Top Banner
55

Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Aug 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Landau gauge Green functions fromDyson-Schwinger equations

Markus Q. Huber, Lorenz von Smekal

Institute of Nuclear Physics, Technical University Darmstadt

April 26, 2013

JHEP (2013), arXiv:1211.6092

HIC for FAIR Physics Days of Expert Group 2FIAS, Frankfurt

MQH TU Darmstadt April 26, 2013 1/21

Page 2: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

From QCD to hadrons

Quantum chromodynamics

Quarks, gluons:

u

ud u

d d

LQCD = q(− /D +m)q +1

2tr {FµνFµν}

Experiment: hadrons

u u

d

u

d

d

Description via

models,

e�ective theories,

lattice,

functional equations,

. . .

Ideally: LQCD → hadron spectrum

MQH TU Darmstadt April 26, 2013 2/21

Page 3: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

From QCD to hadrons

Quantum chromodynamics

Quarks, gluons:

u

ud u

d d

LQCD = q(− /D +m)q +1

2tr {FµνFµν}

Experiment: hadrons

u u

d

u

d

d

Description via

models,

e�ective theories,

lattice,

functional equations,

. . .

Ideally: LQCD → hadron spectrum

MQH TU Darmstadt April 26, 2013 2/21

Page 4: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

From QCD to hadrons

Quantum chromodynamics

Quarks, gluons:

u

ud u

d d

LQCD = q(− /D +m)q +1

2tr {FµνFµν}

Experiment: hadrons

u u

d

u

d

d

Description via

models,

e�ective theories,

lattice,

functional equations,

. . .

Ideally: LQCD → hadron spectrum

MQH TU Darmstadt April 26, 2013 2/21

Page 5: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Functional equations for QCD

Bound state equations: Bethe-Salpeter/Faddeev eqs. (BSEs/FEs)

BSE:

Contains quark propagator S and kernel K .

Standard truncation: rainbow-ladder (consistent with chiral symmetry)

K −→ dressed one gluon exchange

e�ective gluon propagator

bare quark-gluon vertex

MQH TU Darmstadt April 26, 2013 3/21

Page 6: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Functional equations for QCD

Bound state equations: Bethe-Salpeter/Faddeev eqs. (BSEs/FEs)

BSE:

Contains quark propagator S and kernel K .

Standard truncation: rainbow-ladder (consistent with chiral symmetry)

K −→ dressed one gluon exchange

e�ective gluon propagator

bare quark-gluon vertex

MQH TU Darmstadt April 26, 2013 3/21

Page 7: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Beyond rainbow-ladderFor example:

Include pion back coupling e�ects [e.g., Fischer, Nickel, Wambach, PRD76

(2007); Fischer, Nickel, Williams, EPJC60 (2008); Fischer, Williams, PRD78 (2008)]:

−= −

YM

−1 −1

= + +

YM

Include gluon self-interaction [e.g., Maris, Tandy, NPPS161 (2006); Fischer,

Williams, PRL103 (2009)]:

= + +

Solve quark-gluon vertex (12 tensors!)

= + Nc

2− 2

Nc+

π

Required: gluon propagator, three-gluon vertexMQH TU Darmstadt April 26, 2013 4/21

Page 8: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Propagators

Calculate from Dyson-Schwinger equations

Quark:i1 i2 -1

=

+ i1 i2 -1- i1i2

Gluon:i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

- i1i2 -16

i1i2 -12 i1 i2

Ghost:i1 i2 -1

=

+ i1 i2 -1- i1i2

Required: three- and four-point functions

(or from �ow equations or eqs. of motion from nPI e�ective action)

MQH TU Darmstadt April 26, 2013 5/21

Page 9: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Propagators

Calculate from Dyson-Schwinger equations

Quark:i1 i2 -1

=

+ i1 i2 -1- i1i2

Gluon:i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

- i1i2 -16

i1i2 -12 i1 i2

Ghost:i1 i2 -1

=

+ i1 i2 -1- i1i2

Required: three- and four-point functions

(or from �ow equations or eqs. of motion from nPI e�ective action)

MQH TU Darmstadt April 26, 2013 5/21

Page 10: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Propagators

Calculate from Dyson-Schwinger equations

Quark:i1 i2 -1

=

+ i1 i2 -1- i1i2

Gluon:i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

- i1i2 -16

i1i2 -12 i1 i2

Ghost:i1 i2 -1

=

+ i1 i2 -1- i1i2

Required: three- and four-point functions

(or from �ow equations or eqs. of motion from nPI e�ective action)

MQH TU Darmstadt April 26, 2013 5/21

Page 11: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Propagators

Calculate from Dyson-Schwinger equations

Quark:i1 i2 -1

=

+ i1 i2 -1- i1i2

Gluon:i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

- i1i2 -16

i1i2 -12 i1 i2

Ghost:i1 i2 -1

=

+ i1 i2 -1- i1i2

Required: three- and four-point functions

(or from �ow equations or eqs. of motion from nPI e�ective action)

MQH TU Darmstadt April 26, 2013 5/21

Page 12: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Dyson-Schwinger equations: Propagators

Dyson-Schwinger equations (DSEs) of gluon and ghost propagators:

i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

-16

i1i2 -12 i1 i2

i1 i2 -1

=

+ i1 i2 -1- i1i2

In�nite tower of coupled integral equations.

Derivation straightforward, but tedious→ automated derivation with DoFun [MQH, Braun, CPC183 (2012)].

Contain three-point and four-point functions:

ghost-gluon vertex , three-gluon vertex , four-gluon vertex

MQH TU Darmstadt April 26, 2013 6/21

Page 13: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Dyson-Schwinger equations: Propagators

Dyson-Schwinger equations (DSEs) of gluon and ghost propagators:

i1 i2 -1

=

+ i1 i2 -1-

12

i1 i2 -12

i1i2 - i1i2

-16

i1i2 -12 i1 i2

i1 i2 -1

=

+ i1 i2 -1- i1i2

In�nite tower of coupled integral equations.

Derivation straightforward, but tedious→ automated derivation with DoFun [MQH, Braun, CPC183 (2012)].

Contain three-point and four-point functions:

ghost-gluon vertex , three-gluon vertex , four-gluon vertex

MQH TU Darmstadt April 26, 2013 6/21

Page 14: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncated propagator Dyson-Schwinger equations

Standard truncation:

No four-point interactionsmodels for ghost-gluon and three-gluon vertices

i1 i2 -1

=

+ i1 i2 -1-

12

i1i2+

i1i2

i1 i2 -1

=

+ i1 i2 -1- i1i2

Standard: bare ghost-gluon vertex and three-gluon vertex model

In�uence of three-point functions?

Dabgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2δab

Dabgh (p) = −

G(p2)

p2δab

MQH TU Darmstadt April 26, 2013 7/21

Page 15: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncated propagator Dyson-Schwinger equations

Standard truncation:

No four-point interactionsmodels for ghost-gluon and three-gluon vertices

i1 i2 -1

=

+ i1 i2 -1-

12

i1i2+

i1i2

i1 i2 -1

=

+ i1 i2 -1- i1i2

Standard: bare ghost-gluon vertex and three-gluon vertex model

In�uence of three-point functions?

Dabgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2δab

Dabgh (p) = −

G(p2)

p2δab

MQH TU Darmstadt April 26, 2013 7/21

Page 16: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncated propagator Dyson-Schwinger equations

Standard truncation:

No four-point interactionsmodels for ghost-gluon and three-gluon vertices

i1 i2 -1

=

+ i1 i2 -1-

12

i1i2+

i1i2

i1 i2 -1

=

+ i1 i2 -1- i1i2

Standard: bare ghost-gluon vertex and three-gluon vertex model

In�uence of three-point functions?

Dabgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2δab

Dabgh (p) = −

G(p2)

p2δab

MQH TU Darmstadt April 26, 2013 7/21

Page 17: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncating Dyson-Schwinger equations

gluon ghost gh-gl 3-gl 4-pt. ref.

MQH TU Darmstadt April 26, 2013 8/21

Page 18: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncating Dyson-Schwinger equations

gluon ghost gh-gl 3-gl 4-pt. ref.

X 0 0 model 0 [Mandelstam, PRD20 (1979)]

10−2

100

102

104

106

1080.0

0.2

0.4

~F(x)

~Z(x)

[Hauck,vonSmekal,

Alkofer,CPC

112(1998)]

Dgl,µν(p) =

(gµν −

pµpν

p2

)�Z(p2)

p2

gluon dressing �Z (p2) IR divergent→ IR slavery

MQH TU Darmstadt April 26, 2013 8/21

Page 19: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncating Dyson-Schwinger equations

gluon ghost gh-gl 3-gl 4-pt. ref.

X 0 0 model 0 [Mandelstam, PRD20 (1979)]

X X models models 0 Scaling [von Smekal, Hauck, Alkofer, PRL 79 (1997)]

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ààà

à

à

à

àà

ààà

àààà à

ààà ààààààààààààààààààààààà

0 1 2 3 4 5p@GeVD0

1

2

3

4

ZHp2L

[MQH,vonSmekal,JHEP

(2013);

Sternbeck,hep-

lat/0609016]

Dgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2

Dgh(p) = −G (p2)

p2

gluon dressing Z (p2) IR vanishing

deviations from lattice results inmid-momentum regime

MQH TU Darmstadt April 26, 2013 8/21

Page 20: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncating Dyson-Schwinger equations

gluon ghost gh-gl 3-gl 4-pt. ref.

X 0 0 model 0 [Mandelstam, PRD20 (1979)]

X X models models 0 Scaling [von Smekal, Hauck, Alkofer, PRL 79 (1997)]

X X models models 0 Dec. [Aguilar, Binosi, Papavassiliou PRD78 (2008)]

[Fischer, Maas, Pawlowski, AP324 (2009)]

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ààà

à

à

à

àà

ààà

àààà à

ààà ààààààààààààààààààààààà

0 1 2 3 4 5p@GeVD0

1

2

3

4

ZHp2L

[MQH,vonSmekal,JHEP

(2013);

Sternbeck,hep-

lat/0609016]

Dgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2

Dgh(p) = −G (p2)

p2

gluon dressing Z (p2) IR vanishing

deviations from lattice results inmid-momentum regime

MQH TU Darmstadt April 26, 2013 8/21

Page 21: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Truncating Dyson-Schwinger equations

gluon ghost gh-gl 3-gl 4-pt. ref.

X 0 0 model 0 [Mandelstam, PRD20 (1979)]

X X models models 0 Scaling [von Smekal, Hauck, Alkofer, PRL 79 (1997)]

X X models models 0 Dec. [Aguilar, Binosi, Papavassiliou PRD78 (2008)]

[Fischer, Maas, Pawlowski, AP324 (2009)]

X X X model 0 [MQH, von Smekal, JHEP (2013)]

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ààà

à

à

à

àà

ààà

àààà à

ààà ààààààààààààààààààààààà

0 1 2 3 4 5p@GeVD0

1

2

3

4

ZHp2L

[MQH,vonSmekal,JHEP

(2013);

Sternbeck,hep-

lat/0609016]

Dgl,µν(p) =

(gµν −

pµpν

p2

)Z(p2)

p2

Dgh(p) = −G (p2)

p2

gluon dressing Z (p2) IR vanishing

deviations from lattice results inmid-momentum regime

MQH TU Darmstadt April 26, 2013 8/21

Page 22: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Ghost-gluon vertex DSE

Full DSE:i1

i2

i3

=

+

i1

i2

i3

+12

i1i2

i3

-

i1i2

i3

+16

i1i2

i3

+

i1

i2 i3

+

i1 i2

i3

+12

i1i2

i3+

12

i1

i2i3

+12

i1

i3i2

+

i1

i2 i3+

12

i1

i2

i3

+12

i1i2

i3

Lattice results [Cucchieri, Maas, Mendes, PRD77 (2008); Ilgenfritz et al., BJP37

(2007)]

OPE analysis [Boucaud et al., JHEP 1112 (2011)]

Modeling via ghost DSE [Dudal, Oliveira, Rodriguez-Quintero, PRD86 (2012)]

Semi-perturbative DSE analysis [Schleifenbaum et al., PRD72 (2005)]

FRG [Fister, Pawlowski, 1112.5440]

MQH TU Darmstadt April 26, 2013 9/21

Page 23: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Ghost-gluon vertex

ΓAcc,abcµ (k ; p, q) := i g f abc (pµA(k ; p, q)+ kµB(k ; p, q))

Note:B(k ; p, q) is irrelevant in Landau gauge (but it is not the pure longitudinal part).

Taylor argument applies only to longitudinal part (it's an STI).

IR and UV consistent truncation:

i1

i2

i3

=

+

i1

i2

i3

+

i1

i2 i3

+

i1

i2i3

System of eqs. to solve:gluon and ghost propagators + ghost-gluon vertex

Only un�xed quantity in present truncation: three-gluon vertex.

q

pkϕ

MQH TU Darmstadt April 26, 2013 10/21

Page 24: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Ghost-gluon vertex

ΓAcc,abcµ (k ; p, q) := i g f abc (pµA(k ; p, q)+ kµB(k ; p, q))

Note:B(k ; p, q) is irrelevant in Landau gauge (but it is not the pure longitudinal part).

Taylor argument applies only to longitudinal part (it's an STI).

IR and UV consistent truncation:

i1

i2

i3

=

+

i1

i2

i3

+

i1

i2 i3

+

i1

i2i3

System of eqs. to solve:gluon and ghost propagators + ghost-gluon vertex

Only un�xed quantity in present truncation: three-gluon vertex.

q

pkϕ

MQH TU Darmstadt April 26, 2013 10/21

Page 25: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Three-gluon vertex: Ultraviolet

Bose symmetric version:

DA3,UV (x , y , z) = G

(x + y + z

2

)αZ

(x + y + z

2

)βFix α and β:

1 UV behavior of three-gluon vertex

2 IR behavior of three-gluon vertex?

MQH TU Darmstadt April 26, 2013 11/21

Page 26: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Three-gluon vertex: Ultraviolet

Bose symmetric version:

DA3,UV (x , y , z) = G

(x + y + z

2

)αZ

(x + y + z

2

)βFix α and β:

1 UV behavior of three-gluon vertex

2 IR behavior of three-gluon vertex → yes, but . . .

MQH TU Darmstadt April 26, 2013 11/21

Page 27: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Three-gluon vertex: Infrared

Three-gluon vertex might have a zero crossing.d = 2, 3: seen on lattice

[Cucchieri, Maas, Mendes, PRD77 (2008); Maas, PRD75 (2007)],d = 2: seen with DSEs [MQH, Maas, von Smekal, JHEP11 (2012)]

d = 2:[Maas, PRD75; MQH, Maas, von Smekal, JHEP11 (2012)]

æ

æ

æ æ æ

ææ

à

à

àà à

ì

ìì ì ì

ò

ò

òò

ò

òò

òò

ò

òòò

òò

òò

ò

ò

òò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

òô

ô ôô

ô ô ô ô

ôô

ô

ô

ô

ô

ô ô

ô

ô ô

0.5 1.0 1.5 2.0p

-2

-1

0

1

2

DprojA 3 Hp 2 , p 2 , Π � 2L

d = 4:[Cucchieri, Maas, Mendes, PRD77 (2008)]

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L

DA3,IR(x , y , z) = hIRG (x + y + z)3(f 3g (x)f 3g (y)f 3g (z))4

IR damping function f 3g (x) :=Λ23g

Λ23g + x

MQH TU Darmstadt April 26, 2013 12/21

Page 28: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Three-gluon vertex: Infrared

Three-gluon vertex might have a zero crossing.d = 2, 3: seen on lattice

[Cucchieri, Maas, Mendes, PRD77 (2008); Maas, PRD75 (2007)],d = 2: seen with DSEs [MQH, Maas, von Smekal, JHEP11 (2012)]

d = 2:[Maas, PRD75; MQH, Maas, von Smekal, JHEP11 (2012)]

æ

æ

æ æ æ

ææ

à

à

àà à

ì

ìì ì ì

ò

ò

òò

ò

òò

òò

ò

òòò

òò

òò

ò

ò

òò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

òô

ô ôô

ô ô ô ô

ôô

ô

ô

ô

ô

ô ô

ô

ô ô

0.5 1.0 1.5 2.0p

-2

-1

0

1

2

DprojA 3 Hp 2 , p 2 , Π � 2L

d = 4:[Cucchieri, Maas, Mendes, PRD77 (2008)]

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L

DA3,IR(x , y , z) = hIRG (x + y + z)3(f 3g (x)f 3g (y)f 3g (z))4

IR damping function f 3g (x) :=Λ23g

Λ23g + x

MQH TU Darmstadt April 26, 2013 12/21

Page 29: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Three-gluon vertex: Infrared

Three-gluon vertex might have a zero crossing.d = 2, 3: seen on lattice

[Cucchieri, Maas, Mendes, PRD77 (2008); Maas, PRD75 (2007)],d = 2: seen with DSEs [MQH, Maas, von Smekal, JHEP11 (2012)]

d = 2:[Maas, PRD75; MQH, Maas, von Smekal, JHEP11 (2012)]

æ

æ

æ æ æ

ææ

à

à

àà à

ì

ìì ì ì

ò

ò

òò

ò

òò

òò

ò

òòò

òò

òò

ò

ò

òò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

òô

ô ôô

ô ô ô ô

ôô

ô

ô

ô

ô

ô ô

ô

ô ô

0.5 1.0 1.5 2.0p

-2

-1

0

1

2

DprojA 3 Hp 2 , p 2 , Π � 2L

d = 4:[Cucchieri, Maas, Mendes, PRD77 (2008)]

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L

DA3,IR(x , y , z) = hIRG (x + y + z)3(f 3g (x)f 3g (y)f 3g (z))4

IR damping function f 3g (x) :=Λ23g

Λ23g + x

MQH TU Darmstadt April 26, 2013 12/21

Page 30: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

0 1 2 3 4 5p@GeV D0

1

2

3

4

ZHp 2L

0 1 2 3 4 5p@GeV D1

2

3

4

5

GHp 2L

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L Vary Λ3g → varymid-momentum strength

Ghost almost una�ected

Thin line: Leading IR orderDSE calculation forthree-gluon vertex⇒ zero crossing

Optimized e�ective three-gluon vertex:Choose Λ3g where gluon dressing has best agreement with lattice results.[MQH, von Smekal, JHEP (2013)]

MQH TU Darmstadt April 26, 2013 13/21

Page 31: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

0 1 2 3 4 5p@GeV D0

1

2

3

4

ZHp 2L

0 1 2 3 4 5p@GeV D1

2

3

4

5

GHp 2L

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L Vary Λ3g → varymid-momentum strength

Ghost almost una�ected

Thin line: Leading IR orderDSE calculation forthree-gluon vertex⇒ zero crossing

Optimized e�ective three-gluon vertex:Choose Λ3g where gluon dressing has best agreement with lattice results.[MQH, von Smekal, JHEP (2013)]

MQH TU Darmstadt April 26, 2013 13/21

Page 32: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

0 1 2 3 4 5p@GeV D0

1

2

3

4

ZHp 2L

0 1 2 3 4 5p@GeV D1

2

3

4

5

GHp 2L

æ

æ æ

æ

æ ææ

à

àà

à

à

à

ì

ì

ì ìì

ì

ì

ì

ì

ò

ò

ò

òò ò

ò

ò

1 2 3 4 5p@GeV D

-1.0

- 0.5

0.0

0.5

1.0

1.5

2.0

D A3 Hp 2 ,p 2 ,p 2L Vary Λ3g → varymid-momentum strength

Ghost almost una�ected

Thin line: Leading IR orderDSE calculation forthree-gluon vertex⇒ zero crossing

Optimized e�ective three-gluon vertex:Choose Λ3g where gluon dressing has best agreement with lattice results.[MQH, von Smekal, JHEP (2013)]

MQH TU Darmstadt April 26, 2013 13/21

Page 33: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Dynamic ghost-gluon vertex: Propagator results

Dynamic ghost-gluon vertex, opt. e�.three-gluon vertex [MQH, von Smekal, JHEP (2013)]

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ààà

à

à

à

àà

ààà

àààà à

ààà ààààààààààààààààààààààà

0 1 2 3 4 5p@GeVD0

1

2

3

4

ZHp2L

FRG results[Fischer, Maas, Pawlowski, AP324 (2009)]

0 1 2 3 4 5p [GeV]

0

1

2

Z(p

2)

Bowman (2004)Sternbeck (2006)scaling (DSE)

decoupling (DSE)

scaling (FRG)

decoupling (FRG)

æ

ææ

à

à

àà

à

àà à

0.0 0.5 1.0 1.5 2.0 2.5 3.0p1

2

3

4

5

6

GHp2L

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2p [GeV]

2

4

6

8

10

12

14

G(p

2)

Sternbeck (2006)scaling (DSE)

decoupling (DSE)

scaling (FRG)

decoupling (FRG)

Good quantitative agreement for ghost and gluon dressings.MQH TU Darmstadt April 26, 2013 14/21

Page 34: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Dynamic ghost-gluon vertex: Propagator results

Dynamic ghost-gluon vertex, opt. e�.three-gluon vertex [MQH, von Smekal, JHEP (2013)]

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ ææ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à

à

à

à

à

à

ààà

à

à

à

àà

ààà

àààà à

ààà ààààààààààààààààààààààà

0 1 2 3 4 5p@GeVD0

1

2

3

4

ZHp2L

FRG results[Fischer, Maas, Pawlowski, AP324 (2009)]

0 1 2 3 4 5p [GeV]

0

1

2

Z(p

2)

Bowman (2004)Sternbeck (2006)scaling (DSE)

decoupling (DSE)

scaling (FRG)

decoupling (FRG)

æ

ææ

à

à

àà

à

àà à

0.0 0.5 1.0 1.5 2.0 2.5 3.0p1

2

3

4

5

6

GHp2L

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2p [GeV]

2

4

6

8

10

12

14

G(p

2)

Sternbeck (2006)scaling (DSE)

decoupling (DSE)

scaling (FRG)

decoupling (FRG)

Good quantitative agreement for ghost and gluon dressings.MQH TU Darmstadt April 26, 2013 14/21

Page 35: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Ghost-gluon vertex: Selected con�gurations (decoupling)

ΓAcc,abcµ (k ; p, q) := i g f abc (pµA(k ; p, q) + kµB(k ; p, q))

Fixed angle: Fixed anti-ghost momentum:

[MQH, von Smekal, JHEP (2013)]

MQH TU Darmstadt April 26, 2013 15/21

Page 36: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Ghost-gluon vertex: Comparison with lattice data

Orthogonal con�guration k2 = 0, q2 = p

2:

æ

ææ

æ

æ

ææ

ææææææææææææææææææ

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0p@GeV D

0.9

1.0

1.1

1.2

1.3

1.4

A H 0;p 2 ,p 2Lconstant in the IR

relatively insensitive to changes ofthe three-gluon vertex(red/green lines:di�erent three-gluon vertex models)

DSE calculation: [MQH, von Smekal, JHEP (2013)]

lattice data: [Sternbeck, hep-lat/0609016]

MQH TU Darmstadt April 26, 2013 16/21

Page 37: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Functional equations and lattice results

functional equations lattice

propagators X Xthree-point functions ghost-gluon vertex: X limited mom. dependence

3-gluon vertex: in progressquark-gluon vertex: (X)

four-point functions (X) not soon

MQH TU Darmstadt April 26, 2013 17/21

Page 38: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Functional equations and lattice results

functional equations lattice

propagators X Xthree-point functions ghost-gluon vertex: X limited mom. dependence

3-gluon vertex: in progressquark-gluon vertex: (X)

four-point functions (X) not soonsource of error truncation �nite volume,

�nite lattice spacingtemperature X X

chemical potential X sign problemanalytic structure X no

MQH TU Darmstadt April 26, 2013 17/21

Page 39: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Functional equations and lattice results

functional equations lattice

propagators X Xthree-point functions ghost-gluon vertex: X limited mom. dependence

3-gluon vertex: in progressquark-gluon vertex: (X)

four-point functions (X) not soonsource of error truncation �nite volume,

�nite lattice spacingtemperature X X

chemical potential X sign problemanalytic structure X no

MQH TU Darmstadt April 26, 2013 17/21

Page 40: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Schwinger function

Schwinger function ∆(t):

∆(t) =1

π

∫dq cos(q t)

Z (q2)

q2

0 2 4 6 8 10t@fmD10-6

10-4

0.01

1

ÈDHtLÈ

[MQH, von Smekal, PoS CONFX 062 (2013) ]

∆(t) =

∫∞0

dνρ(ν2)e−νt = L(ρ)

ρ: spectral density, must be positive for physical particles

Positivity violation of propagators → con�nement.

MQH TU Darmstadt April 26, 2013 18/21

Page 41: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Schwinger function

Schwinger function ∆(t):

∆(t) =1

π

∫dq cos(q t)

Z (q2)

q2

0 2 4 6 8 10t@fmD10-6

10-4

0.01

1

ÈDHtLÈ

[MQH, von Smekal, PoS CONFX 062 (2013) ]

∆(t) =

∫∞0

dνρ(ν2)e−νt = L(ρ)

ρ: spectral density, must be positive for physical particles

Positivity violation of propagators → con�nement.

MQH TU Darmstadt April 26, 2013 18/21

Page 42: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Glueballs

Glueball candidate: G = FµνFµν

No positivity violation expected.

Construction from positivity violating gluons?

Correlation function 〈G (x)G (y)〉 in �rst order approximation (Born level):

p p

Gluon propagators from �ts to solutions of Yang-Mills systems.

MQH TU Darmstadt April 26, 2013 19/21

Page 43: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Glueballs

Calculation in complex plane.

Extraction of spectral density.

0 1 2 3 4 5

-p2 [GeV

2]

-20

0

20

40

60

80

100

dis

c{O

(p2)}

[Windisch, Huber, Alkofer, PRD87 (2013)]

Propagators in complex plane: [Strauss, Fischer, Kellermann, PRL109 (2012)]

MQH TU Darmstadt April 26, 2013 20/21

Page 44: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Summary

Green functions are basic building blocks for bound state equations.

Improving truncations systematically possible.

Checks: analytical results, lattice

Newest step for Yang-Mills sector: [MQH, von Smekal, JHEP (2013)]

Inclusion of ghost-gluon vertex andqualitative three-gluon vertex model

Required for quantitative results.Reproduction of lattice data possible.

Automatization tools available:DoFun [Alkofer, MQH, Schwenzer, CPC180 (2009); MQH, Braun, CPC183 (2012)]

CrasyDSE [MQH, Mitter, CPC183 (2012)]

Other applications in investigation of QCD phase diagram (no signproblem!)

Thank you for your attention!

MQH TU Darmstadt April 26, 2013 21/21

Page 45: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Summary

Green functions are basic building blocks for bound state equations.

Improving truncations systematically possible.

Checks: analytical results, lattice

Newest step for Yang-Mills sector: [MQH, von Smekal, JHEP (2013)]

Inclusion of ghost-gluon vertex andqualitative three-gluon vertex model

Required for quantitative results.Reproduction of lattice data possible.

Automatization tools available:DoFun [Alkofer, MQH, Schwenzer, CPC180 (2009); MQH, Braun, CPC183 (2012)]

CrasyDSE [MQH, Mitter, CPC183 (2012)]

Other applications in investigation of QCD phase diagram (no signproblem!)

Thank you for your attention!

MQH TU Darmstadt April 26, 2013 21/21

Page 46: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Summary

Green functions are basic building blocks for bound state equations.

Improving truncations systematically possible.

Checks: analytical results, lattice

Newest step for Yang-Mills sector: [MQH, von Smekal, JHEP (2013)]

Inclusion of ghost-gluon vertex andqualitative three-gluon vertex model

Required for quantitative results.Reproduction of lattice data possible.

Automatization tools available:DoFun [Alkofer, MQH, Schwenzer, CPC180 (2009); MQH, Braun, CPC183 (2012)]

CrasyDSE [MQH, Mitter, CPC183 (2012)]

Other applications in investigation of QCD phase diagram (no signproblem!)

Thank you for your attention!

MQH TU Darmstadt April 26, 2013 21/21

Page 47: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Summary

Green functions are basic building blocks for bound state equations.

Improving truncations systematically possible.

Checks: analytical results, lattice

Newest step for Yang-Mills sector: [MQH, von Smekal, JHEP (2013)]

Inclusion of ghost-gluon vertex andqualitative three-gluon vertex model

Required for quantitative results.Reproduction of lattice data possible.

Automatization tools available:DoFun [Alkofer, MQH, Schwenzer, CPC180 (2009); MQH, Braun, CPC183 (2012)]

CrasyDSE [MQH, Mitter, CPC183 (2012)]

Other applications in investigation of QCD phase diagram (no signproblem!)

Thank you for your attention!

MQH TU Darmstadt April 26, 2013 21/21

Page 48: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Landau Gauge Yang-Mills theory

Gluonic sector of quantum chromodynamics: Yang-Mills theory

L =1

2F 2 + Lgf + Lgh

Fµν = ∂µAν − ∂νAµ + i g [Aµ,Aν]

Propagators and vertices are gauge dependent→ choose any gauge, ideally one that is convenient.

Landau gauge

simplest one for functional equations

∂µAµ = 0: Lgf =1

2ξ(∂µAµ)

2, ξ→ 0

requires ghost �elds: Lgh = c (−2 + g A×) c

2 �elds: + i j-1

+ j k

-1

3 vertices:

+

i

j

k

+

i

j k

l

+

i

j

k

MQH TU Darmstadt April 26, 2013 22/21

Page 49: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Solutions of functional equations: Decoupling and scaling

Two types of solutions with functional methods that di�er only indeep IR [Boucaud et al., JHEP 0806, 012; Fischer, Maas, Pawlowski, AP 324 (2009)]:scaling [von Smekal, Alkofer, Hauck PRL97],decoupling [Aguilar, Binosi, Papavassiliou PRD78; Fischer, Maas, Pawlowski, AP 324

(2009)]

Lattice calculations �nd only decoupling type solution for d = 3, 4and scaling for d = 2

Decoupling emerges also from Re�ned Gribov-Zwanziger framework[Dudal, Sorella, Vandersickel, Verschelde, PRD77]

MQH TU Darmstadt April 26, 2013 23/21

Page 50: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Decoupling and scaling solutions

DSEs: Vary ghost boundary condition [Fischer, Maas, Pawlowski, AP 324 (2009)]

10-4 0.001 0.01 0.1 1 10 100

1

510

50100

500

p 2@GeV^2D

GHp

2L

10-4 0.001 0.01 0.1 1 10 10010-4

0.001

0.01

0.1

1

p 2@GeV^2D

ZHp

2L

Dependence of propagators on Gribov copies, e.g., [Bogolubsky, Burgio,Müller-Preussker, Mitrjushkin, PRD 74 (2006); Maas, PR 524 (2013)]

Ideas:[Sternbeck, Müller-Preussker, 1211.3057]: choose Gribov copies by lowesteigenvalue of the Faddeev-Popov operator→ modi�cation of both dressings[Maas, PLB689 (2010)]: choose Gribov copies by value of ghostpropagator

d = 2: Analytic and numerical arguments from DSEs for scaling only [Cucchieri,

Dudal, Vandersickel, PRD85 (2012); MQH, Maas, von Smekal, JHEP11 (2012)] as well asfrom analysis of Gribov region [Zwanziger, 1209.1974].

MQH TU Darmstadt April 26, 2013 24/21

Page 51: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Scaling solution: Propagators

0 2 4 6 8 10p@GeVD0

1

2

3

4

ZHp2L

0.0 0.5 1.0 1.5 2.0 2.5 3.0p@GeVD1

2

3

4

5

6

GHp2L

0.0 0.5 1.0 1.5 2.0 2.5 3.0p@GeVD0

5

10

15

20

ZHp2L�p

2

Scaling solution

Decoupling solution

Di�erences only at low momenta.

MQH TU Darmstadt April 26, 2013 25/21

Page 52: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

Scaling solution: Ghost-gluon vertex

Fixed angle: Fixed momentum:

Dressing not 1 in the IR ← Contributions from loop corrections (fordecoupling they are suppressed)

Scaling/decoupling also seen in ghost-gluon vertex

MQH TU Darmstadt April 26, 2013 26/21

Page 53: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

ghost-gluon vertex: bare

0 1 2 3 4 5 6 7p@GeV D0

1

2

3

4

ZHp 2L

original three-gluon vertex

MQH TU Darmstadt April 26, 2013 27/21

Page 54: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

ghost-gluon vertex: bare

0 1 2 3 4 5 6 7p@GeV D0

1

2

3

4

ZHp 2L

original three-gluon vertexBose symmetric three-gluon vertex

MQH TU Darmstadt April 26, 2013 27/21

Page 55: Landau gauge Green functions from Dyson-Schwinger equations · Landau gauge Green functions from Dyson-Schwinger equations Markus Q. Huber, Lorenz von Smekal Institute of Nuclear

Introduction Yang-Mills theory Summary

In�uence of the three-gluon vertex

ghost-gluon vertex: bare

0 1 2 3 4 5 6 7p@GeV D0

1

2

3

4

ZHp 2L

0.0 0.5 1.0 1.5 2.0p@GeV D1

2

3

4

5

GHp 2L

original three-gluon vertexBose symmetric three-gluon vertexBose symmetric three-gluon vertex with IR part

⇒ Improved three-gluon vertex adds additional strengthin the mid-momentum regime.

MQH TU Darmstadt April 26, 2013 27/21