BASIS

Convenient for digital computers!

Page 23: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

23  

• How the basis is represented

some technical details: the “M-scheme”

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0

Because Jz commutes with H, we can use a basis with M fixed = “M-scheme” For any Slater determinant, the total M = sum of the ml’s, making construction of an M-scheme basis easy. (In general, any J-scheme basis state is a sum of M-scheme states – or a projection integral which is also a sum)

HOW TO BUILD AN M-SCHEME BASIS

Page 24: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

A SPARSE MATRIX

24  

• How the Hamiltonian is represented

“occupation representation”

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0

ˆ H = Tij ˆ a i+ ˆ a j

ij∑ + 1

4 Vijkl ˆ a i+ ˆ a j

+ ˆ a lijkl∑ ˆ a k

ni 1 2   3   4   5   6   7  α=1   1   0   0   1   1   0   1  α=2   1   0   1   0   0   1   1  α=3   0   1   1   1   0   1   0  

Page 25: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

25  

• How the Hamiltonian is represented

“occupation representation”

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0

ˆ a 3+ ˆ a 6

+ ˆ a 4 ˆ a 5 α =1 = α = 2

ni 1 2   3   4   5   6   7  α=1   1   0   0   1   1   0   1  α=2   1   0   1   0   0   1   1  α=3   0   1   1   1   0   1   0  

A SPARSE MATRIX

Page 26: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

26  

• How the Hamiltonian is represented

“occupation representation”

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0

ˆ a 2+ ˆ a 4

+ ˆ a 1 ˆ a 7 α = 2 = α = 3

ni 1 2   3   4   5   6   7  α=1   1   0   0   1   1   0   1  α=2   1   0   1   0   0   1   1  α=3   0   1   1   1   0   1   0  

A SPARSE MATRIX

Page 27: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

27  

• Why most matrix elements are zero

“occupation representation”

α = ˆ a n1

+ ˆ a n2

+ ˆ a n3

+ … ˆ a nN

+ 0

ˆ a 2+ ˆ a 4

+ ˆ a 6+ ˆ a 1 ˆ a 5 ˆ a 7 α =1 = α = 3

ni 1 2   3   4   5   6   7  α=1   1   0   0   1   1   0   1  α=2   1   0   1   0   0   1   1  α=3   0   1   1   1   0   1   0  

need 3 particles to interact simultaneously!

A SPARSE MATRIX

Page 28: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

28  

• Typical dimensions and sparsity

Nuclide valence space

valence Z

valence N

basis dim

sparsity (%)

20Ne “sd” 2 2 640 10 25Mg “sd” 4 5 44,133 0.5 49Cr “pf” 4 5 6M 0.01 56Fe “pf” 6 10 500M 2x10-4

This corresponds to 2 Tb of data!

A SPARSE MATRIX

Page 29: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

A PROBLEM….

Despite sparsity, nonzero matrix elements can require TB of storage

29  

Nuclide   Space   Basis  dim   matrix  store  

56Fe   pf   501  M   3.5  Tb  7Li   Nmax=12   252  M   3.6  Tb  7Li   Nmax=14   1200  M   23  Tb  12C   Nmax=6   32M   0.2  Tb  12C   Nmax=8   590M   5  Tb  12C   Nmax=10   7800M   111  Tb  16O   Nmax=6   26  M   0.14  Tb  16O   Nmax=8   990  M   9.7  Tb  

Spread nonzero matrix elements over many MPI compute nodes:

Page 30: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

A SPARSE MATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

30  

(Cornelius Lanczos)

My algorithm is ideal as one can use sparse matrix-vector multiplication

That’s true, but there is more to the story…

Page 31: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

RECYCLED MATRIX ELEMENTS Only a fraction of matrix elements are unique; most are reused.

Reuse of matrix elements understood through spectator particles.

31  

ni   1   2   3   4   5   6   7   8  α=1   1   1   1   0   0   0   0   1  α=2   1   1   0   1   1   0   0   0  α=3   0   1   1   0   0   1   0   1  α=4   0   1   0   1   1   1   0   0  α=5   0   0   1   0   0   1   1   1  α=6   0   0   0   1   1   1   1   0  

All of these have the same matrix element: V4538

Page 32: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

RECYCLED MATRIX ELEMENTS Only a fraction of matrix elements are unique; most are reused.

Reuse of matrix elements understood through spectator particles.

32  

# of nonzero matrix elements vs. # unique matrix elements

Nuclide valence space

valence Z

valence N

# nonzero

# unique

28Si “sd” 6 6 26 x 106 3600 52Fe “pf” 6 6 90 x 109 21,500

Atom space # nonzero

# unique

Be CVB3 110x106 521,000

B CVB2 1.4x109 379,000

C CVB1 260x106 40,751

Page 33: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

33  

A quantum number is the eigenvalue of an operator

ˆ O Ψ = ˆ O 1 + ˆ O 2 + ˆ O 3 +…( ) Ψ1 ⊗ Ψ2 ⊗ Ψ3 ⊗…( )

For composite systems, one can apply the operator to each component separately:

Sometimes the total quantum number is a simple sum/product as is the case for Jz or parity....

...but in other cases the addition is complicated (e.g. for J2)

ˆ J z Ψ = M Ψ = (m1 + m2 + m3 +…) Ψ

Page 34: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

34  

I consider composite many-fermion systems, in particular those with 2 major components protons and neutrons or spin-up and spin-down electrons

Ψ = Ψ1 ⊗ Ψ2Each component itself is a Slater determinant which is composed of many particles

ˆ J z Ψ = M Ψ

M = M1 + M2

M1 = m1(1) + m1

(2) + m1(2) +…

Page 35: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

35  

Because the M values are discrete integers or half-integers (-3, -2, -1, 0, 1, 2, ... or -3/2, -1/2, +1/2, +3/2....) we can organize the basis states in discrete sectors

Example: 2 protons, 4 neutrons, total M = 0

Mz(π) = -4 Mz(ν) = +4

Mz(π) = -3 Mz(ν) = +3

Mz(π) =-2 Mz (ν) = +2

Page 36: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

36  

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector must combine with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M = 0

Mz(π) = -4: 2 SDs Mz(ν) = +4: 24 SDs 48 combined

Mz(π) = -3: 4 SDs Mz(ν) = +3: 39 SDs 156 combined

Mz(π) = -2: 9 SDs Mz(ν) = +2: 60 SDs 540 combined

Page 37: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

37  

In fact, we can see an example of factorization here because all proton Slater determinants in one M-sector must combine with all the conjugate neutron Slater determinants

Mz(π) = -4: 2 SDs Mz(ν) = +4: 24 SDs 48 combined

π1π 2

ν1ν 2ν 3ν 4

ν 24

× =

π1 ν1π 2 ν1π1 ν 2π 2 ν 2

π1 ν 24π 2 ν 24

Page 38: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

38  

np ααα ×=Neutron SDs

Pro

ton

SD

s

20Ne 640 66

24Mg 28,503 495

28Si 93,710 924

48Cr 1,963,461 4895

52Fe 109,954,620 38,760

56Ni 1,087,455,228 125,970

Example N = Z nuclei Nuclide Basis dim # pSDs (=#nSDs)

Page 39: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

39  

Factorization allows us to keep track of all basis states without writing out every one explicitly -- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply

ˆ H = ˆ H pp + ˆ H nn + ˆ H pnMove 2 protons; neutrons are spectators

Move 2 neutrons; protons are spectators

Move 1 proton + 1 neutron; rest are spectators

Page 40: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

40  

ˆ H ppMove 2 protons; neutrons are spectators

Example: 2 protons, 4 neutrons, total M = 0

Mz(π) = -4: 2 SDs Mz(v) = +4: 24 SDs 48 combined

There are potentially 48 × 48 matrix elements But for Hpp at most 4 × 24 are nonzero and we only have to look up 4 matrix elements

Advantage: we can store 98 matrix elements as 4 matrix elements and avoid 2000+ zero matrix elements.

Page 41: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

41  

Mz(π) = -4: 2 SDs Mz(v) = +4: 24 SDs 48 combined

Advantage: we can store 98 matrix elements as 4 matrix elements and avoid 2000+ zero matrix elements.

π1π 2

ν1ν 2ν 3ν 4

ν 24€

Hpp =H11 H12

H21 H22

"

# $

%

& '

Page 42: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

42  

Mz(π) = -4: 2 SDs Mz(v) = +4: 24 SDs 48 combined

Advantage: we can store 98 matrix elements as 4 matrix elements and avoid 2000+ zero matrix elements.

π1π 2

ν1ν 2ν 3ν 4

ν 24€

Hpp =H11 H12

H21 H22

"

# $

%

& '

Hpp π1 ν1 = H11 π1 ν1 + H12 π 2 ν1

Hpp π 2 ν1 = H12 π1 ν1 + H22 π 2 ν1

Hpp π1 ν 2 = H11 π1 ν 2 + H12 π 2 ν 2

Hpp π 2 ν 2 = H12 π1 ν 2 + H22 π 2 ν 2

Hpp π1 ν 24 = H11 π1 ν 24 + H12 π 2 ν 24

Hpp π 2 ν 24 = H12 π1 ν 24 + H22 π 2 ν 24

Page 43: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

FACTORIZATION

Reuse can be exploited using exact factorization enforced through additive/multiplicative quantum numbers

43  

Nuclide   Space   Basis  dim   matrix  store   factoriza5on  

56Fe   pf   501  M   3500  Gb   0.72  Gb  7Li   Nmax=12   252  M   3800  Gb   61  Gb  7Li   Nmax=14   1200  M   23  Tb   624  Gb  12C   Nmax=6   32M   196  Gb   3.3  Gb  12C   Nmax=8   590M   5000  Gb   65  Gb  12C   Nmax=10   7800M   111  Tb   1.4  Tb  16O   Nmax=6   26  M   142  Gb   3.0  Gb  16O   Nmax=8   990  M   9700  Gb   130  Gb  

Comparison of nonzero matrix storage with factorization

Page 44: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

44  

Space   Basis  dim   matrix  store  (2-­‐body)  

factoriza5on  (2-­‐body)  

matrix  store  

(3-­‐body)  

factoriza5on  (3-­‐body)  

Nmax=8   6  M   36  Gb   1.5  Gb   1  Tb   26  Gb  

Nmax=10   43  M   430  Gb   10  Gb   170  Tb   250  Gb  

Nmax=12   250  M   4  Tb   60  Gb  

Comparison of nonzero matrix storage with factorization 7Li

Space   Basis  dim   matrix  store  (2-­‐body)  

factoriza5on  (2-­‐body)  

matrix  store  (3-­‐body)  

factoriza5on  (3-­‐body)  

Nshell=3   0.4  M   0.8  Gb   6  Mb   10  Gb   44  Mb  

Nshell=4   45  M   330  Gb   0.3  Gb   9  Tb   4  Gb  

Nshell=5   2  G   38  Tb   16  Gb   2  Pb   140  Gb  

Nshell=6   50  G   2  Pb   87  Gb   170  Pb   3  Tb  

Page 45: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload and distribute across multiple nodes

45  

length of sides = information to be stored

Area = total # of operations

length of sides = information to be stored

We can compute the number of operations without actually counting them!

               

Then we can easily divide the work across compute nodes

Page 46: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

46  

EXECUTIVE SUMMARY ON THE BIGSTICK CODE

Uses “factorization” algorithm: Johnson, Ormand, and Krastev,

Comp. Phys. Comm. 184, 2761(2013)

Arbitrary single-particle radial waveforms Allows local or nonlocal two-body interaction Three-body forces implemented and validated Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines --can run at least dimension 300M+ on desktop --has done dimension 20 billion+ on supercomputers

45 kilolines of code Fortran 90 + MPI + OpenMP

Many-fermion code: 2nd generation after REDSTICK code (started in Baton Rouge, La.)

Inline calculations of one-body density matrices, single-particle occupations, (+ options to compute strength functions via Lanczos trick, etc.) Will add 2-body non-scalar transition operators later this year

Page 47: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0 2000 4000 6000 80000

500

1000

1500

2000

2500W

allti

me

(sec

)

0 2000 4000 6000 8000Cores

TotalLanczosMat-vec multiplyReorthogonalization

PARALLEL IMPLEMENTATION – LATEST DEVELOPMENTS

Over the past year we have dramatically improved our parallel performance (mostly through better use of MPI)

due to Ken McElvain, UC Berkeley grad student

47  

54Mn in pf shell (dim = 187 M) 200 iterations

V 7.2.12 July 2014

V 7.4.3 Feb 2015

LLNL Sierra

Page 48: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

PARALLEL IMPLEMENTATION – LATEST DEVELOPMENTS

48  V 7.4.3 Feb 2015

0 2000 4000 6000 8000Cores

0

0.2

0.4

0.6

0.8

1

Effic

ienc

y (re

lativ

e to

600

cor

es)

TotalLanczosMat-vec multiplyReorthogonalization

54Mn in pf shell (dim = 187 M) 200 iterations

Strong scaling

LLNL Sierra

Page 49: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0 500 1000 1500 2000Basis dimension (millions)

0

0.5

1

1.5

2

2.5

3

Tim

e / b

asis

dim

ensio

n

TotalLanczosMat-vec multiplyReorthogonalization

PARALLEL IMPLEMENTATION – LATEST DEVELOPMENTS

49  V 7.4.3 Feb 2015

pf shell nuclides (200 iterations) 800 MPI procs x 12 OpenMP threads

LLNL Sierra

Page 50: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0 2000 4000 6000 8000 10000Cores

0

500

1000

1500

2000W

allti

me

(sec

)

TotalLanczosMat-vec multiplyReorthogonalization

PARALLEL IMPLEMENTATION – LATEST DEVELOPMENTS

50  V 7.4.3 Feb 2015

NCSM 10B, Nmax = 9 (dim = 547 M) (100 iterations) 800 MPI procs x 12 OpenMP threads

LLNL Sierra

Page 51: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0 2000 4000 6000 8000 10000Cores

0

0.25

0.5

0.75

1

1.25

Effic

ienc

y (re

lativ

e to

240

0 co

res)

TotalLanczosMat-vec multiplyReorthogonalization

PARALLEL IMPLEMENTATION – LATEST DEVELOPMENTS

51  V 7.4.3 Feb 2015

NCSM 10B, Nmax = 9 (dim = 547 M) (100 iterations) 800 MPI procs x 12 OpenMP threads

Strong scaling

LLNL Sierra

Page 52: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

PARALLEL IMPLEMENTATION – LATEST DEVELOPMENTS

52  V 7.4.3 Feb 2015

0 100 200 300 400 500 600Basis dimension (millions)

0

0.5

1

1.5

2

2.5

3Ti

me/

basis

dim

ensio

n

TotalLanczosMat-vec multiplyReorthogonalization

NCSM p-shell nuclides (100 iterations) 800 MPI procs x 12 OpenMP threads

LLNL Sierra

Page 53: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0 2 4 6 8 10Basis dimension (billions)

0

5000

10000

15000

20000

25000

30000W

allti

me

(sec

)

TotalLanczosMat-vec multiplyReorthogonalization

PARALLEL IMPLEMENTATION – LATEST DEVELOPMENTS

53  V 7.4.3 Feb 2015

Xe isotopes with 100Sn core (140-250 iterations) 6000-12000 MPI procs x 4-6 OpenMP threads

LBL/NERSC Edison

Science runs! Dark matter scattering cross-sections

Page 54: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

RECENT WORK

54  

Pushing to larger cases We have gone to dim 20 billion on 512 MPI nodes! 112Ba with 100Sn core: 2s1/2-1d3/2-1d5/2-0g7/2-0h11/2 valence space LLNL Sierra 512 MPI processes with 24 Gb & 12 OpenMP threads/proc 2 Lanczos iterations took < 1 hr Nonzero matrix elements require ~ 130 Tb = 5400 nodes We plan (hope?) to go to dim ~ 100 billion in the next year

Page 55: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Advanced topic in factorization: Even more divide and conquer!

The Lanczos part has fixed costs due to floating point operations and one can only distribute the work efficiently The set-up can be expensive; in MFDn and related codes it takes a large fraction of the total time, as finding 10-6 nonzeros is nontrivial

In general shell-model configuration interaction codes have three components: •  Set-up •  Matrix-vector multiply •  Linear algebra (reorthogonalization) (Lanczos algorithm)

What takes time are sorts and searches Factorization speeds this up by reducing the lengths of lists to sorted and searched

Page 56: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Advanced topic in factorization: Even more divide and conquer!

Consider (proton) Slater determinants:

n(l)j: 0d5/2 m : 5/2 3/2 ½ -1/2 -3/2 -5/2

1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 …..

Let’s divide and conquer all over

again!

I break each Slater determinant into two pieces

First, a Slater determinant composed of all single

particle states with m > 0…

Next, a Slater determinant composed of all single

particle states with m < 0…

Page 57: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

We can combine these half Slater determinants into a “full” Slater determinant, in the same way that we combined proton and neutron Slater determinants into the final many-body basis.

20Ne 640 66 22

24Mg 28,503 495 57

28Si 93,710 924 64

48Cr 1,963,461 4895 386

52Fe 109,954,620 38,760 848

56Ni 1,087,455,228 125,970 1,013

Nuclide Basis dim # pSDs # half Slater Determinants

Advanced topic in factorization: Even more divide and conquer!

Page 58: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Sample numbers:

Nuclide Basis dim # pSDs # half Slater Determinants

12C (4hw) 1.1 M 33,475 5448

12C (6hw) 32.6 M 381,159 40,247

12C (8hw) 594 M 2.9 M 232,553

16O (8hw) 996 M 5M 497,493

Advanced topic in factorization: Even more divide and conquer!

Page 59: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Advanced topic in factorization: Even more divide and conquer!

Note that while all proton and neutron SDs have the same particle number, we build SDs from half Slaters with differing # of particles (but the sum is fixed—just another quantum number).

This leads to another innovation. The fundamental operation on half-Slaters is not jumps but “hops” which are single-particle creation/annihilation. This turns out to be natural, easy, and quick.

Page 60: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Half-Slaters are generated recursively:

Nh = 0: 000000

Nh = 1: 100000 010000 001000 000100 ….

Nh = 2: 110000 011000 001100 000110 …. 101000 010100 001010 000101 …. 100100 010010 001001 …. 100010 010001 …. 100001

Page 61: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Each half-Slater has a fixed number of destruction hops: it takes only a very short search to find the final half-Slater:

Nh = 0: 000000

Nh = 1: 100000 010000 001000 000100 ….

Nh = 2: 110000 011000 001100 000110 …. 101000 010100 001010 000101 …. 100100 010010 001001 …. 100010 010001 …. 100001

Finding all the creation hops is even easier,because we just reverse the destruction hops:

Page 62: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Like the number of half-Slaters, the number of hops is small 28Si: 192 hops

52Fe: 3820 hops

12C (6hw): 171,409 hops

12C (8hw): 1,061,255 hops

Using hops we can build arbitrary operations : 1-body jumps, 2-body jumps, 3-body jumps, spectroscopic factors, etc, all using the same underlying structure.

Using half-Slater determinants speeds up basis construction by 3x-4x, and jump construction by 10x

Page 63: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Will do shell model 4 food

Page 64: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Applications

ab initio Gamow-Teller transitions:

the search for quenching

Strength functions in the nuclear shell model

Page 65: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Part IIb: ab initio Gamow-Teller transitions

•  Gamow-Teller important for weak physics, astrophysics •  Avoids dependence on radial wavefunctions (at lowest order); mostly SU(4) irreps; Ikeda sum rule strong constraint •  Consistent quenching of coupling—exchange currents, or what? •  What about 0-neutrino double-beta decay?

Anomalously long 14C half-life (Maris, Vary, Navratil, Ormand, Nam, Dean) Phys. Rev. Lett. 106, 202502 (2011): ‘accidental’ cancellation of matrix elements driven by 3-body force

Exchange current corrections from EFT (quenching of about 0.8): S. Vaintraub, N. Barnea, and D. Gazit, Phys. Rev. C 79, 065501 (2009); J. Menendez, D. Gazit, and A. Schwenk, Phys. Rev. Lett 107, 062501 (2011)

Two recent highlights:

Strength functions in the nuclear shell model

Page 66: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0 20 40 60 80 100 120 140 160 180 200

0.01

0.1

1

0.01

0.1

1

B(G

T)

0.01

0.1

1

0 20 40 60 80 100 120 140 160 180 200Ef (MeV)

0.01

0.1

1

Nmax = 4

Nmax = 6

Nmax = 8

Nmax = 10

6He è 6Li

Preliminary! Chiral 2-body forces SRG evolved to λ=2 fm-1)

Strength functions in the nuclear shell model

Page 67: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0 25 50 75 100 125 150 175 200 225

0.01

0.1

1

0.01

0.1

1

B(G

T)

0 25 50 75 100 125 150 175 200 225Ef (MeV)

0.01

0.1

1

Nmax = 4

Nmax = 6

Nmax = 8

7He è 7Li

Preliminary! (Run on desktop machine with BIGSTICK)

Page 68: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

4 6 8 10

0.001

0.01

0.1

1

B(G

T)

7He (3/2-) to 7Li (3/2- g.s.)7He (3/2-) to 7Li (1/2-)7He (3/2-) to 7Li (5/2-

1)7He (3/2-) to 7Li (5/2-

1)

7He è 7Li

Preliminary!

Page 69: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

4 6 8

0.1

1

10B(

GT)

8He g.s. to 8Li (1+1)

8He g.s. to 7Li (1+2)

8He g.s. to 8Li (1+3)

8He g.s. to 8Li (1+4)

8He è 8Li

Preliminary!

Page 70: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Need to run higher Nmax (on supercomputers) but …

Despite being a “simple” operator, transition matrix elements of Gamow-Teller ( στ ) do not have simple behavior: •  Some transitions quickly converge as we go up in Nmax, others not •  Should be investigated by doing L-S/SU(4) decomposition •  Effect of 3-body forces likely important •  More work on chiral EFT exchange forces should be done •  Likely strong implications for 0ν-ββ matrix elements…

Strength functions in the nuclear shell model

Page 71: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Applications Ab initio E1 response

and

the Brink-Axel hypothesis

Page 72: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Transitions and the Brink-Axel hypothesis + Michael K. G. Kruse (LLNL), W. Erich Ormand (LLNL), and Micah Schuster (SDSU)

Brink-Axel hypothesis (D. Brink, D. Phil. thesis, Oxford University (unpublished), 1955; P. Axel, Phys. Rev. 126, 671 (1962)): If the ground state has a giant dipole resonance (GDR), then excited states should have GDR and because the GDR is a collective proton-versus-neutrons oscillations, the GDR should be insensitive to the initial state.

“Transition strength function”

Brink-Axel: “S(Ei,Ex) independent of Ei”

Electric dipole

Strength functions in the nuclear shell model

Page 73: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Kruse, Ormand, and Johnson: arXiv:1502:03464

10B E1 response

Electric dipole

Strength functions in the nuclear shell model

Page 74: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

B(E1) strength with increasing basis size

Strength distribution shape is robust in Nmax. Slowly moves down in energy as a function of Nmax. How to extrapolate this distribution? Perhaps it is best to extrapolate centroids?

74  

Strength functions in the nuclear shell model

Page 75: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Kruse, Ormand, and Johnson: arXiv:1502:03464

0 5 10 15 20 25 30 35 40Photon energy (MeV)

0

1

2

3

4

5

6

7

Hughes et al 1973 Ahsan et al 1987Kneissl et al 1976Nmax=9 calculation

σ(ω

)(m

b)

10B E1 response

Page 76: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Brink-Axel: “S(Ei,Ex) independent of Ei”

0 10 20 30 400

1

2

3

4

5

6

ω − Ex,i (MeV)

σ(ω

)(m

b)

10B : Nmax = 9

Jπ = 1+Jπ = 3+Jπ = 0+Jπ = 1+Jπ = 2+

Kruse, Ormand, and Johnson: arXiv:1502:03464

GDR

10B E1 response

Page 77: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Is this true in general? What if you look at more states?

Is this true for other operators? *

* Some evidence to the contrary (with Gamow-Teller operator): Frazier, Brown, Millener, and Zelevinsky, Phys. Lett B 414, 7 (1997); Misch, Fuller, and Brown, PRC 90, 065808 (2014)

Strength functions in the nuclear shell model

Page 78: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Looks like large fluctuations about the

average; can we characterize /quantify this?

The total strength (or non-energy-weighted sum rule) can be computed as a simple expectation value

Page 79: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

The total strength (or non-energy-weighted sum rule)

-80 -60 -40 -20 0Ei (MeV)

0

1

2

3

4

5

6to

tal s

treng

th23Na< S2 >

Page 80: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Furthermore, the smooth secular

behavior is easily understood through spectral distribution

theory of J. B. French et al

Average expectation value is just a trace!

Page 81: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

1! !! ! ! !

!= 1! ! !" !

!= 1! !!"!(!")!

Furthermore, the smooth secular

behavior is easily understood through spectral distribution

theory of J. B. French et al

Average expectation value is just a trace!

(Linear) energy dependence is also a trace!

Slope is given by < O H > - < O > < H >

Page 82: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

1! !! ! ! !

!= 1! ! !" !

!= 1! !!"!(!")!

Furthermore, the smooth secular

behavior is easily understood through spectral distribution

theory of J. B. French et al

Average expectation value is just a trace!

(Linear) energy dependence is also a trace!

From this we can derive the secular behavior of expectation values

Page 83: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

-80 -60 -40 -20 0Ei (MeV)

0

1

2

3

4

5

6

tota

l stre

ngth

CI diagonalizationlinearquadratic

23Na< S2 >Furthermore, the

smooth secular behavior is easily

understood through spectral distribution

theory of J. B. French et al

Page 84: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Large Scale Shell-Model Calculations for Open-shell nuclei

0

1

2

3

4

0

10

20

30

40

50

60

70

0 20 40 60

Ei (MeV)

0

200

400

600

800

1000

R (s

ee c

apti

on f

or

unit

s)

0 20 40 600

100

200

300

400

500

600

binnedlinearquadratic

(a)

(c)

(b)

(d)

M1 isoscalar

M1 isovector

E2 isoscalar E2 isovector

Page 85: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0

20

40

60

80

0

20

40

60

80

R (

no u

nit

s)

0 20 40 600

20

40

60

80

0 20 40 60

Ei (MeV)

0 20 40 60

(d) 27

Na(a) 24

Ne

(b) 30

Mg (e) 31

Al

(g) 22

Na

(h) 28

Na

(i) 34

Cl(f) 33

S(c) 34

S

sd shell, Gamow-Teller

Page 86: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0

4

8

12

0

4

8

12

0 20 40 60 80

Ei (MeV)

0

4

8

12

R (

e2 f

m2)

0 40 80 120

(a)

(b)

(c)

(d)

(e)

(f)

10Be

11Be

10B

25Ne

25Na

27Al

p-sd5/2 shell, isovector E1

Page 87: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

What about as we go to extreme

isospin?

Strength functions in the nuclear shell model

Page 88: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0

1

2

3

B(M

1)

0 20 40 60

0

1

2

3

0 20 40 60Ex (MeV)

0 20 40 60

20Ne21Ne 24Ne

28Ne27Ne25Ne

sd shell, isoscalar M1

Page 89: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0

10

20

30

40

50

B(M

1)

0 20 40 600

10

20

30

40

50

0 20 40 60Ex (MeV)

0 20 40 60

20Ne 21Ne 24Ne

25Ne 27Ne28Ne

sd shell, isovector M1

Page 90: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0

5

10

15

0 20 40 60 80Ex (MeV)

0

5

10

15B(E1

) (e2 fm

2 )

0 20 40 60 80

9Be

26Be

28Be27Be

p-sd5/2 shell, isovector E1

Page 91: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

What we do learn from this?

The generalized Brink-Axel hypothesis (for arbitrary operators) is wrong! -- total strength evolves with initial (parent) energy -- significant fluctuations even for nearby parent states

We can understand this through spectral distribution theory, that is, traces of operators (weighted by the energy); A lack of energy dependence can occur only if < O H > - < O > < H > = 0

Strength functions in the nuclear shell model

Page 92: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Also (unsurprisingly)

isovector transitions show

more evolution as we go to extreme

isospin

The generalized Brink-Axel hypothesis (for arbitrary operators) is wrong! -- total strength evolves with initial (parent) energy -- significant fluctuations even for nearby parent states

We can understand this through spectral distribution theory, that is, traces of operators (weighted by the energy); A lack of energy dependence can occur only if < O H > - < O > < H > = 0

Strength functions in the nuclear shell model

Page 93: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Applications Spin-orbit decomposition of ab initio nuclides C. W. J, Phys. Rev. C 91, 034313 (2015).

Page 94: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Atoms :

L=0

L=0,1

L=0,1,2

Spin is minor in atomic physics…

94  

Nuclei:

L=0

L=1

L=2 L=0

J=1/2

J=3/2

J=1/2

…but crucial in nuclear physics…

J=1/2

J=3/2

J=5/2

(Niels Bohr) (E. Schrodinger) (Maria Goeppert-Mayer)

Page 95: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

95  

l1 + s1

= = = = j1 + j2 + j3 + j4 + …

l2 + s2

l3 + s3

l4 + s4

= J

l1 + l2 + l3 + l4 + …

“j-j coupling”

“L-S coupling” s1 + s2 + s3 + s4 + …

= L + = S

= J

j-j versus L-S

Page 96: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

96  

Nuclide   Model  space   Interac5on   g.s.  =    48Ca   pf   KB3G    90  %  (0f  7/2)8  24O   sd   USDB   91%  (0d  5/2)6  (1s  ½)2  22O   sd   USDB   75%  (0d  5/2)6  8He   p   Cohen-­‐

Kurath  53  %  (0p  3/2)4  

(Maria Goeppert-Mayer)

(Calculations are standard configuration- mixing: diagonalization of Hamiltonian in m-scheme Slater determinants, in single major harmonic oscillator shell)

How  good  is  j-­‐j  coupling?  

Nuclei:

J=1/2

J=3/2

J=1/2

J=1/2

J=3/2

J=5/2

Nuclide   Model  space   Interac5on   g.s.  =    32S   sd   USDB    29  %  (0d  5/2)12  (1s  ½)4  28Si   sd   USDB   21%  (0d  5/2)12    12C   p   Cohen-­‐

Kurath  37%  (0p  3/2)8  

Oh  no!  I  guess  there  is  a  lot  of  

configura]on  mixing!  

Page 97: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

97  

Nuclide   Interac5on   g.s.  =    32S   sd   USDB   29  %  (0d  5/2)12  (1s  ½)4   34%  L  =  0  28Si   sd   USDB   21%  (0d  5/2)12     36%  L  =  0  12C   p   Cohen-­‐Kurath   37%  (0p  3/2)8   82%  L  =  0  

Let’s  see  if  there  is  a  simpler  picture,  such  as  L-­‐S  coupling.  

Nuclide   Model  space  

Interac5on   g.s.  =     g.s.  =    

48Ca   pf   KB3G    90  %  (0f  7/2)8   20%  L  =  0  24O   sd   USDB   91%  (0d  5/2)6  (1s  ½)2   34%  L  =  0  22O   sd   USDB   75%  (0d  5/2)6   38%  L  =  0  8He   p   Cohen-­‐Kurath   53  %  (0p  3/2)4   96%  L  =  0  

This illustrates a (once) well-known fact: that L-S coupling is a better approximation in the p-shell than j-j coupling.

Page 98: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

98  

Let’s  now  do  L-­‐S  decomposi]on  of  ab  ini)o  p-­‐shell  wavefunc]ons  

Why? -- To see if this pattern holds for ab initio interactions -- How well do phenomenological interactions match ab initio? -- Crucially, we know the 3-body forces strongly affects the spin-orbit force. Can we see this happen directly? Note: In this talk I only give 2-body results. 3-body forces later…

Page 99: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

99  

11B

Phenomenological Cohen-Kurath m-scheme dimension: 62 NCSM: N3LO chiral 2-body force SRG evolved to λ = 2.0 fm-1, Nmax = 6, ħω=22 MeV m-scheme dimension: 20 million

Page 100: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

100  

0

0.2

0.4

0.6

0.8

1fr

acti

on o

f w

ave

funct

ion

0 1 2 3 4

L

0

0.2

0.4

0.6

0.8

0 1 2 3 4

Cohen-KurathNCSM

3/2-

1 (g.s.)

3/2-

2

1/2-

1

5/2-

1

(a) (b)

(c) (d)

Page 101: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

101  

0

0.2

0.4

0.6

0.8

Fra

ctio

n o

f w

avef

unct

ion Cohen-Kurath

NCSM

1/2 3/2 5/2S

0

0.2

0.4

0.6

0.8

1/2 3/2 5/2

3/2-

1 (g.s.)

3/2-

2

1/2-

1

5/2-

1

(a) (b)

(c) (d)

Page 102: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

102  

12C

Phenomenological Cohen-Kurath force (1965) in 0p shell m-scheme dimension: 51 NCSM: N3LO chiral 2-body force SRG evolved* to λ = 2.0 fm-1, Nmax = 6, ħω=22 MeV m-scheme dimension: 35 million

Page 103: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

103  

0

0.2

0.4

0.6

0.8

frac

tio

n o

f w

avef

unct

ion

Cohen-KurathNCSM

0 1 2 3 40

0.2

0.4

0.6

0.8

0 1 2 3 4L

0 1 2 3 4

0+;0

1 (g.s.)

0+;0

2

2+;0

2

2+;0

1

2+;0

21

+;1

12

+;0

2

1+;0

1

(a) (b) (c)

(d) (e) (f)

Page 104: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

104  

0

0.2

0.4

0.6

0.8

Cohen-KurathNCSM

0 1 2 3 4S

0

0.2

0.4

0.6

0.8

frac

tio

n o

f w

avef

unct

ion

0 1 2 3 4

2+;0

1

2+;0

2

1+;0

1

1+;1

1

(a) (b)

(c) (d)

Page 105: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

105  

9Be

Phenomenological Cohen-Kurath m-scheme dimension: 62 NCSM: N3LO chiral 2-body force SRG evolved to λ = 2.0 fm-1, Nmax = 6, ħω=22 MeV m-scheme dimension: 5.2 million

1/2 3/2 5/2 7/2 9/2J

0

5

10

15

Ex

(MeV

)

ExptCohen-KurathNCSM

Page 106: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

106  

0

0.2

0.4

0.6

0.8

S=1/2S=3/2S=5/2

3/21

5/21

7/21

9/21

State

0

0.2

0.4

0.6

0.8

Fra

ctio

n o

f w

avef

unct

ion

L = 1L = 2L = 3L = 4

3/21

5/21

7/21

9/21

(a)

(b)

(c) (d)

9Be ground state band

Page 107: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

107  

9Be excited state band

0

0.2

0.4

0.6

0.8

S = 1/2S = 3/2S = 5/2

1/2 3/2 5/2 7/20

0.2

0.4

0.6

0.8

L = 1L = 2L = 3L = 4

1/2 3/2 5/2 7/2

(a) (b)

(c) (d)

Page 108: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Since these are rotational bands, why not look at SU(3) structure?

SU(3) Casimir = ¼ ( QEll .QEll + 3 L2) QEll= Elliott quadrupole = (r2+p2)Y2 ; does not contain cross-shell matrix elements (symplectic operators couple across h.o. shells; will address in future work)

Page 109: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0

0.25

0.5

0

0.25

0.5

fract

ion

of w

ave

func

tion

0

0.25

0.5

0 10 20 30 40 50 60 70 80SU(3) Casimir value

0

0.25

0.5 3/21-

5/21-

7/21-

9/21-

9Be g.s. band – SU(3) decomposition

Page 110: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0

0.25

0.5

0

0.25

0.5

fract

ion

of w

ave

func

tion

0

0.25

0.5

0 10 20 30 40 50 60 70 80SU(3) Casimir value

0

0.25

0.5 1/21-

3/22-

5/21-

7/23-7/22

-

9Be excited band – SU(3) decomposition

Page 111: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

111  

9Be

1/2 3/2 5/2 7/2 9/2J

0

5

10

15

Ex

(MeV

)

ExptCohen-KurathNCSM

The “wrong” 7/2- state…

Page 112: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

112  

0

0.25

0.5

0

0.25

0.5

fract

ion

of w

ave

func

tion

0 10 20 30 40 50 60 70 80SU(3) Casimir value

0

0.25

0.5 01+

21+

41+

22+

8Be g.s. band – SU(3) decomposition

Page 113: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

113  

sd-shell nuclei: 20Ne and 24Mg

Nmax=2 hw= 16 MeV λSRG= 2.0 fm-1

Page 114: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0

5

10

Exci

tatio

n en

ergy

(MeV

)

0+0+

2+

0+

4+4+

0+

6+

2+

6+

2+

4+ 2+

4+

expt NCSM

114  

sd-shell nuclei: 20Ne Nmax=2 hw= 16 MeV λSRG= 2.0 fm-1

Page 115: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

115  

0 25 50 75 100 125SU(3) Casimir value

0

0.1

0.2

0.3

0.4

0.5

0.6

fract

ion

of w

avef

unct

ion

J=0J=2J=4J=6

20Ne g.s. band – SU(3) decomposition

Page 116: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0 25 50 75 100 125SU(3) Casimir value

0

0.1

0.2

0.3

0.4

0.5

0.6

fract

ion

of w

ave

func

tion

J=0J=2J=4

116  

20Ne excited band – SU(3) decomposition

Page 117: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0

2

4

6

8Ex

cita

tion

ener

gy (M

eV)

Expt NCSM0+

0+

2+2+

4+

4+2+

2+3+

3+4+

5+6+

5+

6+

4+

117  

sd-shell nuclei: 24Mg Nmax=2 hw= 16 MeV λSRG= 2.0 fm-1

Page 118: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

fract

ion

of w

ave

func

tion

0

0.2

0.4

0 25 50 75 100 125 150 175 200SU(3) Casimir value

0

0.2

0.4 0+

2+

4+

6+

8+

118  

24Mg g.s. band – SU(3) decomposition

Page 119: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

119  

How  are  those  decomposi]ons  calculated?  

Naïve method: Solve eigenpair problems, e.g. H | Ψn > = En | Ψn > and L2 | l; a > = l(l+1) |l; a >

…and then take overlaps, |< l; a | Ψn >|2

PROBLEM: the spectrum of L2 is highly degenerate (labeled by a ); Need to sum over all a not orthogonal to | Ψn > !

Page 120: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

120  

(Cornelius Lanczos)

There  is  another  way  

Page 121: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

121  

(Cornelius Lanczos)

There  is  another  way  

The Lanczos Algorithm!

Page 122: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

122  

(Cornelius Lanczos)

There  is  another  way  

A v 1 =α1 v 1 + β1

v 2

A v 2 = β1 v 1 +α2

v 2 + β2 v 3

A v 3 =

β2 v 2 +α3

v 3 + β3 v 4

A v 4 =

β3 v 3 +α4

v 4 + β4 v 5

Starting from some initial vector (the “pivot”) v1 , the Lanczos algorithm iteratively creates a new basis (a “Krylov space”) in which to diagonalize the matrix A.

Eigenvectors are then expressed as a linear combination of the “Lanczos vectors”: |ψ> = c1 |v1> + c2 |v2> + c3 |v3> + …

Page 123: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

123  

(Cornelius Lanczos)

There  is  another  way  

Eigenvectors are expressed as a linear combination of the “Lanczos vectors”: |ψ> = c1 |v1> + c2 |v2> + c3 |v3> + …

It is easy to read off the overlap of an eigenstate with the “pivot” : |< v1 |ψ >|2 = c1

2

Furthermore, the only eigenvectors (of A) that are contained in the Krylov space are those with nonzero overlap with the pivot |v1> .

If A is say L2 then we can efficiently expand any state |v1> into its components with good L.

Page 124: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

124  

(Cornelius Lanczos)

There  is  another  way  

This trick has been applied before

Decomposition of wavefunction into SU(3) components, looking at effect of spin-orbit force: V. Gueorguiev, J. P Draayer, and C. W. J., PRC 63, 014318 (2000).

Computing strength functions Caurier, Poves, and Zuker, Phys. Lett. B252, 13 (1990); PRL 74, 1517 (1995) Caurier et al, PRC 59, 2033 (1999) Haxton, Nollett, and Zurek, PRC 72, 065501 (2005)

Present calculations carried out using BIGSTICK shell-model code: Johnson, Ormand, and Krastev, Comp. Phys. Comm. 184, 2761 (2013).

Page 125: Large scale configuration interaction calculations for ...canhp2015/slide/week2/Johnson.pdfOXBASH /Oxford-MSU (J-scheme, stored on disk) MFDn/ Iowa State (M-scheme, stored in RAM;

Summary and looking forward

Bigstick is a powerful configuration-interaction shell model code coming into maturity. We can now reach the largest dimensions of other CI codes, using significantly less computational resources. (Still work to be done to fully optimize for Nmax calculations and three-body forces.) We hope to make the code publically available in the near future. As a sample application, we can decompose wave functions using operators, usually Casimirs of groups. This gives us an “x-ray” into the wavefunctions and illustrate (a) overall similarity with phenomenological calculations and (b) clearly show the fingerprint of “intrinsic states.”

“More work to be done!”

Large scale configuration interaction calculations ���for nuclear structure