Top Banner

of 12

Laboratory Projects 3 - Flow in Valves

Jul 06, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    1/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    Petroleum Engineering Laboratory Report

    NAME: Maximiano Kanda Ferraz 

    GROUP NUMBER: A9 

    EXPERIMENT NUMBER: 4 - Flow Characteristics of Valves 

    DATE OF EXPERIMENT: 03/03/2015 

    DATE OF REPORT SUBMISSION: 06/03/2015 

    MARK/10 (for demonstrator use):

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    2/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    SUMMARY

    1  INTRODUCTION ........................................................................................ 3

    1.1 Learning Outcome ........................................................................... 3

    1.2 Theory .............................................................................................. 3

    1.3 Relevance ......................................................................................... 5

    2  EXPERIMENTAL WORK........................................................................... 6

    2.1 System Used ..................................................................................... 6

    2.2 Equipment and Procedure .............................................................. 6

    2.3 Hazards ............................................................................................ 7

    2.4 Results .............................................................................................. 7

    CALCULATIONS ..................................................................................... 10

    4  DISCUSSIONS ........................................................................................... 11

    5  CONCLUSIONS ....................................................................................... 11

    6  REFERENCES ........................................................................................... 11

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    3/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    3

    1.  INTRODUCTION

    In this section, a brief overview of the experiment is given, such as learning outcomes,

    objective, and the theory behind it. 

    1.1 Learning Outcome

    The main learning outcomes of the Flow and valve characteristics experiment are the

    application of different types of valves in a pipeline and observe how they behave in terms

    of fluid flow through restrictions of area and in relation to degree of opening. Sources of

    errors and pressure losses can also be identified.

    1.2 Theory

    The Globe valve is bigger, has a correct direction of flow due to optimal internal

     passageway and can better control the flow than the Gate valve, as show in Figure 1.

    Figure 1 –  Comparison between Globe valve and Gate valve. Source: [2]

    The flange present at the pipeline (component of jointing pipes) is of the Weld-Neck type

    and can resist high pressure and temperatures. They fit the inside diameter of the pipe, so

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    4/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    4

    there isn’t any restriction of flow, preventing turbulence and erosion. Figure 2 show the

    types of flanges.

    Figure 3 –  Venturi Effect. Source: [9]

    The orifice plate is a plastic plate that restricts the cross sectional area of flow through the

     pipeline abruptally, resulting in a more turbulent flow. The Venturi meter is more expensive, because the gradual reduction of area provides a less turbulent flow. The Venturi effect that

    occurs in the Venturi meter is shown in Figure 2, where the fluid velocity increases, as the

    area decreases and that results in a pressure drop, noted in the manometer.

    Figure 3 –  Venturi Effect. Source: [5]

    The theory of the experiment consists basically of the application of the Bernoulli

    Equation to calculate that pressure drop, as shown in the equation below:

    2 +gz+

    = Constant Source: [6] 

    Igualating the equation for the 2 points of the Venturi meter:

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    5/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    5

    2 +gz+

    =

    2 +gz+

     

    − = 2 −  With the units in the international system of the variables being:

      Q: Flow rate (m3 . s

    -1)

      g: Gravity (m . s-2)

      v1: Velocity before entering Venturi meter (slower) (m . s-1)

      v2: Velocity after entering Venturi meter (faster) (m . s-1)

     

    P1: Inlet Pressure (Pa)  P1: Outlet Pressure (Pa)

       ρ: Density of air (kg/m³)

       z: Elevation (m)

    The Darcy-Weisbach equation of head loss is given by:

    ∆ =

    ∆ = ²2 Source: [4] 

      ∆: Head loss due to friction (m)  L: Length of the pipe (m)

      D: Diameter of the pipe (m)

      U: Average flow velocityor volumetric flow rate per unit cross-sectional area (m/s)

     

     : Darcy friction coefficient

    1.3 Relevance

    The relevance of the Flow and valve characteristics experiment is big to the

     petroleum engineering field of work, as oil and gas reservoirs are elevated and produced

    through a system of pipelines and valves. An example is the Christmas tree, a complex

    equipment that contains Valves, connections and installed adapters above the well head in

    order to control the flow of fluids to the surface, in which friction losses and Venturi effects

    occurs.

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    6/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    6

    2.  EXPERIMENTAL WORK

    This section describes the materials, apparatus and systems used, as well as the

     procedures made for the successful completion of the experiment.

    2.1 System Used

    The experiment contains several equipments and instruments:

      Air Blower

      Gaskets

     

    Pipeline

      Globe Valve

      Gate Valve

      Manometer

      Ruler

      Wrench

      Flanges

      Protractor

    2.2 Equipments and Procedures

    Below, is a list of the procedures of the experiment: 

    I. First, the Gate Valve is put in the correct position.

    II. Turn the Air blower on.III. Starting with the valve closed, measure the mark on the manometer for the inlet and

    outlet pressure.

    IV. Rotate the valve 90º with the help of the protractor and get the data from the manometer.

    V. Repeat Step IV until the valve is completely open.

    VI. Repeat steps III to V (Trial 2).

    VII. Turn the air blower off.

    VIII. Replace the Gate valve for the globe valve (using the wrench, and positioning the

    gasket to prevent leakage).

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    7/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    7

    IX. Repeat steps II to VI for the Globe valve.

    X. Turn the Air blower off.

    2.2 Hazards

    The hazards of the experiment are not really hazards, but precautions to be taken, such as:

      Correct handling of the materials (valves, screws)

    2.3 Results

    The results obtained are displayed on the tables 1 to 4 and Figure 4. The first two

    columns of each table shown the opening of the valve in degrees and %. The third andfourth are the heights measured in the manometer, in centimeters. For Tables 1 and 2, there

    was a trial 2. The subsequent columns are respectively, the mean ΔH (subtraction of the

    outlet height from the inlet), the differential pressure and the calculated flowrates, with the

    last column being the relation of Q/Qmax in percentage. The calculations of the pressure

    obtained by the manometer is present in the next section (3. CALCULATIONS).

    Table 1 - Measured Differential Pressure with Gate Valve through Venturi Meter

    Trial 2 Trial 3

    Valve Open Valve Open Inlet Height Outlet Height Inlet Height Outlet Height

    Mean

    ΔH  ΔP  Q Q/Qmax

    [Degrees] % [cm] [cm] [cm] [cm] [mm] [Pa]

    ~root

    ΔH  %

    0 0,0 37,8 37,8 37,8 37,8 0,0 0,000 0,0000 0,0000

    90 4,8 37,8 37,8 37,8 38,0 0,1 0,012 0,3162 7,6472

    180 9,7 37,6 38,0 37,5 38,2 0,6 0,065 0,7416 17,9343

    270 14,5 37,1 38,6 36,8 38,9 1,8 0,213 1,3416 32,4444

    360 19,4 35,8 39,9 35,5 40,3 4,5 0,526 2,1095 51,0133

    450 24,2 34,3 41,5 34,4 41,8 7,3 0,862 2,7019 65,3379

    540 29,0 33,2 42,6 33,5 42,5 9,2 1,087 3,0332 73,3495

    630 33,9 32,4 43,5 32,5 43,4 11,0 1,299 3,3166 80,2047

    720 38,7 31,7 44,3 31,8 44,2 12,5 1,476 3,5355 85,4985

    810 43,5 31,3 44,6 31,4 44,5 13,2 1,559 3,6332 87,8598

    900 48,4 31,0 44,9 31,0 44,9 13,9 1,642 3,7283 90,1594

    990 53,2 30,7 45,3 30,6 45,2 14,6 1,724 3,8210 92,4017

    1080 58,1 30,4 45,5 30,4 45,5 15,1 1,783 3,8859 93,9706

    1170 62,9 30,1 45,8 30,1 45,8 15,7 1,854 3,9623 95,8194

    1260 67,7 29,9 46,0 29,9 46,0 16,1 1,902 4,0125 97,0323

    1350 72,6 29,8 46,1 29,8 46,1 16,3 1,925 4,0373 97,63311440 77,4 29,6 46,3 29,8 46,2 16,6 1,955 4,0682 98,3790

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    8/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    8

    1530 82,3 29,5 46,4 29,6 46,4 16,9 1,990 4,1049 99,2667

    1620 87,1 29,5 46,4 29,5 46,4 16,9 1,996 4,1110 99,4138

    1710 91,9 29,4 46,5 29,5 46,5 17,1 2,014 4,1292 100,0000

    1800 96,8 29,4 46,5 29,4 46,5 17,1 2,020 4,1352 100,0000

    1860 100,0 29,4 46,5 29,4 46,5 17,1 2,020 4,1352 100,0000

    Table 2 - Measured Differential Pressure with Globe Valve through Venturi Meter

    Trial 2 Trial 3

    Valve Open Valve Open Inlet Height Outlet Height Inlet Height Outlet Height

    Mean

    ΔH  ΔP  Q Q/Qmax

    [Degrees] % [cm] [cm] [cm] [cm] [mm] [Pa]

    ~root

    ΔH  %

    0 0,0 37,8 37,8 37,8 37,8 0,00 0,000 0,0000 0,0000

    90 4,8 37,5 38,3 37,5 38,3 0,80 0,094 0,8944 27,2168

    180 9,7 36,0 39,7 35,9 39,8 3,80 0,449 1,9494 59,3177

    270 14,5 34,6 41,2 34,5 41,2 6,65 0,785 2,5788 78,4700

    360 19,4 34,3 41,5 34,3 41,5 7,20 0,850 2,6833 81,6505

    450 24,2 33,9 41,9 33,7 42,0 8,15 0,963 2,8548 86,8704

    540 29,0 33,4 42,4 33,4 42,4 9,00 1,063 3,0000 91,2881

    630 33,9 33,2 42,7 33,2 42,6 9,45 1,116 3,0741 93,5424

    720 38,7 33,1 42,8 33,0 42,8 9,75 1,152 3,1225 95,0156

    810 43,5 33,0 42,9 32,9 42,9 9,95 1,175 3,1544 95,9852

    900 48,4 32,9 43,0 32,9 43,0 10,10 1,193 3,1780 96,7060

    990 53,2 32,8 43,0 32,8 43,0 10,20 1,205 3,1937 97,1836

    1080 58,1 32,8 43,0 32,8 43,0 10,20 1,205 3,1937 97,18361170 62,9 32,8 43,0 32,7 43,1 10,30 1,217 3,2094 97,6588

    1260 67,7 32,8 43,0 32,7 43,1 10,30 1,217 3,2094 97,6588

    1350 72,6 32,7 43,1 32,7 43,1 10,40 1,228 3,2249 98,1317

    1440 77,4 32,7 43,1 32,7 43,1 10,40 1,228 3,2249 98,1317

    1530 82,3 32,6 43,2 32,6 43,2 10,60 1,252 3,2558 99,0708

    1620 87,1 32,6 43,2 32,6 43,2 10,60 1,252 3,2558 99,0708

    1710 91,9 32,6 43,2 32,6 43,2 10,60 1,252 3,2558 99,0708

    1800 96,8 32,6 43,3 32,6 43,3 10,70 1,264 3,2711 99,5370

    1860 100,0 32,5 43,3 32,6 43,3 10,75 1,270 3,2787 100,0000

    Table 3 - Measured Differential Pressure with Gate Valve through Orifice Plate

    Valve Open Valve Open Inlet Height Outlet Height Mean ΔH  ΔP  Q Q/Qmax

    [Degrees] % [cm] [cm] [mm] [Pa] ~root ΔH  %

    0 0,0 34,1 34,1 0,0 0,000 0,0000 0,0000

    90 6,3 34,1 34,2 0,2 0,018 0,3873 10,3882

    180 12,5 33,9 34,5 0,6 0,071 0,7746 20,7763

    270 18,8 33,1 35,2 2,1 0,248 1,4491 38,8689360 25,0 32,1 36,3 4,2 0,496 2,0494 54,9689

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    9/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    9

    450 31,3 31,1 37,4 6,3 0,744 2,5100 67,3229

    540 37,5 30,3 38,3 8,0 0,945 2,8284 75,8643

    630 43,8 29,5 39,1 9,6 1,134 3,0984 83,1052

    720 50,0 29,0 39,7 10,7 1,264 3,2711 87,7374

    810 56,3 28,6 40,1 11,5 1,358 3,3912 90,9581900 62,5 28,2 40,5 12,3 1,453 3,5071 94,0687

    990 68,8 28,0 40,7 12,7 1,500 3,5637 95,5860

    1080 75,0 27,8 40,9 13,1 1,547 3,6194 97,0797

    1170 81,3 27,7 41,1 13,4 1,583 3,6606 98,1850

    1260 87,5 27,5 41,2 13,7 1,618 3,7014 99,2780

    1350 93,8 27,4 41,3 13,9 1,642 3,7283 100,0000

    1440 100,0 27,4 41,3 13,9 1,642 3,7283 100,0000

    Table 4 - Measured Differential Pressure with Globe Valve through Orifice Plate

    Valve Open Valve Open Inlet Height Outlet Height Mean ΔH  ΔP  Q Q/Qmax

    [Degrees] % [cm] [cm] [mm] [Pa] ~root ΔH  %

    0 0,0 34,2 34,2 0,0 0,000 0,0000 0,0000

    90 9,1 33,4 35,0 1,6 0,189 1,2649 42,6401

    180 18,2 32,1 36,1 4,0 0,472 2,0000 67,4200

    270 27,3 31,8 36,7 4,9 0,579 2,2136 74,6203

    360 36,4 31,1 37,4 6,3 0,744 2,5100 84,6114

    450 45,5 30,6 37,9 7,3 0,862 2,7019 91,0794

    540 54,5 30,3 38,2 7,9 0,933 2,8107 94,7485

    630 63,6 30,2 38,4 8,2 0,969 2,8636 96,5307

    720 72,7 30,0 38,6 8,6 1,016 2,9326 98,8571

    810 81,8 29,9 38,7 8,8 1,039 2,9665 100,0000

    900 90,9 29,9 38,7 8,8 1,039 2,9665 100,0000

    990 100,0 29,9 38,7 8,8 1,039 2,9665 100,0000

    Figure 4 is the graph of the Percentage of maximum flow rate Vs. Percentage of opening

    the valve, for each arrangement (gate valve with venturi meter, globe valve with Venturi

    meter, Gate valve with Orifice Plate, Globe Valve with Orifice plate). The arrangements

    with orifice plate were made by the other team.

    Figure 5 is the graph of behavior of ideal valves. It is possible to observe that the valves

     behave like the “Square Root” type valve. With maybe the globe valve with Venturi meter

     behaving like a Quick opening valve.

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    10/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    10

    Figure 4 –  Graph of Percentage of Maximum Flow Rate Vs. Percentage of Valve opening  

    Figure 5 –  Ideal Graph of Percentage of Maximum Flow Rate Vs. Percentage of Valve opening  

    3.  CALCULATIONS 

    The conversion of height to pressure:

    = ℎ, = 9.81 , =   20º = 1204 /³

    0,0000

    10,0000

    20,0000

    30,0000

    40,0000

    50,0000

    60,0000

    70,0000

    80,0000

    90,0000

    100,0000

    0,0 20,0 40,0 60,0 80,0 100,0

       P   e   r   c   e   n   t   a   g   e   o    f   M   a   x   i   m   u   m    F

        l   o   w   r   a   t   e

    Percentage of Opening of the Valve

    Gate Valve-Venturi Meter

    Globe Valve-Venturi Meter

    Gate Valve-Orifice Plate

    Globe Valve-Orifice Plate

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    11/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    11

    Accumulated error: Considering the error of the manometer being ± 0,0005 m and the error

    of the Compass = ± 0,5º

    2222

    2  

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    c

    c

    b

    b

    a

    a

    Q

    Q            

    ²=4²  =0.001  

    ( )

    = ( ) 

    =0.0001181  4.  DISCUSSIONS 

    The reported petrophysical experiment aimed to determine the behavior of the valves

    described. Like any experiment, is subject to measurement errors, errors inherent in

    equipments and even human error. However, it was obtained satisfactory and consistent

    results with the literature and presented theory.

    It is important to note that the Bernoulli’s equation was established under the following

    conditions: Incompressible fluid, homogeneous. A way to improve would be to add more

    valve types and redo the experiment. Also, redo the experiment, but this time, begin with the

    valve open, instead of closed, to confirm the results.

    5.  CONCLUSIONS

    The Venturi effect and the Bernoulli equation are of vital importance to fluid flow. The

    different types of valves and its characteristics have to be known to avoid any errors or

    hazards when doing an experiment.

    6.  REFERENCES

    [1] Aleem, Hosam, 2015. ‘Class Notes’.

    [2] Anish. ‘Globe Valve Used in Ships’. Available at

    http://www.marineinsight.com/marine/marine-news/headline/globe-valve-used-on-ships-

    design-and-maintenance/ (Accessed: 04/03/2015).

    [3] Engineering Toolbox. ‘Density of Air’. Available at: www.engineeringtoolbox.com/

  • 8/17/2019 Laboratory Projects 3 - Flow in Valves

    12/12

    CHEN20262 - Hosam Aleem BEng Petroleum Engineering Year 2

    Maximiano Kanda Ferraz –  ID 9568640 

    12

    air-density-specific-weight-d_600.html (Accessed: 04/03/2015).

    [4] Engineering Toolbox. ‘Darcy-Weisbach Equation for Pressure and Head Loss’.

    Available at: http://www.engineeringtoolbox.com/darcy-weisbach-equation-d_646.html

    (Accessed: 04/03/2015).

    [5] Chegg. ‘Venturi Effect’. Available at: http://www.chegg.com/homework-help/questions-

    and-answers/venturi-meter-used-measure-flow-speed-fluid-pipe-meter-connected-two-

    sections-pipe-fig-14--q1236560(Acessed 05/03/2015)

    [6] Nina Shokri. ‘Solid Fluid Systems’, 2014. Handbook.

    [7] The University of Manchester, 2015. ‘Petroleum Engineering Laboratory’. 

    [8] Thomas, J. E. ‘Fundamentos de Engenharia do Petróleo’. Rio de Janeiro, Interciência. 

    [9] Wermac. ‘Definition and Details of Flanges’. Available at:http://www.wermac.org/flanges/flanges_welding-neck_socket-weld_lap-

     joint_screwed_blind.html (Acessed 05/03/2015)