Top Banner

Click here to load reader

Laboratory Results of Laundry Wastewater TreatmentThis report relates the results of the chemical treatment of laundry wastewater in the lab, using different chaliical coagulation

Apr 24, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • I

    (23

    c c3 E

    n L,

    FESA-RT-2917

    F-- b .# r7 LABORATORY RESilLTS OF I AUNDRi K i r S T E W k l E K TREATMENT <

    Moun i r Bctros Walter C. @est US Army Facilities Fngineering Support A q e n c . ~ Research and Technology Division Fort Yelvoir, V A 22060

    April 1977

    c 1 >’ Final R c , \ o r t CL

    Is ! I

    APPROVED FOR P U B L I C R E L E A S E : DISTRIBUTION UNLIMITED. , ! LJJ

    z d c

  • I

    REPORTDOCUMENTATION PAGE R E P O R T HUM- 2 GOVT ACCESSION NO

    Y' /+p ' - ; { 5/\i-ESA-RT-Z,Ol!

    _ - -

    READ MSTRUCTIONS BEFORE COHPLETKNG FORM

    3 R E C I P I E N T ' S C A T A L O G HUMBER

    R W Q U T NUMBER i Laboratory Resul ts of Laundry Wastewater Trea tnient t -. 1

    1 8 CO T R A C T O R G R h M T NUMBER(*) ' AUTI4OR(.)

    Mounir/Botros Mal t e r /Bes t

    A R E A d WORK U N I T N U M B E R S PERFORMING ORGANIZATION HLitE 4WD A D O R E S 5

    I Research and Technology Division USA F a c i l i t i e s Engineerinq Support Agency

    r

    Water, water recyc le , water reuse , laundry water recovery.

    ____ 20 AMTRACT m k u m ~ ~ ~ . w r y si& If nrmq rrd t d m l l h bY block n m b u )

    This r epor t r e l a t e s the r e s u l t s of the chemical t reatment of laundry wastewater i n the l ab , using d i f f e r e n t chaliical coagulat ion and f locc.ulat ion compounds i . e . , i r o n , aluminum and lime used sepa ra t e ly and toge ther . procedure using i ron was discussed i n d c t a i l . processes were t e s t e d . chemical t reatment i s by using jus t only one chemical coagulat ion compound ( A l u m i n u m S u l f a t e ) with po lye lec t ro ly t e s a s a f loccu la t ion a i d (WT-2700) t o lower the cos t and s impl i fy the design o f the t reatment p l a n t .

    U N C L A S S I F I E D

    The f loccu la t ion Also lime o r lime and aluminum

    F ina l ly the r e p o r t suggests t h a t the bes t way f o r

    The optimum - , :z"! 1413 mtnom or t wov c i t 15 O ~ ~ ~ L L T L

    c S L C K C - I C A T I O W OF TU15 P A C E I- 1J.t. In1.r.d)

  • 1. Continued. ! losage of aluminum sulfate was estimated, and t h ? bezt ccndTti3r: o f the b t ) f i c t i ? : - !specially for pt! and temperature of the soluticn were f i x e d A!:;.: ~ Z S ~ I I ( ! P S :r,e ‘iltr’dtion process, the ideal sand f i l t e r anu t h e desic;r!irlg o i t nc w d i a Led. :he using cf polymers as f i l t r a t ion a ids . :he i y p r c r f i : t .e . ~ ! . : . ‘ + , , t d ~ . ~ s w I ” liscussed. The g r a v i t y and pressure f i l t e r s were c ~ r i C ~ ~ ~ ~ 4 . :‘:n r .~;u’ t ; ~ j t ‘ :b,:: effort indicate t h a t the recycling of laundry wasteir2tcr .?t Lr-. , , j ? > ! , ? ’ j ? t . ’ 5 r i c i s nct cost effective a t the present t ine.

    \ ?

    \,

  • TABLE OF CONTENTS -- SECT1 ON

    PART 1 Chemical Coagulation and Flocculat ion

    I

    PAGE NO. -__

    1 .

    2

    3.

    4 .

    5 .

    6 .

    -, 1 .

    8 .

    9 .

    10

    l ron Coagulation

    Tes ts in the Chemical Lab by Using FeC13

    Calcula t ion o f Solile Tests and Conclusion

    A i umi n u n Coagulation

    Tests i n the Chemical Lab by Using A12(S04)3

    1

    3

    9

    4

    a 23 Calcu la t ion of Some Tests a o J Conclusion

    Lime Cuagulation 2 7

    Tests in the Chemical Lab by Using Combination between Aluminwn S u l f a t e ar,d Lime CaO

    Calculat ion o f Some Tests and Conclusions

    Conc 1 us i on

    1 1 . Another t e s t by Using A l ~ ( 1 0 4 ) ~

    12. The Ef fec t of the Temperature on the Coagulation

    13. Final Conclusion

    PART 2 F i l t r a t i o n

    1 . P a r t i c l e s D i s t r ibu t ion

    2 . The Advantage of the Pressure F i l t e r

    3 . The Grs;i ty F i l t e r I . - 4 . The Pressure F i l t e r

    5 . The Head Loss

    27

    29

    30

    2’2

    34

    36

    36

    4 3

    -- --y 45 46

    d

    i 1 1

  • Page 1 'I I .I

    15

    7 l?

    26

    Betwccn the Concontt*ation 0; Al,(jG), addinii t o the WdstEhatcr and T u r b i d i t y ( d d s t c w a h r h igh F?:

    Setween the Concentration Cf fil;(SG4j-. ad(t;ng t o the Wsstwater and Turbidity (Lzrttwatei :obi oh!

    d

    31 i3etwee;i the Concen%r6tioc GI L i i w (CeC) 2CLy-i9 ;:c the i idstewa tc and the t'drGncSs

    Between the Concentraticn cf c\12(CC4), 2 ' i s : b - o q t:) the Wastewater and pH

    Between t

    32

    35 d i ty and d i f f e r e n t degree. C m t i g r ade

    , C r ' + ,

    i3ed Depth And Part ic le D i s t r i b u t i o n 39

    E f f e c t s o f Pplymers as F i l t r b t i u n Aids 42

    45

    46

    Cvavi t y F i 1 ter

    Pressure Filter

    4

    4

    4 7 5 A Typical !!ertical Pressure F i l tm- I ! 5 Herd Loss bistribution i n mixed media tiltor

    i i

  • TASLES

    T i t l e Page

    I ron Coagulat ion (Tes‘ No. 1 - No. 7 ) 11 I r o n Coagulat ion ( T e s t No. 8 - No. 1 1 ) 1 2 Aluminum Coagulat ion (Test No. 1 - No. 3 ) 23

    Aluminum Coagulat ion (Test No. 6 No. 8 ) 25

    I l l u s t r a t i o n o f Varying Media Des Variotls Types o f Floc Removal

    iii

    gn f o r 40

  • I

    PART 1

    CHEMICAL COAGULATION AND FLOCCULATIOf i

    I r o n Compounds as Phosphorus P r e c i p i t a n t b o t h fer i -ot ts (Fez') and

    f e r r i c (Fe") i o n s can be used i n t h e p r e c i p i t a t i o n o f phosphorus w i t h

    Fe3+ a r e a c t i o n can be w r i t t e n s i m i l a r t o t h a t shown e a r l i e r f o r p r e c i p -

    i t a t i o n o f aluminum phosphate. A !:l mole r a t i o o f Fe:P04 r e s u l t s . S ince

    t h e m o l e c u l a r w e i g h t o f i r o n i s 55.85; t h e we igh t r a t i G of Fe:F i s 1 . 8 : l .

    J u s t as i n t h e cace o f aiuminum a l a r g e r amount o f i r o n i s r e q u i r e d i n

    a c t u a l s i t u a t i o n s t h a n t h e c h e m i s t r y o f t h e r e a c t i o n p r e d i c t s . Wi th

    Fez' t h e s i t u a t i o n i s more c o m p l i c a t e d and n o t f u l l y ucders tood .

    phosphate can be forrred. The mole r a t i o o f Fe:P04 Hou ld be 3:2 .

    Exper imen ta l r e s u l t s i n d i c a t e , however, t h a t when Fe2+ i s used; t h e

    mole r a t i o o f Fe:P w i l l be e s s e n t i a l l y t h e same as when Fe3+ i s used.

    Fe r rous

    A number o f i r o n s a l t s a r e a v a i l a b l e f o r use i n phosphorus p r e c i p -

    i t a t i o n . These i n c l u d e f e r r o u s s u l f a t e , f e r r i c s u l f a t e , f e r r i c c h l o r i d e ,

    and p i c k l e l i q u o r . A l l w i l l l o w e r t h e pH o f wastewater becau5e of

    n e u t r a l i z a t i o n o f a : k a l i n i t y . P i c k l e l i q u o r c o n t a i n s s u b s t a n t i a l amounts

    of f r e e s u l f u r i c a c i d o r h y d r o c h l q r i c a c i d .

    I r o n s a l t s a r e most e f f e c t i v e f o r phosphorus removal d t c e r t a i r ! pH

    T h i s i s a r u n r e a l - va lues .

    i s t i c a l l y l o w pH, n o t a t t a i n e d i n most wastewaters. S i g n i f i c a n t removal

    o f phosphorus can be a t t a i n e d a t h i g h e r pH.

    abcu t 8 and good phosphorus removal can be o b t a i n e d between 7 and 8 .

    For Fe3+ t h e optimum pY range i s 4.5 t o 5.0.

    f o r Fez+ t h e optimum pH i s

    The a c i d i t y of f e r r o s s a l t s , and e s p e c i a l l y p i c k l e l i q u o r , n e c e s s i t a t e s

    a d d i t i o n o f l i m e o r sodium h y d r o x i d e f o r good r e s u l t s .

    i s a e r a t e d f o l l o w i n g Fez+ a d d i t i o n , t h e use o f a base may n o t be necessa ry .

    Where t h e wa te r

    1

  • I

    forn. C. cryst

    crystal l i n e fo rm b e i

    s 35-9ri lb!ft*3. The t y ~ i

    ic chloride and weighs 11

    stcwater- cmgu;i!tirJn, a srria’il

    red t o necltral

    .-

    b r rls?‘ i i i advdncec! w + s t

    , a s i i l t p r .:i

    .a:? inc

    9h5

    c.11

    7 .L -

    ;lrm un t

    i z c the

    .ewa ter

    d s , 3r

    “ o r c!L.!igE con en t o f cei-%in wa;tcwater;, l i r e or

    duce a f ine o r l i g h t f l o c w h i c h

    roSably i s z [,olyrner which, w h e ?

    :]sed ;i an a i d t locculztion, w i l l ;)roduse d rapidly

    f polymer a + :lie r i q l r t p o i n t in

    ?.rea trllent. c3 Is o f bo tq C’Jrbidity and p h o ; p h o r u s .

    fin!nary screening, b t i t pldnt :;cdle

    .L‘(

    l f i c instructions m y be ob td

    the following steps are necessd

    wder by means o f a funnel type

    5 f u r

    i fled

    :ry.

    asp i r a to r ,

    ow

  • s t i r r i n g until a l l o f the polymer i s in solution.

    Test i n the Chemical Lab by Using FeC13

    NOTE: Every t e s t I n the lab was repeated several times and the fiaures

    in the t e s t a r e the average figures.

    Reagent

    1 . Ferric Chloride

    FeC13 6H20

    20 gm in one l i t e r water

    The concentration 20,000 ppm/l

    every 1 m l o f the solution = 20 P M

    2. Sodium hydrox,de

    NaOH

    20 gm i n one l i t e r water

    the concentration 20,000 ppm/l

    every 1 ml o f the solution = 20 ppm

    polelectrolyte o r polymer ( W 2700)

    0.1 gm i n one l i t e r water

    the concentration 100 ppm/l

    every 1 ml o f the solution

    Apparatus

    1. Turbidimeter

    2. ph meter

    3.

    TEST NO. 1

    sample o f the laundry wastewater 125 ml

    pH o f the sample 10.75

    3

  • I

    1 L . 5 171 Fer! ~ ?onc 20,000 ppm

    ptJ o f the water 3.75

    c 2 .5 ml Nagti conc 20,000 pprn

    oH o f the water 7.1

    i n m l k't 2700 conc.10G ppm l i g h t f l c r .

    TEST No. 2

    Sanple o f %he laundry wastewater i i 5 nl

    DH o f the sample 13.5 PH

    18.5 ml FeCl m n c 22,000 3

    p s f t h t . k23ter- 3.75

    a d d i n g - -___ 3.25 ml NaOH conc 20,000 P P I I ,

    pH o f the water 7 . 3 5

    by adding ---. - -

    10 WT 2700 conc 100 ppni very gGod f l o c .

    J u l y 18, 1975

    T E S T No. 3_

    sample o f the laundry wastewater I25 ml pH o f the sample 15.25

    by a d d i n g ---

    14 ml FeC13 conc 20,000 ppm

    pH o f the water 4.5

    1.5 m l NaOH conc 20,000 ppm

    pH o f the water 7.25

    4

  • by a d d i n g

    10 m l WT-2700 colic 100 ppm l i g h t f l o c .

    TEST No. 4

    Sample o f the laundry Nastewater 125 ml --

    pH o f the sample 13.05

    by a d d i n g ~-

    1 5 ml FeCl conc. 20,000 ppm

    pH o f the water 3.75

    by adding

    2 .5 ml NaOH conc 20,000 ppm

    pH o f t h e water 7.50

    by a d d i n g

    10 ml WT 2700 conc 100 ppm l i g h t f l o c

    TEST No. 5

    Sample of the laundry wastewater 125 ml

    pH o f the sample 13.15

    by a d d i n g

    13 ml FeCI3 conc 20,000 ppm

    pH of the water 6

    by adding - ~ -

    0.85 m l NaOH conc 20,000 ppm

    pti o f the water 7.5

    by adding

    10 ml WT 2700 100 ppm

    bad f l o c .

    5

  • ', ?

    I ,

    . .

    D r l c f the s a m p l e 13.15

    by a t j d i n g

    19 ml FeCl? c t n c 20,COO ppm

    ptl o f thc . water 3.59

    .--

    by ciddinq --d.

    4.25 ml NaOli conc 20,300 ppr;

    pt i of the water 7 . 5

    10 rr.i WT 2'00 c o n c 13G pprn

    excel l e n t f i s c .

    TEST No. 7

    Sainple o f the l a u n d r y w a s t e w a t e v ? 2 5 l~ll

    DK 13.2

    by rbdding

    16 ml FeCI3 conc 20,000

    ~ t ' o f the vater 4 ' by adding -__

    3.25 m l NaOH conc 20,000 ppn

    PH of the water 7.8 !)) E d d i n g

    10 ml WT 2700 c o n c 100 ppm

    good f l o c

    -----

    6

  • I

    TEST No. 8

    I

    Sample o f t h e laundry wastewater 125 ml

    p! o f t h e sample 13.35

    by adding

    14.3 ml FeC13 conc 20,000 ppm

    pH o f t h e water 6

    by adding

    1.15 ml NdOH conc 20,000 ppm

    pH o f the water 7.50

    by a d d i n g

    1 2 ml WT 2700 conc 100 ppm

    TEST No. ,9

    Sample of the laundry wastewater 125 ml

    pH of t h e sample 13.35

    by adding

    14,,6 m l FeC13 conc 20,000 ppm

    IJH o f the water 4.9

    by adding

    1.65 m l NaOH conc 20,000 ppm

    pH of t h e water 7.5

    by a d d i n g

    1 2 m l WT 2700 conc 100 ppm

    TE5T No. 10

    Sample o f t h e laundry wastewater 125 ml I

    pH o f the sample 13.3

    7

  • 1 5 . 4 5 ml FcC13 conc 20,000 ppm

    PI? o f the water 3.9”;

    t y a d d i n g

    I

    ptl o f t h t . water 7.5

    !:y a d d i n g c-__

    12 rlil WT 2700 cotic 100 ppm T. ( - 1t.j I tio. -. 1-l ---

    S(iniple of the laundry wastewater 125 m l

    pH of t h e sample 13.3

    16 r;l FeC13 ccnc 20,000 ppm

    pH Jf the water 3 . 8

    by a d d i n g -. -

    2 . 6 ml NaO3 conc 20,OOG ppm

    p l i o f t h e water 7.8

    !>/ addir7c; --_

    1 2 m i NT 2700 100 ppm

    8

  • I

    Calculation

    TEST No. 8 -- 14.3 x 20 = 286 ppm

    286 x 8 = 2288 ppm/liter FcC13

    1.15 x 20 = 23

    23 x 8 = 184 ppm/liter NaOH

    TEST No. 9

    14.6 x 20 = 292 ppm

    292 x 8 = 2336 ppm/liter FeC13

    1.65 x 20 = 33 ppm

    33 x 8 = 264 ppm/liter NaOH

    TEST No. 10

    15.45 x 20 = 309 ppm

    309 x 8 = 2472 ppm/liter FeC13

    2.55 x 20 = 51 ppm

    51 x 8 = 408 ppm/liter NaOH

    TEST No. 11

    16 x 20 = 320 ppm

    320 x 8 = 2560 ppm/liter FeC13

    9

    1 ' - --

    t

  • I

  • 0

    N

    0

    0

    cr In 0

    u3 In

    N

    0

    0

    Q

    N

    0

    2

    -

    cl-

    0

    b-

    +.' c

    W

    W u x

    W

    - v' 0

    Y-

    V 0 0

    cn

    7

    7

    7

    I--

    2 a, >

    co a

    0

    CD u3

    0

    N

    LD

    0

    d 0

    m

    0

    u3 Q

    , N

    0

    7

    0

    I--

    I

  • I

    N

    w

    --I

    Q

    I- m

    In

    h

    0

    N

    e

    cn c

    3

    m

    P

    In

    h

    Q,

    d

    N

    - d Io N Io m m N % m c m

    In

    h

    m

    h

    N

    h

    d

    N

    m

    c1

    P

    0

    #--

    a

    h

    h

    cu

    w e

    P

    0

    u3 In

    1-U

    m

    m

    -

    12

  • I

    ---+---

    C

    UI

    m

  • I

    v12;:,?:3 above 6 .3 , the ph3sphj.te fc r ,?~ . i l ? . : ( . . I ; . I I ~ ~ S I . i . ; e i iher by i nco rpora t ion

    i n d complex wi th aluminum o r by at!sry-;:ior; c11 ? , I ~ J I : I ; ~ I , J I T I hydroxide f l o c .

    I:' tlir: hydro l yz ing react lon d i d riot c c r ~ y ~ e t c w: t h the p h o s p h a t e p r e c i p i t a t i o n

    r.i?E,:tjon, the removal o f phosphorous woul? h: s :oichiornetr ic , w i t h 0.87 ? b

    CJ' al i t r+inum r e q u i r e d f o r each pound c! r:hosrt::>t I n p r i ~ c t i c e , the

    ~ i l u f i , i ~ i u m t o phosphorus r a t i o i s on t k ot.;lCr 2 - i . depending on the f i n a l

    phosphorus c o r c e n t r n t i o n desir2d and * n o ~ . h j

    tIli' a a r t i c u l a r was tewater invol vcd.

    ; ' I j+-ac te r i s t ics o f

  • ?,

    \o

    In

    o\

    CO h

    I

    I

    I I

    1 I

    I --------I

    . Ci

    SV 1

    /31i ‘SIlX

    OH

    dSOIId

    15

    8

  • I

    A1 uminum Compounds a s Phosphorus Precipi tants

    Alurjnum ions can combine w i t h phosphate ions t o form aluminum 3-

    phosphate as follows: A13+ + PO4 * A1P04. - The above equation indicates t h a t the mole r a t i o for A1=P04 i s

    1 = 1 . Inasmuch a s the mol'e r a t i o of P = PO4 i s a lso 1 = 1 , the

    mole r a t i o fo r A1 = P I s 1 = 1 o r A1 = 7 when both aluminum and

    phosphorus a re expressed i n terms of gram-moles o r lb-moles. On

    a weight , rather than a mole basis, this means t h a t 27 l b s of A 1 will

    react w i t h 95 l b of PO4 t o form 122 lb of A1 PO4.

    ( 1 1b-mole) of PO4 contains 31 lbs ( 1 15 mole) of P the weight re1at:onship

    T

    Since each 95 lbs

    . between A1 and P i s 27 l b of A 1 t o 31 l b lbs of P cr 0.87 f o r t n i s reaction.

    The principal source of aluninum fo r use i n phosphorus precipitation

    i s "alum" a hydrated aluminum s u l f a t e , having the approximate formula

    A I 2 (S04)3 14 H20 (molecular weight of 594).

    The chemical which is a l s o known as a " f i l t e r alum" o r "paper maker's

    alum" average about 17% soluble aluminum expressed as A1203 or about

    9.1% expressed a s A l .

    A I 2 (S04)3 14 H20 + 2P043- - 2ALP04 + 3 S04'- + 14 H20. Its reaction w i t h PO4 may be written as follows: The su l fa te remains i n solution as S04*'. T h e above reaction

    indicates t h a t 1 lb-mole of alum (594 l b ) will react w i t h 2 lb-mole

    (190 lb ) of PW3' containing 62 l b phosphorus to form 2 l b moles (244

    l b ) of AlP04.

    9.6:7,

    der ived from the A l = P mole r a t i o a s follows:

    The weight r a t i o of alum t o Ghosphorus i s , therefore

    The alum requirement per pound o f phosphorus may a l s o be

    Mole r a t i o AI :P=l : l

    A l u m contains 9.1% A l .

    9.6 lb .

    therefore weight r a t i o A 1 : P = 27:31=0.87=1

    Therefore, alum required per l b of P = 0.87 = K-0771

    16

  • 3

    stumn and Morgan ( 3 ) s t a t e t h a t the so lub

    dependent and v a r i e s as fo l l ows :

    PH Approxi l~la t e

    5

    6

    7

    l i t y of A l P 0 4 i s pti

    s o l u b i l i t y (mg/ l )

    0.03

    0.01 (minimum s o l u b i l i t y )

    0.30

    The optimum pH f o r removal o f phosphorus probably l i e s i n the range

    . of 5.5 t c j 6.5, a l though some removal occurs above pH 6.5. , Add i t i on o f alum w i l l lwer t h e pH o f wastewater because of n e u t r a l i z a t i o n o f a l k a l i n i t y

    and re lease o f carbon d iox ide .

    p r i n c i p a l l y on the a l k a l i n i t y o f t h e wastewater.

    the l e s s i s t h e reduc t i on i n pH f o r a g iven alum dosage.

    The e x t e n t o f pH reduc t i on w i l l depend

    The h igher the a l k a l i n i t y ,

    Most wastewaters

    con ta in s u f f i c i e n t a l k a l i n i t y so t h a t even l a r g e alum dosages w i l l n o t

    lower t h e pH below about 6.0 t o 6.5. I n except iona l cases o f low

    wastewater a l k a l i n i t y , pH reduc t i on may be so grea t t h a t a d d i t i o n o f

    an a l k a l i n e substance, such as sodium hydroxide, soda ash, o r l ime w i l l

    be requ i red .

    a d d i t i o n o f s u l f u r i c a c i d b u t t h i s complicates the t rea tment process

    and i t may be p r e f e r a b l e s imp ly t o use a h ighe r alum dosage.

    Adjustment o f t h e pH downward can be accomplished by the

    Bench, p i l o t , and f u l l sca le s tud ies have shown t h a t cons iderab ly

    h igher than s t o k h i o m e t r i c quan t i t i e s of alum u s u a l l y a re necessary t o

    meet optimum phosphorus removal ob jec t i ves . A competing reac t i on ,

    respons ib le f o r the pH reduc t i on mentloned above, a t l e a s t p a r t i a l l y

    accounts f o r t h e excess alum requirement. It occurs as f o l l ows :

    A 1 2 (s04)3 14H20 + 6HC03 - 2AL(OH)3 + 6C02 + I4H2O + 3S042’. The f o l l o w i n g r a t i o s of alum (9.1% A l ) t o phosphorus a r e be l i eved

  • I

    wdsonably representative fo r alum treatment or nlunic i p a l wastewater ( 4 )

    P Reduction --- A 1 : ? A 1 um: P

    Requi re3 rlole Ratio We i g h t Ra t i o Wei gh t Ratio

    13:l

    16: l

    2 2 : 1

    To achieve 85? P removal frorv a washwater c n n t a i n l n r : 11 mg/l 06 P the>

    alutr dosage needed would be (16 ) ( 1 1 ) = 176 mg/l o r 1470 l b / 1 0 6 g a l .

    A l u m i s avai lable in e i the r dry o r liquid fcrm. I t i s available i n

    dry form as e i the r ground powder, o r lump form i n bags. barre l s , o r

    carloads.

    l b s / f t 2 a n d i s only s l i gh t ly by groscopic.

    cer t a l u m s o l u t i o n a n d i s usually delivered i n minimum loads of 4000

    g a l . !t must bc

    s t o r e d a n d conveyed i n corrosion r e s i s t an t materials such as rubher

    lined s t e e l , f iberglass or s ta in less s t e e l .

    75': 1.38: 1 1.2: 1

    as:. 1 . 7 2 : l 1 . 5 - 1 9 54 2 . 3 : 1 2 .G: l

    . The ground form i s used for dry feeding. I t weighs GO - 75

    The liquid form i s a 50 per

    The l i q u i d form may be delivergd by r a i l or truck.

    18

  • I

    Test i n the Chertiical Lab

    Reagents

    1 . A l u m i n u m Sulfate Solution

    A 1 2 (SO413 * 18 H20

    20 gm i n one l i t e r water

    the concentration 20,000 ppm/l

    every 1 m l of the solution = 20 ppm

    2 . Polyelectrolyte or polymer

    We used WT-2700 as flocculation aids

    0.1 gm in one l i t e r water

    The concentration 100 ppm/l

    Every 1 nl ~f the s o l u t i o n 0.1 ppm

    Apparatus

    1 . Turbidimeter

    2 . pti meter

    NOTE:

    TEST No. 1

    Sample of the laundry wastewater 100 ml

    pH o f the sample 13 .3

    Tui*bidity o f the sample 400 FTU

    Adding

    The figures i n the t e s t are the average figures for several t e s t s .

    -

    16.5 ml A12 (S04)3 conc 20,GOO ppm

    I 2 ml WT-2700 conc 1OU ppm

    pH a f t e r treatment 7.5

    Turbidity a f t e r treatmerat 7 . 3 l i g h t f locculation.

  • 4

    TEST - No, 2

    Sample of the laundry waste water 100 ml

    ,

    pH of the sample 1 3 . 3

    Turbidity of the sample 400 FTU

    adding

    1 7 . 2 ml A 1 (504) conc 20,000 ppm

    1 2 m l 1JT 2700 conc 100 ppm 2 3

    pH a f t e r treatment 7 .2

    Turbidity a f t e r treatment 3.8 good flocculation.

    TEST No. 3

    Sample of the laundry

    pH of the sample 1 3 . 3

    ‘Turbidity of the samp

    hddi ng

    wastewater 100 ml

    e 400 FTU

    18 ml A 1 2 (S04)3 conc 20,000 ppm

    1 2 ml WT-2700 conc 100 ppm

    pH a f t e r treatment 6.6

    Turbidity a f t e r treatment 3.1 very Sood flocculation.

    TEST No. 4 - Sample of the laundry wastewater 100 ml

    pH of the sample 13

    T u r b j di t y o f the sample 420 FTU

    Adding

    18 ml A 1 2 (S04)3 conc 20,000 ppm

    10 ml WT 2700 conc 100 ppm

    pH a f t e r t r e a t w n t 7.3 l i g h t f locculation,

    20

  • I

    I

    ,! I

    TEST 140. 5

    Sample o f the laundry wastewater 100 m l -__.

    pH o f the sample 13.1

    T u r b i d i ty o f the sample 420' FTU

    Adding

    20 m l A12 (S04)3 conc 20,000 ppm

    10 m l WT 2700 conc 100 ppm

    pH a f t e r t rea tment 6 e x c e l l e n t f l o c c u l a t i o n

    TEST No. 6

    Sample o f t h e laundry wastewater 100 m l

    pH o f t he sample 9.5

    T u r b i d i t y o f t h e sample 250 FTU

    Adding: 1 m l A12 (S04)3 conc 20,000 ppm

    5 m l WT 2700 100 ppm

    pH a f t e r t rea tment 7

    T u r b i d i t y a f t e r t rea tment 1.5 FTU

    JEST No. 7

    Sample of t h e laundry wastewater 100 m l

    pH o f t h e sample 9.5

    T u r b i d i t y o f the sample 250 FTU

    Adding: 1.5 m l A12 (S04)3 conc 20,000 ppn

    5 m l WT 2700 conc 100 ppm

    pH a f t e r t rea tment 6.5

    Turb fd i ty 2.5 FTU

    21

  • TEST No. 8 -

    .. - . .

    Sample o f the l aundry wastewater 100 m l

    pH o f the sample 9.5

    Turb id i ty o f t he sample 250 F N

    Adding: 2.0 ml A12 (S04)3 conc 20,000 ppm

    5 m l WT 2700 conc 100 ppm

    pH a f t e r t rea tment 6.0

    T u r b i d i t y 3 . 5 FTU

    22

    '9' ' !

    , , .

    ' , ' ',

  • m

    N

    fi

    N

    c

    N

    7

    ln

    m

    m

    c

    V 0

    u- U 0 0

    LI)

    c

    co m

    0

    h

    N

    c

    0

    Q

    .;f m

    N

    7

    N

    h

    c

    m

    m

    - N

    7

    m

    u3

    10

    N

    e

    N

    e

    ~

    43 c

    m

    m

    -. m

    m

    0

    z

    W

    [Y

    3

    LI)

    LL

    W

    W

    m

    - 23

  • a

    0

    N

    sz

    . --

    r(

    B U m 8

    I

    U4

    cP

    I W

    E

    rlrl

    dlu

    E Ll w 0 X a < . Y

    al

    i -3

    0

    xo

    a-

    h

    c rl w

    I I I I h

    U

    rl .E

    l rl .n Ll 1 U

    YJ E

    PI

    - -yc

    P

    0

    24

  • I

    U

    0

    * c, C aJ aJ U X w

    e

    7

    e

    c

    0

    Ill

    v- a e

    U

    C

    0

    V

    V

    0

    - TI 0 0 a e-- m m h -0

    \O

    E

    %

    nN

    ni

    s ln

    U

    0

    z

    W

    CT 3

    LL

    W

    LIJ

    E

    U

    W

    --I m

    2

    0

    0

    m

    0

    0

    N

    0

    0

    e

    --

    ln

    ln

    In

    li

    e--

    In 7

    lA7

    m

    ln

    Q)

    m

    m

    h

    i

  • 4

    03

    0

    z U m PI

    l-4

    " A

    - I

    h

    b

    u 02

    da

    u

    0

    C

    In

    0

    c

    U

    c

    C

    rl

    0 c

    N

    0

    0

    d

    i

    'i

    26

  • 3

    Lime as a Phosphorus P r e c i p i t a n t

    Calcium i o n r e a c t s w i t h phosphate i o n i n the presence o f hydroxy l

    i o n t o f o r m hydroxyapat i te . Th is m a t e r i a l has a v a r i a b l e composition,

    b u t an approximate equat ion f o r i t s format ion can be w r i t t e n as fo l lows,

    assuminq i n t h i s case t h a t the phosphate present i s HPO

    3HP04'- +5Ca2+ +40H-q-wCa5(OH) (P04) + 3H20. .The r e a c t i o n i s pH

    dependent. The s o l u b i l i t y o f hydroxyapat i te i s so low, however, t h a t

    even a t a pH as low as 9.0, a l a r g e f r a c t i o n o f t h e phosphorus can be

    * removed. I n l ime t reatment o f wastewater, t h e opera t ing pH may be

    2- 4

    removal p red ica ted on the a b i l i t y

    r a t h e r than on phosphorus

    Al though i t i s poss ib

    t o o b t a i n good suspended s o l i d s

    removal.

    e t o c a l c u l a t e an approximate 1 me dose f o r

    phosphorus removal, t h i s i s g e n e r a l l y n o t necessary. I n c o n t r a s t t o

    i r o n and aluminum s a l t s , the l ime dose i s l a r g e l y determined by o t h e r

    r e a c t i o n s t h a t take p lace when pH of wastewater i s ra ised . Only i n

    w a t e r s o f very low b icarbonate a l k a l i n i t y would the phosphate pre-

    c i p i t a t i o n r e a c t i o n consume a l a r g e f r a c t i o n o f the l i m e added.

    Test i n t h e Chemical Lab Using A l p (S04)3 and CaO

    Red gent

    1 . Aluminum S u l f a t e S o l u t i o n

    A12 (S04)3 18 H20

    20 gm i n one 1 i t e r water

    The concent ra t ion 20,000 ppm/l

    Every 1 m l of the s o l u t i o n = 20 ppm

    27

  • I

    2 . Cal c i um Oxide Solution

    CaO

    20 gin I n one l i t e r water

    The concentration 20,000 ppm/l

    Every 1 m l o f the solution = 20 ppm

    3 . Polyelectrolyte o r polymer

    We used WT 2700 a s flocculation aids

    0.1 gm in one l i t e r water

    * T h p concentration 100 ppn/l

    Every 1 nl o f the solution 0.1 ppm

    NOTE:

    TEST No. 1

    The figures i n the t e s t are the average figures f o r several t e s t s

    -~ Sample of the laundry wastewater 100 m l

    Temp 5 2 O C

    pH 1 1 . 5

    Turbidity 430 FTU

    Adding

    18 ml CaO 20,000 ppm/liter

    3 ml A 1 2 (S04)3 20,000 ppm/ l i t e r

    2 ml WT 2700 500 p p m / l i t e r

    Results: Turbidty 0.75 FTU

    pH 11.4

    Hardened 500 ppm

    Friday, A u g u s t 1 , 1975

    TEST No. 2_

    Sample of the laundry wastewater 100 m l

    Adding 1 - 1 2 ml CaO 20.000 ppm/l i ter --

    28

  • 2 - 2 m l A12(S04)

    3- 2 m l WT 2700 500 p p m / l i t e r

    20,000 ppm/l i t e r 3

    Results: T u r b i d i t y o f t he water a f t e r t rea tment 2.25 FTU

    pH 11.25

    Hardness 400

    lu'e t r i e d t o use l e s s amount of CaO f o r t reatment t o lower the f i g u r e of

    t he hardness. The amount o f t he sample c o n s t x t 100 m l laundry waste-

    w a t e r and the pH o f the sample 11.7 the temperature o f the sample 25OC

    the t u r b i d i t y o f t he sample 300 FTU and we used 1 ppm of WT 2700 s o l u t i o n

    I n the sample.

    TEST No. 7

    5 m l A12(S04)3 20,000 ppm

    10 m l CaO 20,000 ppm 200 ppm

    pH a f t e r A12(S04)3 11.2 pH a f t e r CaO 11.9

    Resul ts: The water a f t e r t reatment: T u r b i d i t y : 12 Hardness: 460 ppm Ca03

    TEST No. 2

    6 m l Alz(S04)

    - 20,000 ppm 3

    8 m l CaO 20,000 ppm 160 ppm pH a f t e r A1 (S04)3 10.4 pH a f t e r CaO 12 RESULTS: T6e water a f t e r t rea tment

    Turbi d i t y 9.2 Hardness 450

    TEST No. 3 -- 8 m l A12 (S04)3

    6 m l CaO 20,000 120 ppm

    pH a f t e r A12 (S04)3 9.8 ph a f t e r CaO

    Resul ts: The water a f t e r t r e a t m n t

    T u r b i d i t y 8.00 Hardness 390

    20,000 ppm

    11.9

    29

  • TEST No. 4

    10 m l A12(S04)3 ZC,OOO ppm

    2 ml CaO 20,000 ppm 40 ppm

    pH a f t e r A12(S04)3 8.2 pH a f t e r CaO 10.5

    Results: The water a f t e r treatment

    Turbidity Hardness 300 TES- No. 5

    1 3 m l A12(S04)3 20,000 ppm

    1 m l C a O 4,000 = ppm

    Results: The water a f t e r treatment

    Turbidity 5.5 Hardness 150 ppm as CaC03 (See F i g . 5)

    Concl usi on

    1 . By using Ferric chloride i n the treatment process f o r the laundry waste-

    water we must use a small amount of base, usually sodium hydroxide t h a t means

    we shall use three chemical compounds ( 1 ) Ferric chloride, ( 2 ) Sodium hydroxide,

    a n d ( 3 ) WT-2700 as a flocculation a i d . T h a t means the cos t soes up by u s i n g

    more chemical compound and complicates the design o f the treatment

    p l a n t .

    2. By using a l u m i n u m su l f a t e and lime we watched the hardness go up by u s i n g

    very small amount of lime (CaO) and also more chemical compound may be

    complicates the design of treatment plant.

    3 . The best method o f treatment laundry wastewater i s by using aluminum

    su l f a t e only t o lower the cost by using one chemical compound and simplifying

    the design of treatment plant.

    We r u n another t e s t i n the chemical lab by using A l ~ ( S 0 4 ) ~ only:

    The amount of the sample constant i n every t e s t = 100 m l wastewater and the

    pH of the sample 11.7 and the amount of WT-2700 which added t o the samples

    constant 10 m l 100 ppm/l fo r every sample.

    30

  • I

    \ :*

    I

    __ . .

    .- .-- ,

    31

    ... __

    __

    .. . ._. . .___..

    ---.-..-

    -A

    ,.

    . , . ,

    3

    3

    4

    n

    3

    n

    N 4

    C

    VI b

    0

    VI hl

  • I TEST No. 1

    6 ml A12(S04)3 20,000 ppm

    6 x 20 = 120 ppm

    1200 ppm/l

    The f l o c t o o bad pH = 10.4

    TEST No. 2

    8 ml A12(S04)3 20,000 ppm

    * 160 ppm = 1600 ppm/l

    The f l o c bad pH = 8.5

    -- TEST No. 3 10 10 ml A12(S04)3 20,000 ppm

    = 200 ppm

    = 2000 ppm/l

    The f l o c medium pH = 7.2

    TEST No. 4

    13 ml A12(S04)3 20,000 ppm

    = 260 ppm

    = 2600 ppm/l

    pH = 6.0

    T u r b i d i t y 7.00 FTU

    Hardness = 60 ppm/l

    CaC03

    Very good f loccula t ion See F i g No. 6

    32

  • u 0 4.-

    W

    -_

    -

    a nt

    Pa

    . - .. i

    I

  • P ¶

    The teriiperature e f f e c t o f t h e coagulatdon

    The constant amounts are: ( 1 ) The sample o f raw water 100 m l ; ( 2 ) the

    amount o f A1 (S04)

    and (3 ) t h e amount o f WT-2700 constant 10 ml 20,000 ppm

    TEST No. 1

    The temperature 25OC

    which added t o the wastewater 100 m l cons%ant 260 ppm; 2 3

    --

    The t u r b i d i t y 0.75 FTU

    Very good f 1 occul a ti on

    TEST No. 2

    The temperature 35OC

    The t u r b i d i t y 1.1 FTU

    TEST No. 3

    TP,o tanperature 45OC

    The t u r b i d i t y 1.2 FTU

    TEYT No. 4

    The temperature 55OC

    The t u r b i d i t y 3.0 FTU

    TEST No. 5

    The temperature 65OC

    The t u r b i d i t y 4.2 FTU

    TEST No. 6

    The temperature 75OC

    -

    The t u r b i d i t y 22 FTU

    Bad f l o c c u l a t i o n . (See Fig. No. 7)

    .e*. . '..,.E

  • I

    IJ

    30

    c

    ud

    I

    nw

    1 I I c

    .- . .-- --

    I

    .. .

    . __ - . -

    - - . ..

    . -

    I I

    I 35

    I t 4 I

  • I I

    FINAL COIKLUS ION

    1 . 3y u s i q A 1 (S04) t o t r e a t laundry wastewater the r e su l t s a re very good in b o t h f l kcu la? inn and c l ea r tu rb id i ty .

    2 . Tuesday, 21 October 1975, by u s i n g Aluminum Sulfate w1t.h polyelectrolyte WT-2700. The r e su l t s of this t e s t were excel lent .

    The final t e s t was r u n . i n the quartermaster laundry p i lo t plant on

    3 . The optimum dosage o f the amount of A 1 (S04) was fixed t o obtain good flocculation and was found the good f?occulition a t range 5.5 pH - 6.5 pH. 4 . the range 25-35°C with flow turb id i ty .

    The b e s t degree Centigrade t o r u n good treatment of the wastewater i s

    36

  • The ideal sand f i l t e r .

    PORI: S I Z E graded Cross section through ideal f i l t e r unif

    from coarse to fine from top t o bottom. ' o m l y

    I n designing a dual media bed, i t is desirable t o have the coal

    ( spec i f ic gravity about 1.6) as coarse as i s consistent w i t h solids removal

    t o prevent surface blinding b u t have the sand ( spec i f ic gravity about 2 .6)

    as f ine as possible t o provide maximum solids removal. However, i f the

    sand i s too f ine i n re la t ion t o the coal, the former will actually r i se

    above the t o p o f the coal d u r i n g the f i r s t backwash and remain there

    when the f i l t e r I s returned to service.

    Experience has shown t h a t i t is n o t feasible t o use s i l i c a sand

    smaller t h a n about 0.4 mn because smaller sand would require coal small

    enough t o resu l t i n unacceptably high head loss a t ra tes above g p m l f t 2 .

    38

  • I .-

    The problem of keeping a very f ine medium a t the bottom of the f i l t e r

    i s overcome by us ing a t h i r d , very heavy 1 garnet, spec i f ic gravity of

    about 4.2, o r ilmenite ( spec i f ic gravity of about 4.5) very f ine material

    beneath the coal and sand.

    refers more accurately t o the pore space rather than to the media par t ic les

    themselves.

    Actually, the term Itcoarsc-to-finet' f i l t e r

    A typical mixed-media f i l t e r has a pa r t i c l e s i ze gradation which

    decreases from about 2 mm a t the top to a b o u t 0.15 mn a t the bottom.

    The uniform decrease i n pore space w i t h f i l t e r depth allows the en t i r e

    f i l t e r depth t o be u t i l i zed fo r f loc removal and storage.

    how par t ic les o f the d i f fe ren t media a re actual11 mixed throughout the

    bed. A t a71 points i n the bed there i s some of each component, b u t the

    percentage of each changes w l t h bed depth.

    efficiency of f i l t r a t i o n i n the direction of the flow.

    Figure 1 shows

    There i s steadi1.y increasing

    39

  • Removal o f t h e p o o r l y f l o c c u l a t e d s o l i d s normal ly found i n a

    t r i c k l i n g f i l t e r e f f l u e n t can be improved by us ing sma l le r media than would

    be used f o r removal o f a c t i v a t e d sludge e f f l u e n t suspended so l i ds . P i l o t

    t e x t s o f va r ious media designs can be more than j u s t i f i e d by improved

    p l a n t performance i n most cases.

    Table 1. I l l u s t r a t l o n o f va ry ing media design f o r var ious types o f floc removal.

    Size:

    One of t h e key f a c t o r s i n c o n s t r u c t i n g a s a t i s f a c t o r y mixed media bed i s

    the c a r e f u l c o n t r o l o f t h e s i z e d i s t r i b u t i o n of each component medium.

    Rarely i s t he s i z e d i s t r i b u t i o n o f commercial ly a v a i l a b l e m a t e r i a l s

    adequate f o r cons t ruc t i on o f a good mixed media f i l t e r . The comnon

    problem i s f a i l u r e t o remove excessive amounts o f f i n e m a t e r i a l s .

    f i n e s can be removed by p l a c i n g a m e d i m i n the f i l t e r , backwashing it,

    d r a i n i n g the f i l t e r and s k i n i n g the upper surface.

    repeated u n t i l f i e l d s ieve analyses i n d i c a t e an adequate p a r t i c l e s i z e

    d i s t r i b u t i o n has been obtained.

    repeated.

    -40 +80 = passing No. 40 and r e t a i n e d on No. 80 U.S. sieves.

    These

    The procedure i s

    A second medium i s added and the procedure

    The t h i r d medium i s then added and the e n t i r e procedure repeated.

    40

  • I

    Sometimes,

    discarded t o achieve the proper par t ic le s i ze dis t r ibut ion.

    20-30 percent of the materials may have,to be skimned and

    Use of Polymers as F i l t ra t ion Aids

    Polymers are h i g h molecular weight, water soluble compounds hhich

    can be used as primary coagulants, s e t t l i n g aids , o r f i l t r a t i o n aids.

    may be cat ionic , anionic, o r anionic in charge. Generally, the doses

    required fo r coagulation or as a s e t t l i ng a i d in conjunction w i t h another

    coagulant f a r exceed tha t needed as a f i l t r a t i o n aid. Typical doses when

    used as a s e t t l i ng aid are 0.1 - 2.0 mg/l while doses of l e s s t h a n 0.1 mg/l are often adequate t o serve as a f i l t r a t i o n aid. W k n used as a f i l t r a t i o n

    a id , the polymer i s added t o increase the s t rength of the chemical f loc and

    t o control the depth of penetration of f loc into the f i l t e r .

    They

    The polymer i s not added t o improve coagulation b u t rather t o strengthen

    the f l o c made up of prevlously coagulated material to minimize the

    prospects of shearlng f r ag i l e f loc , causing f i l t e r breakthrough. For maxi-

    mum effectiveness as a f i l t r a t i o n a id , the polymer should be added d i rec t ly

    t o the f i l t e r inf luent and not i n an upstream se t t l i ng basin or flocculator.

    However, i f polymers are used upstream as se t t l i ng a lds , i t may not be

    necessary to add any additional polymer as f i l t r a t i o n a i d .

    i l l u s t r a t e s the ef fec ts of polymers as f i l t e r a i d s . The condition

    represented by F igure 2A I l l u s t r a t e s the resu l t s of a f rag i le floc

    Figure 2

    steering and then penetrating the f i l t e r causing a premature term-

    i n a t i o n of i t s run due t o breakthrough Qf excessively high eff luent t u r b i d i t y .

    41

  • I

    I I

    FIGURE NO. 2

    E f f e c t of polymer8 a s filtration a i d 8

    42

  • I ,I,. . I . . , --- ' ' - ... . - . - -.- L___

    --.

    If the polymer i s t oo h igh (F igure ZB), t h e f l o c i s t oo s t rong t o pe rm i t

    pene t ra t i on i n t o the f i l t e r causing a r a p i d bu i l dup o f headloss i n the

    upper p o r t i o n c f the f i l t e r and a premature te rm ina t ion due t o e x e s s i v e

    headloss. The optimum polymer dose w i l l pe rm i t the te rmina l headloss

    t o be reached s imul taneously w i t h the f i r s t s ign o f i nc reas ing f i l t e r

    e f f l u e a t ttirSSCity (F igure 2C).

    Types of F i l t e r S t ruc tu res

    The g r a v i t y and pressure f i l t e r s t r u c t u r e s c o m n l y used i n water

    t reatment p l a n t s a r e r e a d i l y adaptable t o advanced wastewater t rea tment

    p l a n t f i l t r a t i o n .

    t reatment a p p l i c a t i o n s f o r the f o l l o w i n g reasons:

    Pressure f j l t e r s a r e o f ten advantageous i n waste

    1. I n many wastwat .er app l i ca t i ons , t he app l i ed s o l i d s l oad ing i s

    h igher and more v a r i a b l e than i n a water t reatment a p p l i c a t i o n . Thus i t

    i s d e s i r a b l e t o have h igher heads (up t o 20 ft.) a v a i l a b l e than p r a c t i c a l

    w i t h g r a v i t y f i l t e r designs t o p rov ide maximum opera t i ng f l e x i b i l i t y .

    2. I n advanced waste t rea tment processes, the f i l t r a t i o n s tep i s

    t r e q u e n t l y fo l l owed by another u n i t process (carbon absorpt ion, ion

    exchange, e tc . ) . The e f f l u e n t f rom a pressure f i l t e r can be passed through

    a downstream process w i t h o u t hav ing t o pump the f i l t e r e f f l uen t , o f t e n

    e l i m i n a t i n g a pumping s tep which would be requ i red w i t h a g r a v i t y f i l t e r .

    3. All f i l t e r wash water must be t rea ted sewage app l i ca t i ons . The

    ab i 1 i ty t o operate t o h igher head losses w i t h a pressure fi 1 t e r reduces

    the amount o f wash water t o be recyc led.

    4 . Pressure f i l t e r systems a r e u s u a l l y less c o s t l y i n small and

    medium s ized p lan ts .

    43

    b

  • I

    A typical gravity f i l t e r section is shown i n Figure 3.

    areas usually do n o t exceed 800-1000 sq f t per f i l t e r unit.

    units may be combined i n one’structural ce l l .

    Gravity f i l t e r

    Two f i l t e r

    Pressure fi1tei.c IEY be either horizontal or vertical. The horizontal

    f i l t e r offers much larger f i l t e r area per u n i t and would normally be used

    when plant capacities exceed 1-1.5 mgd.

    A typical horizontal pressure f i l t e r vessel is shown

    kithough an 8 f t diameter vessel is shown, 10 f t diameters

    c o m n l y used w i t h lengths up to 60 ft.

    n F

    are

    gure 4 .

    also

    A typical vertical f i l t e r is shown i n Figure 5. Diameter u p to

    11 f t are comonly used w i t h working pressures up to 150 p s i g .

    44

  • Surface Wash

    . -Influent

    Backwash Wastewater

    -+, Filter E f f l u e n t

    Wash water s u p p l y

    FIGURE NO. 3 Cross section through a t y p i c a l gravity filter

  • 50 PSIG Pressure 1" coupl ing a i r 10" f lange i n f l u e n t

    backwesh waste Y )

    r e l e a s e -' Vessel

    d

    10" Flange e f f l u e n t *.' and backwash

    12" x 16" Ifanhole on v e r t i c a l p o f tank 2" Filter drain

    ELEVATIOFI

    !

    I ' e 1 2 " x 16" Manhole

    rt

    e

    Grnvel

    SECTIOii

    FIGURE N O . 4 TYPICAL PRESSUCE FILTER

    46

  • 7

    A t y p i c a l vert ica l pressure f i l t e r with cement grout f i l l i n the bottom head, p ipe headers, and lateral underdrnins, grave l aupporting bed and f i l t e r sands

    -

    FIGURE NO. 5

    47

  • Headloss (FT)

    2

    4

    G

    8

    10

    12

    14

    16

    16

    20

    22

    24

    26

    28

    30

    - I i I !

    ! I

    I

    I

    I

    I I

    I

    I

    - ._ -- _ - .--- - ..- I

    Headloss distribution i n nixed media f i l t c r applied to activated sludge e f f l u e n t

    FIGURE 6

    4c

  • i !

    j l i l i 1 : I !

    E i REFERENCES

    1 . Advanced Wastewater Treatment, Russell L. Culp, Gordo? L . C u l p .

    2 . 1974 Annual Book o f ASTt.1 Standards.

    3 . Process design manual f o r Phosphorus Removal for US Environmental Pro tec t ion Agency Technology Transfer by Black, Vcatch Consulting Engineers, Oct. 1971.

    49

  • FESA DISTRIBUTION

    US M i 1 i t a r y Academy ATTN: Dept o f Mechanics ATTN: L i b r a r y West Po in t , NY 10996

    Chief o f Engineers ATTN: DAEN-ASI-L ( 2 ) ATTN: DAEII-FEB ATTN: DAEfl-FEP ATTN: DAEN-FEU ATTN: DAEN-FEZ-A ATTN: DAEN-MCZ-S APTI4: DAEN-MCE-U ATTN: DAEt4-MCZ-E ATTN: DAEN-RDL Dept o f t h e Army WASH, DC 20314

    D i r e c t o r , USA-WES ATTN: L i b r L r y P.O. Box 63'1 Vicksburg, MS 39181

    Ccmmander, TRADOC Of f i ce o f t h e Engineer ATTt l : ATEN

    Ft . Monroe, VA 23651 ATTN: ATEN-FE-U

    US A r m y Engr D i s t , New York

    26 Federal Plaza New York, NY 10007

    ATTN: N A N E N - E

    USA Engr C"st , Ba l t imore ATTk': Ch I f, Engr D i v P 0. Box 1715 Bal t imore, MD 21203

    USA Engr D i s t , Char leston ATTN: Chief , Engr D i v P.0, Box 919 Charleston, S C 29402

    USA Engr D i s t , Savannah ATTN : Chi c f , SltSAS-L P.O. Box 889 Savannah, CA 31402

    USA Engr D i s t D e t r o i t P.O. Box 1027 D e t r o i t , M I 48231

    USA Engr D i s t Kansas City ATTN: Chief, Engr D i v 700 Federal O f f i c e B ldg 601 E. 1 2 t h S t Kansas City, MO 64106

    USA Engr D i s t , Omaha ATTN: Chief, Engr D i v 7413 USOP and Courthouse 215 N. 1 7 t h S t Omaha, NM 68102

    USA Engr D i s t , F o r t N o r t h ATTN: Chief, SWFED-D ATTN: Ch ie f , SWFED-CIA/MR P.O. Box 17300 F o r t Worth, TX 76102

    USA Engr D i s t , Sacramento ATTN: Chief, SPKED-D 650 C a p i t o l M a l l Sacramento, CA 95814

    USA Engr D i s t , F a r East ATTN: Chief, Engr D i v APO San Franciscb, CA 96301

    USA Engr D i s t , Japan APO San Francisco, CA 96343

    USA Engr Div, Eurone European Div , Corps o f Engineers APO New York, NY 09757

    USA Engr Div, N o r t h A t l a n t i c ATTN: Chief, NADEN-T 90 Church St New York, NY 10007

    USA Engr D iv , South A t l a n t i c ATTN: Chief, SAEN-TE 510 T i t l e Bldg 30 P r y o r S t , SW A t l a n t a , GA 30303

  • USA Engr Dist , Mobile ATTN : Chief , SAMEN-C P , C L R?x 2288 Mobi l e , A L 36601

    U S A En!lr. Sisi, i o u ; s v ; l l r A T I N : Chief , Engr Div F.0 BClX 59 Ltcuisv-:\le, KY 40201

    U55 Eligr Dist, Norfolk A ’ 5 ; i : Chi c f , NAOEN-D 103 F r o n t S t r e e t Uorfo lk , VA 23510

    UC, i inqr D i v , Missouri River ATT1.I: Chief, Engr Div r.0. Box 103 Downtown Station C.riaha, NU 68101

    USI: EncJr D i v , South Pacif ic A X i ; : Ct,ief, SPDED-TG G X Sarisome S t , Rm 1216 Sari Fr;;ncisco, CA $4111

    A F Civil Eiigr Center/XRL T.;r.:ia11 AFB, FL 32401

    N t i L r i 1 F a c i l i t i e s Engr Comand A 1714: Code 04 2% S t u v a l l S t A:cxdndria, V A 22332

    l;..fense \)ocuinentation Center A T T N : TCA ( 1 2 ) Critnercn S t a t ion A 1 oxandria, \ A 22314

    Coi:rrlan*.ler and Di rec tor USA Cold Regions Research Engineering

    Hanovcr, NH 03755 Laboratory

    USA Engr D i v , Huntsvil le ATTN: Chief, HNDED-ME P.O. Box 1600 Wcst Stat ion Huntsville, AL 35807

    USA Engr Div , Ohio River ATTN: ChieF, E n g r D i v P.O. B s x 1159 Cincinnati, OH 45201

    USA Engr Div, North Central ATTN: Chief, E n g r D i v 536 S. Clark S t Chicago, IL 60605

    USA Enpr Div , Southwestern ATTN: Chi ef , SWDED-TM Main Tower Bldg, 1200 Kain S t Dallas, TX 75202

    USA Engr D i v , Pacif ic Ocean ATTN: Chief, E n g r Div APO San Francisco, CA 96558

    F ORS CO M A’ITN: AFEN

    F t . McPherson, GA 30330 ATTN: A f tN-FE

    Officer i n Charge C i vi1 Engineering Laboratory Naval Construction Battalion Center ATTN: Library (Code L O U ) Port Hueneme!, CA 93043

    Commander and G i rector USA Construction Engineering Research Laboratory

    P , O . Box 4005 Champaigfi, IL 61820

    c