Top Banner
Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman George E. Harlow , Denton Ebel Karl Hibbitts and Carey Lisse Tatiana Brusentsova, Doug Maukonen, Pedro Figueiredo, Himanshu Saxena, Robert E. Peale Presented at AAS meeting, Washington DC Jan 2010
16

Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Dec 14, 2015

Download

Documents

Jonathan Carr
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Laboratory Spectroscopy in Herschel/PACS Range of

Astrophysically Important Minerals

Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman

George E. Harlow , Denton Ebel

Karl Hibbitts and Carey Lisse

Tatiana Brusentsova, Doug Maukonen, Pedro Figueiredo, Himanshu Saxena, Robert E. Peale

Presented at AAS meeting, Washington DC Jan 2010

Page 2: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Astro-relevant minerals

high-T (>1000K) predictions from condensation calculations

minerals found in carbonaceous chondrite meteorites

minerals interpreted from Spitzer/Deep Impact spectrum, found in Stardust samples and in IDPs

minerals found in differentiated meteorites and planets

minerals reported in astronomical spectroscopy

Page 3: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Lab measurements support PACS data analysis

Thermal emission: 4 c () e0() d

• e0() = Planck function

• = (S/m) ln (1/T) = mass absorption coef.–S = sample cross-section

–m = mass in sample

–T = transmittance spectrum

Page 4: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Physical Characterization

Select grains from AMNH mineral collection– Crush to separate intergrowths– Sweep magnetic impurities– Dissolve carbonate impurities in HCl (acid)– Hand pick clean grains

Verify crystallography (single crystal x-ray)Electron microprobe on single grains

– Chemical composition– Cation stoichiometry

Page 5: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Pellet preparation and spectroscopy

Make dust– micronizing mill– Stokes settling– grain size distribution

Weigh and mix in polyethylene powder

Melt press to pellets

Fourier transform spectrometer: 14-250 microns

20 microns

cerussite

1 2 3 4 5 60

50

100

Num

ber

of p

artic

les

Particle diameter (micron)

Cerussite

Page 6: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Disseminate results• Planetary Data System, Cross-referenced

• Curation of all samples at AMNH – Samples– Pellets– All data

Page 7: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Carbonates: Calcite & Dolomite group

0

20

40

60

80

100

dolomite

- 40

8- 37

0 322

-

263

-

173

-16

0 -Ca Mg (CO

3)2

0

20

40

60

80

100CaMg

3(CO

3)4

Wavenumber (cm-1)

Tra

nsm

ittan

ce (

%)

512

-

443

- - 40

0

382

-- 36

3

282

- 24

9 -

214

- 18

5 -

155

-11

7 - 79

-

huntite

600 500 400 300 200 1000

20

40

60

80

100Ca

0.78Mn

1.13(CO

3)2

260

-

320

- 204

-15

3 -

138

-

kutnohorite

0

20

40

60

80

100Ca(Fe

0.28Mg

0.65)(CO

3)2

154

-16

6 -

220

-25

9 -

- 32

0- 35

6

ankerite

0

20

40

60

80

100

228

-256

-30

6 -

- 38

0- 43

9

magnesiteMgCO

3

Tra

nsm

ittan

ce (

%)

0

20

40

60

80

10098

-11

0 -

228

-- 31

9- 36

0

calciteCaCO

3

0

20

40

60

80

100

160

-17

7 -20

5 -

- 30

835

2 -

rhodochrositeMnCO

3

600 500 400 300 200 1000

20

40

60

80

100

Wavenumber (cm-1)

195

-23

0 -

- 37

8sideriteFeCO

3

Spitzer SpitzerPACS PACS

-The lines in the PACS range within the same mineral group directly depend on the mineral species

Page 8: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Hydroxyl-containing, acid- and hydrated Carbonates:

0

20

40

60

80

100

87 -

- 97

120

-14

6 -

172

-

215

-- 24

5- 26

5

517

-Gaylussite Na

2Ca(CO

3)2*5H

2O

Tra

nsm

ittan

ce (

%)

Wavenumber (cm-1)

600 500 400 300 200 1000

20

40

60

80

10072

-98

-13

1 -

163

-- 17

5- 20

4- 23

526

3-- 60

0

Trona Na3(HCO

3)(CO

3)*2H

2O

0

20

40

60

80

100

Wavenumber (cm-1)

130

-143

-17

5 -

275

-

317

-- 32

9

- 37

239

6 -

467

-513

-

hydrozinciteZn

5(CO

3)2(OH)

6

Tra

nsm

ittan

ce (

%)

0

20

40

60

80

100

- 60

0

485

- - 43

4

345

-

297

- 248

-- 23

5

195

-20

9 -

155

-hydromagnesiteMg

5(CO

3)4(OH)

2*4H

2O

600 500 400 300 200 1000

20

40

60

80

100

artiniteMg

2(CO

3)(OH)

2*3H

2O

- 51

3

- 43

8

- 39

6 - 35

333

0 - 27

7 -

- 24

521

4 -

195

- 177

-15

7 -

112

-

PACS

PACS

Spitzer

Spitzer

Page 9: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Phyllosilicates (micas)

100 200 300 400 500 600

0

500

1000

1500

2000

2500

3000

3500

Wavenumber, cm-1

Mas

s ab

sorp

tion (

cm2 /g

) Paragonite 84351 Clintonite 84503

PACS

Page 10: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Feldspars

0

1000

2000

Ab~100

1005033252017

Wavelength (m)

Wavenumber (cm-1)

0

1000

2000

Ab79

An21

0

1000

2000

Ab90

An10

Mass

abso

rptio

n (c

m2 /g

)

700 600 500 400 300 200 100

0

1000

2000

Ab41

An59

0

1000

2000

Ab51

An49

both Plagioclase-(Albite-Anorthite)

and Alkali-

(Albite-Orthoclase) solid solution series

were examined

0

1000

2000

3000

Ab~100

Mass

abso

rptio

n

(cm

2 /g)

Wavelength (m)

Wavenumber (cm-1)

0

1000

2000

3000

Ab36

Or64

0

1000

2000

3000

Ab29

Or71

700 600 500 400 300 200 100

0

1000

2000

3000

Ab6Or

94

0

1000

2000

3000

Ab15

Or85

1005033252017

Spitzer SpitzerPACS PACS

Page 11: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Sulfides:

100 200 300 400 500 6000

500

1000

1500

2000

2500

3000

Sphalerite ZnS, #109954, <6m Alabandite MnS, #103312, <6m

Mas

s ab

sorp

tion (

cm2 /g

)

Wavenumber (cm-1)100 200 300 400 500 600

0

500

1000

1500

2000

2500

3000

3500

4000

Stibnite Sb2S

3, #110042, <6m

Pyrite FeS2, #37240, <6m

Wavenumber (cm-1)

Mas

s ab

sorp

tion (

cm2 /g

)

PACS

Page 12: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

The effect of smaller particle size:

50 100 150 200 250 300 350 400 450

0

500

1000

1500

2000

2500

3000

Wavenumber (cm-1)

Mas

s ab

sorp

tion (

cm2 /g

)

Sphalerite #109954, no Stokes precip. Sphalerite #109954, D particles <6m, Stokes precip.

100 200 300 400 500 6000

1000

2000

3000

4000

Pyrite #37240, no Stokes precip. Pyrite #37240, D particles<6m,Stokes precip.

Wavenumber (cm-1)

Mas

s ab

sorp

tion (

cm2 /g

)

-The increase of mass absorption coefficient values for the samples with smaller mean particle size

Page 13: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Temperature dependence

100 200 300 400 5000.0

0.5

1.0

1.5

2.0

2.5

3.0

Ab

sorb

an

ce

Wavenumber (cm-1)

Water IcePACS

200 250 3000

1000

2000

3000

4000

Wavenumber (cm-1)

In

tens

ity (

Arb

. uni

ts)

Huntite

14 K

300K

Icy dust

Page 14: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

150 Minerals Sampled• Nesosilicates: Olivines, Garnets, Phenakites• Silica minerals• Inosilicates: Pyroxenes (Clino- and Ortho-), “Pyroxenoids”• Feldspars: Alkali and Plagioclase• Double-chain silicates: Amphiboles (Orthorhombic, Calcic

clino-)• Cyclosilicates• Carbonates: Calcites, Aragonites, Dolomites, hydroxylated,

Hydrated-normal, acid• Phyllosilicates: Smectites, Chlorites, Micas, Kaolinites,

Serpentines, Talcs• Sorosilicates• Oxides• Sulfides

Page 15: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Applications

• Early PACS report: 69 m feature “due to olivine.” True? We find no olivine feature there.

• Simulation of dust emission spectrumLinear superposition of absorbance for (e.g.) 38% water

ice, 22% forsterite, 22% orthopyroxene (Mg-rich end member), 8% pyrrohtite, 5% talc or nontronite, 2.5% magnesite, and 2.5% siderite

Page 16: Laboratory Spectroscopy in Herschel/PACS Range of Astrophysically Important Minerals Andy Nissinboim, Joseph Boesenberg, Julie Leibold, Kristen Sherman.

Summary

• Laboratory far-IR absorption spectroscopy of 150 well-characterized minerals

• Spectral signatures found in the range of Herschel-PACS for 40

• No features ever found beyond ~140 m

• Funding: NASA-JPL