Top Banner
Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités [email protected] www.lpthe.jussieu.fr/ ˜ leticia C. Aron, D. Barci, LFC, Z. González-Arenas, G. S. Lozano, J. Stat. Mech. (2014) P08020 & in preparation F. Romá, LFC, G. S. Lozano, Phys. Rev. E 90, 023203 (2014) & arXiv : 1412.7564 LFC, P-M. Déjardin, G. S. Lozano & F. van Wijland arXiv : 1412.6497 January 2015, Cergy-Pontoise, France
46

Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités...

Mar 13, 2018

Download

Documents

nguyencong
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Landau-Lifshitz-Gilbert-Brown

Leticia F. Cugliandolo

Université Pierre et Marie CurieSorbonne Universités

[email protected]/ leticia

C. Aron, D. Barci, LFC, Z. González-Arenas, G. S. Lozano,

J. Stat. Mech. (2014) P08020 & in preparation

F. Romá, LFC, G. S. Lozano,

Phys. Rev. E 90, 023203 (2014) & arXiv : 1412.7564

LFC, P-M. Déjardin, G. S. Lozano & F. van Wijland

arXiv : 1412.6497

January 2015, Cergy-Pontoise, France

1

Page 2: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Plan

•Macromagnetism: the stochastic Landau-Lifshitz-Gilbert-Brown (sLLGB)

equation (precession, dissipation, noise and torque).

• Discretisation schemes for multiplicative white noise (Markov) stochas-

tic differential equations. Asymptotic measure and drift term.

• Back to the sLLGB equation, analytic approach:

drift term & functional formalism in Cartesian and spherical coordi-

nates ; exact results.

• Back to the sLLGB equation, numerical simulations:

analysis of a benchmark.

• Future work.

2

Page 3: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Plan

•Macromagnetism: the stochastic Landau-Lifshitz-Gilbert-Brown (sLLGB)

equation (precession, dissipation, noise and torque).

• Discretisation schemes for multiplicative white noise (Markov) stochas-

tic differential equations. Asymptotic measure and drift term.

• Back to the sLLGB equation, analytic approach:

drift term & functional formalism in Cartesian and spherical coordi-

nates ; exact results.

• Back to the sLLGB equation, numerical simulations:

analysis of a benchmark.

• Future work.

3

Page 4: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation precessionBloch equation

Evolution of the time-dependent 3d magnetisation density per unit vo-

lume, M = (Mx,My,Mz), with constant modulus Ms = |M|

dtM = −γ0 M ∧Heff

γ0 ≡ γµ0 is the product of γ = µBg/ℏ, the gyromagnetic ratio, and µ0, the

vacuum permeability constant (µB Bohr’s magneton and g Lande’s g-factor)

For the initial condition M(ti) = Mi

the magnetisation precesses around Heff

with 2M · dtM = dt|M|2 = 0

and dt(M ·Heff) = 0 (if Heff = ct)

Bloch 32

4

Page 5: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Dissipative effectsLandau-Lifshitz & Gilbert equations

dtM = − γ01 + η2γ20

M ∧[Heff +

ηγ0Ms

(M ∧Heff)

]Landau &

Lifshitz 35

dtM = −γ0 M ∧(Heff − η

MsdtM

)Gilbert 55

2nd terms in RHS : dissipative mechanisms slow

down the precession and push M towards Heff

with 2M · dtM = dt|M|2 = 0

and dt(M ·Heff) > 0

5

Page 6: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetic fieldConservative & non-conservative contributions

Local magnetic field Heff = Hceff +Hnc

eff

Conservative contribution Hceff = −µ−1

0 ∇MU

with U the energy per unit volume, can originate from an external (possibly time-

dependent) magnetic field Hext, and a crystal field Hani associated to the crys-

talline anisotropy,

U = −µ0M ·Hext + Vani(M)

Vani(M) is the anisotropy potential (per unit volume), e.g.

Vani(M) = K∑

i=j M2i M

2j (cubic crystalline structure)

Vani(M) = K(M2s −M2

z ) (uniaxial symmetry)

Bertotti, Mayergoyz & Serpico 09 ; Coffey & Kamykov 12

6

Page 7: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetic fieldNon-conservative component

Local magnetic field Heff = Hceff +Hnc

eff

Non-conservative contribution Hnceff = −µ−1

0 ∇MU

Spin-torque term in Gilbert equation

Hnceff = −gµBℏJ(t)P

2M2s de

(M ∧ p)

J(t) the current per unit area,

P the (dimensionless) polarisation function of the fixed layer,

p is a unit vector in the direction of the current,

d the interlayer separation

e is the electric charge of the carriers.Berger 96 ; Slonczewski 96

7

Page 8: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Thermal fluctuationsÀ la Langevin in Gilbert’s formulation

dtM = −γ0M ∧(Heff +H− η

Ms

dtM

)

H is a white random noise, with zero mean ⟨Hi(t)⟩ = 0 and correlations

⟨Hi(t)Hj(t′)⟩ = 2Dδijδ(t− t′)

For the moment, the (diffusion) parameter D is free.

The noise H multiplies the magnetic moment M.

This is the Markov stochastic Landau-Lifshitz-Gilbert-Brown (sLLGB) multi-

plicative white noise stochastic differential equation.

Subtleties of Markov multiplicative noise processes are now posed.Brown 63

8

Page 9: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

sLLGBAim

• Set up a path-integral formalism.

• Set up a numerical integrator.

Use them.

9

Page 10: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Plan

•Macromagnetism: the stochastic Landau-Lifshitz-Gilbert-Brown (sLLGB)

equation (precession, dissipation, noise and torque).

• Discretisation schemes for multiplicative white noise (Markov) stochas-

tic differential equations. Asymptotic measure and drift term.

• Back to the sLLGB equation, analytic approach:

drift term & functional formalism in Cartesian and spherical coordi-

nates ; exact results.

• Back to the sLLGB equation, numerical simulations:

analysis of a benchmark.

• Future work.

10

Page 11: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Stochastic calculusDiscretization prescriptions

dtx(t) = f [x(t)] + g[x(t)]H(t)

with ⟨H(t)⟩ = 0 and ⟨H(t)H(t′)⟩ = 2D δ(t− t′) means

x(t+ dt) = x(t) + f [x(t)] dt+ g[x(t)]H(t)dt

withx(t) = αx(t+ dt) + (1− α)x(t)

and 0 ≤ α ≤ 1. Particular cases are α = 0 Ito ; α = 1/2 Stratonovich.

The chain rule for the time-derivative is

dtY (x) = dtx dxY (x) +D(1− 2α) g2(x) d2xY (x)

For α = 1/2 (Stratonovich) one recovers the usual expression.

Stratonovich 67 ; Gardiner 96 ; Øksendal 00 ; van Kampen 07

11

Page 12: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Stochastic calculusFokker-Planck & stationary measure

The Fokker-Planck equation

∂tP (x, t) = −∂x[(f(x) + 2Dαg(x)dxg(x))P (x, t)]

+D∂2x[g

2(x)P (x, t)]

has the stationary measure

Pst(x) = Z−1 [g(x)]2(α−1) e1D

∫ x f(x′)g2(x′) = Z−1e−

1DUeff(x)

with Ueff(x) = −∫ x f(x′)

g2(x′) + 2D(1− α) ln g(x)

Remark : the potential Ueff(x) depends upon α and g(x).

Noise induced phase transitions

Stratonovich 67 ; Sagués, Sancho & García-Ojalvo 07

12

Page 13: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Stochastic calculusFokker-Planck & stationary measure

e.g. Ueff(x) = V (x) + 2D(1− α) ln g(x)Ueff

xUeff

x

x2 + 2D(1− α) ln x x2 + 2D(1− α) ln(1− x2)

g(x) = x g(x) = (1− x2)

13

Page 14: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Stochastic calculusDrift

The Gibbs-Boltzmann equilibrium

PGB(x) = Z−1 e−βU(x)

is approached if

f(x) 7→ −g2(x)dxU(x)︸ ︷︷ ︸−2Dαg(x)dxg(x)︸ ︷︷ ︸Potential drift

Remark: the drift is also needed for the Stratonovich mid-point scheme.

Important choice : if one wants the dynamics to approach thermal equi-

librium independently of α and g the drift term has to be added.

14

Page 15: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Stochastic calculusPath-integral representation

The initial state at time−T is drawn from a probability distributionPi(x−T ).

The noise generates random trajectories with probability densityP (x;α).

P (x;α) = ⟨∏

t δ(xt − xsolt )⟩ where xsol

t is a solution to the Langevin

equation and depends on the noise H .

The constraint can be written J δ(∏

t Eqt[x,H;α]) with the Jacobian

J = dettt′

[δEqt[x,H;α]

δxt′

]Using the exponential representation of the delta δ(y) ∝

∫dy eiyy

We write the probability density of a trajectory xt from t = −T to t = T

P (x;α) = Pi(x−τ ) ⟨ J∫

D[x] e∫ T−T dt ixt Eqt[x,H;α] ⟩

15

Page 16: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Stochastic calculusPath-integral representation

P (x;λ, α) ∝∫

D[x] P (x, x;λ, α) =

∫D[x] eS(x,ix;λ,α)

and the Martin-Siggia-Rose-Janssen 79 action

S(x, ix;λ, α) ≡ lnPi(x−T , λ−T )

+

∫ [ixt(dtxt − ft + 2Dαgtdxgt) +D(ixt)

2g2t − αdxft︸ ︷︷ ︸]

From the Jacobian and the integration over the noise

cfr. Langouche, Roekaerts & Tirapegui 79 ; Lau & Lubensky 07

Remark: The action depends on α and g.

Observable averages can now be calculated as

⟨A(xt)⟩ =∫

D[x] P (x;λ, α)A(xt) (and do not depend on α)

16

Page 17: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Path probabilitiesPath-integral representation

P (T x, T x;λ, α)

P (x, x;λ, α)= e∆S(x,x;λ,α)

where T x and T x are transformed trajectories,

λ the transformed parameter in the potential,

α a different discretization parameter ;

and from here obtain relations between observables by averaging this re-

lation : equilibrium fluctuation dissipation (∆S = 0), or out of equilibrium

theorems (∆S = 0).

Jarzinsky 97, Crooks 00, & many others

17

Page 18: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Stochastic calculusTransformations in the path-integral representation

Let us define

d(α)t xt ≡ dtxt − 2β−1(1− 2α)gtdxgt

and group two terms in the action due to the coupling to the bath

Sdiss[x, ix] =

∫ixt [d

(α)t xt + β−1ixtg

2t ]

This expression suggests to use the generalized transformation on the

time-dependent variables {xt, ixt}

Tc =

xt 7→ x−t ,

ixt 7→ ix−t − βg−2−t d

(α)t x−t ,

18

Page 19: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Stochastic calculusConsequences of the transformation

For initial conditions drawn from Pi(x) = Z−1e−βU(x) and

f(x) = −g2(x)dxU(x) + 2Dαg(x)dxg(x) one proves

Sdet+jac[Tcix, Tcx;α] = Sdet+jac[ix, x;α]

that implies

P [Tcix, Tcx;α] = P [ix, x;α]

From this result we can prove exact equilibrium relations such as the

fluctuation-dissipation theorem

R(t, t′) = δ⟨xt⟩δht′

∣∣∣h=0

= β ∂t′⟨xtxt′⟩ θ(t− t′)

19

Page 20: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Stochastic calculusConsequences of the transformation

For initial conditions drawn from Pi(x) = Z−1e−βU(x) and

f(x, λt) = −g2(x)∂xU(x, λt) + 2Dαg(x)dxg(x) one proves

P [Tcix, Tcx;α, λt]

P [ix, x;α, λt]= eβW−β∆F

with

W =

∫dt dtλt ∂λU(x, λ)

∆F = lnZ(λT )− lnZ(λ−T )

the work, and free-energy difference between initial and fictitious final states.

Exact out of equilibrium relations such as the Jarzinsky relation follow

⟨e−βW ⟩ = e−β∆F

20

Page 21: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Plan

•Macromagnetism: the stochastic Landau-Lifshitz-Gilbert-Brown (sLLGB)

equation (precession, dissipation, noise and torque).

• Discretisation schemes for multiplicative white noise (Markov) stochas-

tic differential equations. Asymptotic measure and drift term.

• Back to the sLLGB equation, analytic approach:

drift term & functional formalism in Cartesian and spherical coordi-

nates ; exact results.

• Back to the sLLGB equation, numerical simulations:

analysis of a benchmark.

• Future work.

21

Page 22: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsConservation of magnetisation modulus

dtM = −γ0M ∧ (. . . ) → M · dtM = 0

butdt|M|2 = dtM

2s = 4D(1− 2α)

γ20

1 + η2γ20

M2s = 0

because of theα-dependent chain rule associated to the Markov Landau-

Lifshitz-Gilbert-Brown stochastic equation.

The sLLGB equation has to be modified to ensure the modulus conser-

vation. This is achieved by replacing the derivative by the operator

dt 7→ D(α)t = dt + 2D(1− 2α)

γ20

1 + η2γ20

22

Page 23: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsFokker-Planck equation and Gibbs-Boltzmann equilibrium

With this change, the probability density P (M, t) is determined by an

α-independent Fokker-Planck equation.

If only conservative fields are applied Heff = µ−10 ∇MU one proves

that its asymptotic solution is of the Gibbs-Boltzmann form

PGB(M) = Z−1 e−βV U(M)

with V the sample volume and U the potential energy per unit volume,

provided the diffusion coefficient in the noise-noise correlation be chosen

to satisfy

D =ηkBT

MsV µ0

23

Page 24: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

FormalismChoices

Path-integral construction:

Landau-Lifshitz & Gilbert formalism ; Cartesian & spherical coordinates.

Aron, Barci, LFC, González-Arenas & Lozano 14

Generic results on equilibrium and out of equilibrium theorems:

We preferred to use the Gilbert formalism in Cartesian coordinates.

Aron, Barci, LFC, González-Arenas & Lozano 14

Numerical simulations.

We preferred to use the Landau-Lifshitz formalism in spherical coordinates.

Romá, LFC & Lozano 14

24

Page 25: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

The actionin the Gilbert formalism in Cartesian coordinates

SG = SG,det + SG,diss + SG,jac

with

SG,det = lnPi[M(ti),Heff(ti)] +

∫iM∥ ·D

(α)t M

+

∫iM⊥ ·

(M−2

s D(α)t M ∧M+ γ0Heff

)SG,diss =

∫γ0iM⊥ ·

(Dγ0iM⊥ − η

MsD

(α)t M

)SG,jac =

αγ01 + η2γ20

1

Ms

∫ [2ηγ0M ·Heff +MsϵijkMk∂jH

nceffi

−ηγ0(M2s δij −MiMj)∂jHeffi

]

25

Page 26: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

The transformationin the Gilbert formalism in Cartesian coordinates

Tc =

Mt 7→ −M−t

γ0 iM⊥t 7→ −γ0 iM

⊥−t − βV µ0 dtM−t

iM∥t 7→ iM

∥−t

andα = 1− α

if one simultaneously changes the sign of the effective field

Hceff t 7→ −Hc

eff−t .

This change is a consequence of the transformation Mt 7→ −M−t when the

effective field derives from a potential Heff = −µ−10 ∇MU with U an even

function of M.

26

Page 27: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

The transformationin the Gilbert formalism in Cartesian coordinates

With this formalism one proves

the equilibrium fluctuation-dissipation theorem.

out of equilibrium fluctuation relations.

One could also apply these ideas in the Lifshitz-Landau formulation and

in spherical coordinates.

Aron, Barci, LFC, González-Arenas & Lozano, arXiv:1412.7564

27

Page 28: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Plan

•Macromagnetism: the stochastic Landau-Lifshitz-Gilbert-Brown (sLLGB)

equation (precession, dissipation, noise and torque).

• Discretisation schemes for multiplicative white noise (Markov) stochas-

tic differential equations. Asymptotic measure and drift term.

• Back to the sLLGB equation, analytic approach:

drift term & functional formalism in Cartesian and spherical coordi-

nates ; exact results.

• Back to the sLLGB equation, numerical simulations:

analysis of a benchmark.

• Future work.

28

Page 29: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

FormalismChoices

Path-integral construction:

Landau-Lifshitz & Gilbert formalism ; Cartesian & spherical coordinates.

Aron, Barci, LFC, González-Arenas & Lozano 14

Generic results on equilibrium and out of equilibrium theorems:

We preferred to use the Gilbert formalism in Cartesian coordinates.

Aron, Barci, LFC, González-Arenas & Lozano 14

Numerical simulations.

We preferred to use the Landau-Lifshitz formalism in spherical coordinates.

Romá, LFC & Lozano 14

29

Page 30: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsThe equations in spherical coordinates

The vector M defines the local basis (er, eθ, eϕ) with M ≡ Ms er(θ, ϕ)

and the Cartesian components Mx(t) = Ms sin θ(t) sinϕ(t), My(t) =

Ms sin θ(t) cosϕ(t) and Mz(t) = Ms cos θ(t) .

The sLLGB equation in this system of coordinates becomes dtMs = 0,

dtθ =D(1− 2α)γ201 + η2γ20

cot θ +γ0

1 + η2γ20[Heff,ϕ +Hϕ

+ηγ0(Heff,θ +Hθ)] ,

sin θ dtϕ =γ0

1 + η2γ20[ηγ0(Heff,ϕ +Hϕ)− (Heff,θ +Hθ)] ,

withHθ = Hx cos θ cosϕ+Hy cos θ sinϕ−Hz sin θ andHϕ = −Hx sinϕ+

Hy cosϕ. Similarly for Heff .

30

Page 31: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsAdimensionalisation and α-points

We introduce m = M/Ms, heff = Heff/Ms, h = H/Ms

τ = γ0Mst, η0 = ηγ0, and D0 = Dγ0/Ms

We define the α-prescription angular variables

θατ ≡ αθ(τ +∆τ) + (1− α)θ(τ) ,

ϕατ ≡ αϕ(τ +∆τ) + (1− α)ϕ(τ) ,

with 0 ≤ α ≤ 1. The effective fields at the α-point are

hαeff,θ ≡ heff,θ(θατ , ϕ

ατ ) hαeff,ϕ ≡ heff,ϕ(θ

ατ , ϕ

ατ )

We first draw the Cartesian components of the fields as ∆Wi = hi∆τ =

ωi

√2D0∆τ where the ωi are Gaussian random numbers with mean zero and

variance one, and we then calculate ∆Wϕ = hϕ∆τ and ∆Wθ = hθ∆τ .

31

Page 32: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsThe equations in spherical coordinates

The discretized dynamic equations now read Fθ = 0 and Fϕ = 0 with

Fθ ≡ − (θτ+∆τ − θτ ) +D0∆τ(1− 2α)

(1 + η20)cot θατ

+∆τ

1 + η20

[hαeff,ϕ + η0h

αeff,θ

]+

1

1 + η20[∆Wϕ + η0 ∆Wθ]

Fϕ ≡ − (ϕτ+∆τ − ϕτ )

+∆τ

1 + η20

[η0 h

αeff,ϕ − hαeff,θsin θατ

]+

1

1 + η20

[η0 ∆Wϕ −∆Wθ

sin θατ

]We used a Newton-Raphson routine and we imposed F 2

θ + F 2ϕ < 10−10 to

find ϕτ+∆τ and θτ+∆τ .

To avoid singular behavior when the magnetization gets too close to the z axis

we apply a π/2 rotation of the coordinate system around the y axis.

32

Page 33: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsThe benchmark

Uniformly magnetised ellipsoid with volume V = 6.702× 10−26 m3.

The potential energy per unit volume is

U(M) = −µ0 M ·Hext +µ0

2(d2xM

2x + d2yM

2y + d2zM

2z )

We set Hext = 0 and dx = dy = 0.4132 and dz = 0.0946

After adimensionalisation

the friction coefficient becomes η0 = ηγ0 ≪ 1

the time-step ∆τ = 1 corresponds to ∆t = 3.2 ps

We set the temperature to T = 300 K ; thenkBT

V∆U≃ 0.153

d’Aquino, Serpico, Coppola, Mayergoyz & Bertotti 06

33

Page 34: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsTypical trajectories of the three magnetisation components

0 6-1

0

1

(c)

time [µs]

mz

0 6-1

0

1

(b)

time [µs]

my

0 6-1

0

1

time [µs]

mx

(a)

34

Page 35: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsDecay of the averaged mz component

Stratonovich scheme

0 1x106

2x106

3x106

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Prescription: α = 0.5

Time step: ∆τ = 0.5

τ

<m

z>

0 3x106

-0.003

0.003

τ

<m

y>

0 3x106

-0.003

0.003

τ

<m

x>

35

Page 36: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsDistribution of the mz component

Stratonovich scheme, comparison to the analytic form (solid line)

-1.0 -0.5 0.0 0.5 1.0

10-2

10-1

100

101

102

103

τmax

=3.2x106

τmax

=2x105

τmax

=1x105

m

z

P(m

z )

(a)

0 1x10-5

0.00

0.25

-1

max

36

Page 37: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsDecay of the mz component

Dependence on ∆τ ; α = 1/2 (main) and α = 0 (inset)

cfr. Kloeden & Platen Numerical solutions of stochastic differential equations

0.0 5.0x104

1.0x105

1.5x105

0.5

0.6

0.7

0.8

0.9

1.0

<m

z

>

τ

∆τ=0.5

∆τ=0.05

∆τ=0.005

α = 0.5

0 1x105

0

1

α = 0.0

<m

z

>

τ

37

Page 38: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsDistribution of the mz component, Ito scheme

-1.0 -0.5 0.0 0.5 1.010

-3

10-2

10-1

100

101

102

103

α = 0.0

∆τ=0.5

∆τ=0.05

∆τ=0.005

P(m

z )

m

z

-1 0 10.0

1.5

P

(mx )

m

x

For α = 0, ∆τ = 0.05 is needed to get close to the equilibrium pdf.

38

Page 39: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

ConclusionsNumerics

• All discretisation schemes converge to Gibbs-Boltzmann equilibrium

P (M) = Z−1e−βV U(M)

once the correct drift term has been added.

• The magnetisation modulus is conserved by the numerical integration

with no need for artificial rescaling.

• The Stratonovich convention is the most efficient one in the sense that

one can use larger values of ∆τ and stay close to the continuous

time limit.

We will study the dependence of the algorithms’ precision, for different

α, in the future

39

Page 40: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Plan

•Macromagnetism: the stochastic Landau-Lifshitz-Gilbert-Brown (sLLGB)

equation (precession, dissipation, noise and torque).

• Discretisation schemes for multiplicative white noise (Markov) stochas-

tic differential equations. Asymptotic measure and drift term.

• Back to the sLLGB equation, analytic approach:

drift term & functional formalism in Cartesian and spherical coordi-

nates ; exact results.

• Back to the sLLGB equation, numerical simulations:

analysis of a benchmark.

• Future work.

40

Page 41: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Related & future workSome projects en route

Analytics : Dean-Kawasaki stochastic equation for the spatial magneti-

sation density of magnetic moments in pair interaction and controlled by

the sLLGB microscopic equation.

LFC, Déjardin, Lozano & van Wijland, arXiv:1412.6497

Numerics : spin-torque effect, experimentally relevant situations.

Better understanding of the algorithms’ precision.

Romá, LFC & Lozano

41

Page 42: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Dissipative effectsLandau-Lifshitz & Gilbert equations

dtM = − γ01 + η2γ20

M ∧[Heff +

ηγ0Ms

(M ∧Heff)

]Landau &

Lifshitz 35

2nd terms in RHS : dissipative mechanisms slow

down the precession and push M towards Heff

with 2M · dtM = dt|M|2 = 0

and dt(M ·Heff) > 0

Proof : take the scalar product with Heff and use (M ·Heff)2 < M2

sH2eff

42

Page 43: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsDistribution of the mx component

Stratonovich scheme, Gaussian pdf

-1.0 -0.5 0.0 0.5 1.00.0

0.5

1.0

1.5

τmax

=3.2x106

τmax

=2x105

τmax

=1x105

m

x

P(m

x )

(b)

43

Page 44: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamicsDecay of the average mz component

0.0 5.0x104

1.0x105

1.5x105

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

α = 0.5

∆τ = 0.5

η0 = 0.005

η0 = 0.01

η0 = 0.02

η0 = 0.04

η0 = 0.08

<m

z

>

τ

∆τ = 0.005

η0 = 0.005

η0 = 0.01

η0 = 0.02

η0 = 0.04

η0 = 0.08

(a)

Stratonovich scheme

dependence on the friction coefficient η0 and the time-step ∆τ

44

Page 45: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamics⟨mz⟩ under an applied field Hext = 0

For α = 0.5, little dependence on ∆τ = 0.05 vs ∆τ = 0.5

Note that a very large value ∆τ = 0.5 can be used.

45

Page 46: Landau-Lifshitz-Gilbert-Brown - UPMCleticia/SEMINARS/cergy-15.pdf · Landau-Lifshitz-Gilbert-Brown Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités leticia@lpthe.jussieu.fr

Magnetisation dynamics⟨mz⟩ under an applied field Hext = 0

Dependence on α cured by using smaller ∆τ :

poorer precision for α = 0.5 confirmed.

46