Top Banner
LABELED TREES AND RELATIONS ON GENERATING FUNCTIONS M.P. DELEST, J.M. FEDOU Bordeaux I University LABRI ÷ Laboratory of Computer Science Abstract. In this paper, we give a combinatorial interpretation for a property on generating functions gived by R. Stanley. Our proof is based upon the study of special kind of labeled trees and forests. R~sum6. Nous donnons ici une interpretation combinatoire d'une propri~t~ des fonctions g~n6ratrices circe par R. Stanley. Notre preuve utilise une classe particuliere d'arbres et de forSts ~tiquett#es. INTRODUCTION Trees are presents in many subjects of theorical computer science. There are the natural representation of a lot of objects such as programs, arithmetic expressions, words or algebraic expressions in language theory. The structure of tree is very efficient in the study of complexity of algorithm because they constitute a dynamic data structure which allows to organize informations and to measure precisely the complexity of algorithm (see for example [4][6][11]). Trees are also present in other fields as shown in the paper of Viennot [14]. In some purely combinatorics subjects, they are the nice objects for understanding formulas. For example labeled trees, as defined in [2], are usefull in many subjects, see for instance Cori and Vauquelin [3] for the construction of a bijection between planar graphs and well labeled trees, or Moon [9] for identities on labelled forests. Moreover, the bijections are the basis of new theories in combinatorics (see for example [7],[13]) and trees are very studied in this context. In this paper, we introduce a special kind of set of labeled trees, the k-shaped forests, in order to give a bijective proof and a generalization of a result about generating functions ÷ Unit6 de Recherche Associ6e au Centre National de la Recherche Scientifique n°~26. Post Mail : 351Cours de la Liberation, 33405 TALENCE Cedex, FRANCE. Electronic Mail : maylis~geocub.greco-prog.fr This work was supported by the "PRC de Math~matiques et Informatique'.
14

Labeled Trees and Relations on Generating Functions

May 14, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Labeled Trees and Relations on Generating Functions

LABELED TREES AND RELATIONS ON GENERATING FUNCTIONS

M . P . DELEST, J . M . FEDOU

B o r d e a u x I U n i v e r s i t y

LABRI ÷

L a b o r a t o r y o f C o m p u t e r S c i e n c e

A b s t r a c t . I n t h i s p a p e r , we g i v e a c o m b i n a t o r i a l

i n t e r p r e t a t i o n f o r a p r o p e r t y on g e n e r a t i n g f u n c t i o n s g i v e d

by R. S t a n l e y . Our p r o o f i s b a s e d u p o n t h e s t u d y o f s p e c i a l

k i n d o f l a b e l e d t r e e s a n d f o r e s t s .

R~sum6. Nous d o n n o n s i c i une i n t e r p r e t a t i o n c o m b i n a t o i r e

d ' u n e p r o p r i ~ t ~ d e s f o n c t i o n s g ~ n 6 r a t r i c e s c i r c e p a r R.

S t a n l e y . N o t r e p r e u v e u t i l i s e une c l a s s e p a r t i c u l i e r e

d ' a r b r e s e t de f o r S t s ~ t i q u e t t # e s .

INTRODUCTION

T r e e s a r e p r e s e n t s i n m a n y s u b j e c t s o f t h e o r i c a l c o m p u t e r

s c i e n c e . T h e r e a r e t h e n a t u r a l r e p r e s e n t a t i o n o f a l o t o f o b j e c t s

s u c h a s p r o g r a m s , a r i t h m e t i c e x p r e s s i o n s , w o r d s o r a l g e b r a i c

e x p r e s s i o n s i n l a n g u a g e t h e o r y .

T h e s t r u c t u r e o f t r e e i s v e r y e f f i c i e n t i n t h e s t u d y o f

c o m p l e x i t y o f a l g o r i t h m b e c a u s e t h e y c o n s t i t u t e a d y n a m i c d a t a

s t r u c t u r e w h i c h a l l o w s t o o r g a n i z e i n f o r m a t i o n s a n d t o m e a s u r e

p r e c i s e l y t h e c o m p l e x i t y o f a l g o r i t h m ( s e e f o r e x a m p l e

[ 4 ] [ 6 ] [ 1 1 ] ) . T r e e s a r e a l s o p r e s e n t i n o t h e r f i e l d s a s s h o w n i n

t h e p a p e r o f V i e n n o t [ 1 4 ] .

I n s o m e p u r e l y c o m b i n a t o r i c s s u b j e c t s , t h e y a r e t h e n i c e

o b j e c t s f o r u n d e r s t a n d i n g f o r m u l a s . F o r e x a m p l e l a b e l e d t r e e s , a s

d e f i n e d i n [ 2 ] , a r e u s e f u l l i n m a n y s u b j e c t s , s e e f o r i n s t a n c e

C o r i a n d V a u q u e l i n [ 3 ] f o r t h e c o n s t r u c t i o n o f a b i j e c t i o n

b e t w e e n p l a n a r g r a p h s a n d w e l l l a b e l e d t r e e s , o r Moon [ 9 ] f o r

i d e n t i t i e s o n l a b e l l e d f o r e s t s . M o r e o v e r , t h e b i j e c t i o n s a r e t h e

b a s i s o f n e w t h e o r i e s i n c o m b i n a t o r i c s ( s e e f o r e x a m p l e [ 7 ] , [ 1 3 ] ) a n d t r e e s a r e v e r y s t u d i e d i n t h i s c o n t e x t .

I n t h i s p a p e r , we i n t r o d u c e a s p e c i a l k i n d o f s e t o f

l a b e l e d t r e e s , t h e k - s h a p e d f o r e s t s , i n o r d e r t o g i v e a b i j e c t i v e

p r o o f a n d a g e n e r a l i z a t i o n o f a r e s u l t a b o u t g e n e r a t i n g f u n c t i o n s

÷ U n i t 6 d e R e c h e r c h e A s s o c i 6 e a u C e n t r e N a t i o n a l d e l a R e c h e r c h e

S c i e n t i f i q u e n ° ~ 2 6 .

P o s t M a i l : 3 5 1 C o u r s d e l a L i b e r a t i o n , 3 3 4 0 5 TALENCE C e d e x , FRANCE.

E l e c t r o n i c M a i l : m a y l i s ~ g e o c u b . g r e c o - p r o g . f r

T h i s w o r k w a s s u p p o r t e d b y t h e "PRC d e M a t h ~ m a t i q u e s e t I n f o r m a t i q u e ' .

Page 2: Labeled Trees and Relations on Generating Functions

194

g i v e n b y R. S t a n l e y i n [ 1 0 ] ( s e e p r o p o s i t i o n 19 a t t h e e n d o f

t h i s p a p e r ) . I n f a c t , we s t u d y t h e g e n e r a t i n g f u n c t i o n s

F~(X) = ~ Nk(n) X n, where ~ ) o

Nk(n ) = ~(f~+fn+...+fn )(fn+f.+...+fn )...(fn+fn+...+fn ). 1 2 k 2 3 k ÷ l S $ + | s + k - 1

R. S t a n l e y g i v e s t h e r e s u l t f o r k=2 a n d 3 , t h e p r o o f o n l y f o r

k = 2 , s a y i n g t h a t t h e f o r m u l a f o r k=3 a p p e a r s a f t e r a n e n o r m o u s

a m o u n t o f c a n c e l a t i o n a n d t e d i o u s c o m p u t a t i o n . M o r e o v e r h e s a y s

t h a t h e d o e s n o t k n o w n a s i m p l e r a l t e r n a t i v e m e t h o d . We g i v e i t

i n p a r a g r a p h 3 a n d i n s o m e w a y we g e n e r a l i z e h i s r e s u l t .

A f t e r s o m e d e f i n i t i o n s a n d n o t a t i o n s , i n s e c t i o n 2 a n d 3 ,

we b r i n g b a c k t h e p r o b l e m o f t h e d e t e r m i n a t i o n o f F ~ ( X ) t o t h e

e n u m e r a t i o n o f k - s h a p e d f o r e s t s a c c o r d i n g t o t h e n u m b e r o f s o n s

o f e a c h v e r t e x .

T h i s p r o b l e m o f e n u m e r a t i o n i s t h e n s o l v e d , i n s e c t i o n 4 ,

i n t h e p a r t i c u l a r c a s e s w h e r e k = 2 , 3 a n d 4 . We s o l v e a l i n e a r

s y s t e m o f e q u a t i o n s o b t a i n e d b y t h e m e a n o f t h e k - s h a p e d f o r e s t s .

T h e r e a d e r s a r e r e f e r e d t o [ 4 ] [ 5 ] [ 1 4 ] f o r e x a m p l e s o f s i m i l a r

m e t h o d s .

1. D E F I N I T I O N S AND NOTATIONS

A r o o t e d t r e e i s a c o n n e c t e d g r a p h G w i t h o u t c y c l e [ 1 ]

w i t h a d i s t i n g u i s h e d v e r t e x r c a l l e d r o o t . I f ( f , s ) b e l o n g s t o G,

f ( r e s p . s ) i s c a l l e d f a t h e r ( r e s p . s o n ) o f s ( r e s p . f ) . H e r e , we

w i l l c o n s i d e r t r e e s w h i c h h a v e s o m e t i m e s a l o o p o n t h e r o o t . A

s e t o f t r e e s i s c a l l e d a f o r e s t A / a b e / e d t r e e i s a t r e e w i t h

a n i n t e g e r , c a l l e d l a b e l , a s s o c i a t e d t o e a c h v e r t e x . The e n t e r i n g

d e g r e e d e g ( i ) o f a v e r t e x l a b e l l e d i i s t h e n u m b e r o f s o n s o f

t h i s v e r t e x . T h e d i f f e r e n c e d e g r e e ~ ( i ) o f a v e r t e x l a b e l e d i i s

t h e d i f f e r e n c e b e t w e e n t h e l a b e l o f t h e f a t h e r o f t h i s v e r t e x a n d

i . T h e d i f f e r e n c e d e g r e e o f a l o o p i s e q u a l t o 0 . I t i s e a s y t o

g e n e r a l i z e t h e s e d e f i n i t i o n s t o t h e f o r e s t s . We n o t e ~ t h e e m p t y

f o r e s t .

L e t K b e a n h a l f r i n g a n d Y b e { Y l , Y2 , ' ' ' , y k } . We

d e n o t e b y K[Y] t h e r i n g o f t h e f o r m a l p o w e r s e r i e s o v e r Y w i t h

c o e f f i c i e n t s i n K. L e t f ( x ) = ~ , ~ o f n x " a n d g ( x ) = ~ , ~ o g , x " b e two

f o r m a l p o w e r s e r i e s f r o m K [ { x } ] , t h e p r o d u c t o f H a d a m a r d o f f a n d

g i s d e f i n e d b y

f ~ g ( x ) = ~ o f n g . x " "

G e n e r a l y s p e a k i n g , we w i l l d e n o t e b y ( ~ f ) P t h e p r o d u c t o f

H a d a m a r d p t i m e s o f t h e s e r i e f t h a t i s ( ~ f ) P = ~ n ~ c f , pxR" By

c o n v e n t i o n , we n o t e

A = ( ~ f ) o = ~ > I x ~ = x / ( l - X ) .

We c a l l p a r a m e t e r a n a p p l i c a t i o n f r o m ~ i n t o ~ . T h e t w o d e g r e e s

d e g a n d 6 a r e p a r a m e t e r s .

Page 3: Labeled Trees and Relations on Generating Functions

195

Q 3 7 / /

1 6

/ \ 4 5

/ 2

F i g u r e 1 . A f o r e s t o f ~ 3 , 8 "

2 . K-SHAPED FORESTS

We i n t r o d u c e a s p e c i a l k i n d o f l a b e l e d f o r e s t , i n o r d e r

t o " e x p l a i n " p r o d u c t s s u c h a s ( y l + . . . + y k ) . . . ( y ~ + . . . ÷ y , , ~ _ l ) .

D e f i n i t i o n 1 . L e t ~ be a f o r e s t h a v i n g t v e r t i c e s [ a b e ~ e d f r o m 1

t o t . T h e f o r e s t ~ i s k - ~ a b e ~ e d w h e n , f o r e u e r y i i n [ 1 . . t ]

0 ~ ~ ( i ) < k .

D e f i n i t i o n 2 . A k - C a b e ~ e d f o r e s t ~ i s s a i d k - s h a p e d i f ~ h a s

s + k - 1 v e r t i c e s w i t h s~O s u c h t h a t

i ) e v e r y r o o t i n ~ ~ a b e L e d w i t h 1 i n [ 1 . . s ] h a s a C o o p ,

i i ) t h e k - 1 ~ a s t v e r t i c e s ~ a b e ~ e d f r o m s + l t o s + k - 1 a r e

r o o t s w i t h o u t C o o p ,

N o t a t i o n s .

~ . ~ i s t h e s e t o f k - s h a p e d f o r e s t s h a v i n g s + k - 1

v e r t i c e s .

~ k . 0 i s t h e u n i q u e f o r e s t m a d e w i t h k - 1 i s o l a t e d

v e r t i c e s , we d e n o t e i t b y e .

~K i s t h e s e t o f k - s h a p e d f o r e s t s .

See f o r e x a m p l e t h e f i g u r e 12 t h e f o r e s t ~ b e l o n g s t o ~ 3 , e *

R e m a r k S . L e t ~ b e i n ~ k , s , we o b t a i n k f o r e s t s i n ~ k , s , l b y t h e

m e a n o f t h e f o l l o w i n g a l g o r i t h m :

b e g i n

f o r e v e r y v e r t e x i n ~ do l a b e l ( v e r t e x ) : = l a b e l ( v e r t e x ) + 1 ;

L e t 1 be t h e new v e r t e x ; t h e n 1 i s

( i ) e i t h e r a l o o p ,

( L L ) e i t h e r a s o n o f o n e o f t h e v e r t i c e s n u m b e r e d 2 t o k . e n d

T h u s , t h e n u m b e r o f k - s h a p e d f o r e s t s h a v i n g n + k - 1 v e r t i c e s i s k " .

Page 4: Labeled Trees and Relations on Generating Functions

196

2 ; 2 3 ; 3

/ / 1 2

/ 1

© o 1 5 6 ; 2 6

/ / 4 5

/ \ / \ 2 3 3 4

/ 1

1

7

; 4

/ 3

/ \ 2

5 ;

© ; 3 7 8 ;

/ / 1 6

/ \ 4 5

/ 2

F i g u r e 2 . An e x a m p l e o f t h e a l g o r i t h m o f r e m a r k 3

T h e f i g u r e 2 s h o w s t h e c o n s t r u c t i o n o f t h e f o r e s t o f f i g u r e 1

u s i n g t h i s a l g o r i t h m . I n t h i s e x a m p l e , we h a v e k = 3 .

R e m a r k 4. L e t P be t h e p r o d u c t

(YI+Y=+Y3)(Y2+Y~+Y4)(Y~+Y4+Y~)(Y4+Ys+Y6)(Y~+Y6+Y~)(Y6+Y~+Ys).

I n s o m e w a y , we c a n s a y t h a t t h e f o r e s t o f f i g u r e 1 " r e p r e s e n t s "

t h e t e r m y 3 2 y 4 y ~ y ~ i n t h e d e v e l o p m e n t o f P . I n f a c t , on t h i s

f o r e s t e v e r y r e l a t i o n " j i s f a t h e r o f i " m e a n s "we c h o o s e y j i n

t h e i t h f a c t o r ( y l + y i + z ÷ y i + 2 ) " .

L e t p b e a p a r a m e t e r .

D e f i n i t i o n 5 . T h e w e i g h t a c c o r d i n g t o p o f a f o r e s t ~ f r o m ~ , ~

£s t h e m o n o m i a ~ d e f i n e d b y

'11 g p ( ~ ) ( Y l , ' ' ' ' Y ~ + k - 1 ) = Yi

F o r e x a m p l e , i f A i s t h e f o r e s t o f f i g u r e l j t h e w e i g h t s

a c c o r d i n g t o t h e p a r a m e t e r s e n t e r i n g d e g r e e a n d d i f f e r e n c e d e g r e e

a r e r e p e e t i v e l y

~ d e ~ ( ~ ) = Y 3 2 Y 4 Y 6 ~ Y ~ , and

E 6 ( ~ ) = y 1 2 y 2 ~ y 4 ~ y ~ y s .

Page 5: Labeled Trees and Relations on Generating Functions

197

N o t a t i o n . F o r e v e r y f o r e s t ~ f r o m Y k , ~ , l e t ~ b e t h e map f r o m ~

i n t o ~ [ Y ] d e f i n e d b y

s + k - 1

i = l

D e f i n e t h e f o r m a l p o w e r s e r i e ¢ ( Y k ) o f 2 [ Y ] b y

T ~ ( ~ ) .

¢ ( R k) i s t h e g e n e r a t i n g f u n c t i o n o f t h e k - s h a p e d f o r e s t ~ c c o r d i a g

t o t h e n u m b e r o f s o n s o f t h e v e r t i c e s t h a t i s

~ ( Y k ) = n i . . . i Y o ° ' ' - Y k k • 0 k

ioj...~ik_ I

w h e r e n I . . . ~ i s t h e n u m b e r o f k - s h a p e d f o r e s t s s u c h t h a t , 0 k

f o r e a c h j i n [ O . . k ] , t h e r e i s i v e r t i c e s w h i c h h a v e j s o n s . J

D e f i n i t i o n 6. L e t f ( x ) = ~n> l f . x ~ be a f o r m a ~ p o w e r s e r i e o f

K [ x ] a n d ~ b e a n e ~ e m e n t o f ~,s" We d e n o t e b y A r t h e m a p f r o m ~ k

into 2 [ x ] d e f i n e d b y

A t ( ~ ) = ~ T ( . f ) a ~ g ( i ) l ~ i ~ s + k - 1

Proper ty 7. A t a n d ~eee a r e m o r p h i s m s o v e r t h e f o r e s t s .

We o b t a i n A t ( ~ ) s u b s t i t u t i n g f o r m a l l y t o e a c h Yi t h e

v a l u e ( z f ) i n H d ~ z ( ~ ) o r t h e v a l u e ( . f ) i i n ~ ( ~ ) . M o r e o v e r , l e t

( u , ~ ' } b e a f o r e s t w h e r e u i s a t r e e a n d ~" a f o r e s t , a p p l y i n g

t h e p r e v i o u s d e f i n i t i o n s t o t h e l a b e l e d t r e e s g i v e s t h e f o l l o w i n g

e q u a l i t i e s w h i c h p r o v e t h e p r o p e r t y 7

Af({u,~')) -- Af(u) Ar(~') and

11~((u,~}) = IIde~(u) IId.~(~' ).

Examples: In ~k, we have Af(~)=A k-1 If ~ is the forest of figure

I, we have Af(~) = A4f~(zf) 2 and ~(~) = Yo4Yz2Y2 2

Page 6: Labeled Trees and Relations on Generating Functions

198

D e f i n i t i o n 8. L e t ~1 and ~2 be two f o r e s t s f r o m Y k , ~ " The f o r e s t s

~ and ~ a r e e q u i v a t e n t s w h e n , ~ f

n n

1 s÷k-i

t h e n t h e r e e x i s t s a p e r m u t a t i o n a o f [ 1 . . s + k - 1 ] s u c h t h a t

n

o(1) a(s+k-l)

The p r o p e r t y 7 g i v e s i m m e d i a t l y t h e following p r o p o s i t i o n .

P r o p o s i t i o n 9. L e t ~1 and ~ be two e q u i y a l e n t f o r e s t s f r o m ~ x , s "

We h a v e t h e f o t L o w ~ n g p r o p e r t i e s

( i ) ~ ( ~ ) = ~ ( ~ 2 ) , ( i i ) i f f E K [ x ] , A t ( ~ l ) = A t ( ~ 2 ) .

3 . I N T E R P R E T A T I O N OF F k I N TERM OF k - S H A P E D F O R E S T S

I n t h i s p a r a g r a p h , we g i v e an e x p r e s s i o n f o r F k ( X ) u s i n g

~k t h a t i s

T h e o r e m 10 . The f u n c t i o n F k ( x ) i s d e d u c e d f r o m t h e e n u m e r a t i n g

f u n c t i o n ~ ( ~ k ) o f t h e k - s h a p e d f o r e s t s s u b s t i t u t i n g f o r m a / y e a c h

Yi by ( * f ) ~

F i r s t , we g i v e some p r e c i s i o n a b o u t F k, D e f i n e , f o r e v e r y

i n t e g e r s k , s and n

N~.s(n)= E C f n + f . + . . . + f . )(f,+f,+...+f, 1 2 R 2 3 k + 1

w h e r e t h e sum is t a k e n o v e r a l l

n : n l + n ~ + . . . n s + ~ _ 1 w i t h n i ~ l and

) . . . ( f . + f . + . . . + f . ) , S S + I S + k - I

o r d e r e d p a r t i t i o n s o f

F~,s(x) : ~n~IN~,s(n) x"

N o t e t h a t we h a v e

and a l s o

w h e r e t h e

Nk(n) = ~s~O Nk, sCn), Fk(x> = ~s~o F k , s '

F k , s ( X ) = ~ Pk ( f r " ' f p )x~ 1 s ÷ k - I

sum i s o v e r a l l o r d e r e d p a r t i t i o n s o f n w i t h n i ~ l .

L e t P k , s ( Y l , ' ' ' , Y s , k - 1 ) be t h e p o l y n o m i a l o f Z [Y] e q u a l t o 1 i f s=O and o t h e r w i s e g i v e n by

Pk, s ~ Y I , . . o , Y s + k _ ~ ) = (Yl" I ' . - oYk) (Y2+. o . + Y k + x ) . . . ( Y s + . . . + Y s + k - 1 ~ •

Page 7: Labeled Trees and Relations on Generating Functions

199

I n o r d e r t o p r o v e t h e t h e o r e m 10 we p r o v e t h e f o l l o w i n g

Lemma 11, V--" P~,s (Yl''''Ys+k-1) = ~__ Kdeg(~)(YI'Ys' .... Ys+~-1)'

~E~k,s

If s=O, the result is immediate. Otherwise, an induction

t h a t k

Pk,~(YI,''',Y~+k-I) : ~ _ YiP~,s-~(Ys,''',Y~÷k-1)

i=l

k

¢ )__

shows

~ _ YtKdeg ( ~ ' ) ( Y 2 ' ' ' ' ' Y s + k - 1 ) '

Using the algorithm of

~k,5 comes from a forest ~" of ~k,s-1- If the vertex labeled 1 is

a l o o p i n ~ ,

Hdea(~)(Yl,...,Ys+k-1)=YlHde~(~') (Y2,...,Ys+k_I).

E l s e , t h e v e r t e x l a b e l e d 1 i s a s o n o f a v e r t e x i i n [ 2 . . k S and

H d e ~ ( ~ ) ( Y l , . . . , Y s ÷ k _ l ) = Y i H ~ e g ( ~ ' ) ( Y ~ , . . . , Y s , k _ l ) -

Thus t h e lemma 11 i s p r o v e d . We d e d u c e

c o n s t r u c t i o n o f ~ k , s J e a c h f o r e s t ~ o f

C o n s e q u e n t l y we h a v e

Fk, ~ (x)

El 1 deg(i) X i p

i

P i l l

= A f (~).

,~E~'~,

s+k-1

i = l

and t h u s by f a c t o r i s a t i o n , we o b t a i n

I s÷k-1

n~l p1+..+ps+~_1=n ~E~P~ . ~

Page 8: Labeled Trees and Relations on Generating Functions

200

Using the notation F~(x) = ~ Fk,s(x), we get s)O

F~(x)=~ Af(~)

~ E ~ k

a n d t h e o r e m 10 f o l l o w s f r o m p r o p e r t y 7 .

4. RELATIONS BETWEEN SUBSETS OF ~

I n t h i s s e c t i o n , we p a r t t h e

s u b s e t s w h i c h b a s i c p r o p e r t i e s a l l o w u s t o d e c o m p o s e t h e

p o w e r s e r i e @ ( ~ k ) a s s u m o f f o r m a l p o w e r s e r i e s P i i . . . i

a r e given b y 1 2

set ~k into particular

formal

whose

\ Pi i . . . i = ) ~(~)

1 £ L__

~EEi . . . i I p

T h e n , we p r o v i d e r e l a t i o n s b e t w e e n t h e s e f o r m a l p o w e r s e r i e s a n d

we o b t a i n t w o t y p e s o f r e l a t i o n s :

- lemmas 12 to 15 will allow us to express P ......... I p p+q with respect to Pi ...i J

p p+q

l e m m a 16 w i l l a l l o w s u s t o w r i t e P i . . . i a s P~ . . . )

i n o r d e r t o a p p l y l e m m a s 12 t o 1 5 . 1 P+q 1 p÷q

M o s t o f t h e s e l e m m a s a r e b a s e d u p o n t h e r e l a t i o n o f

e q u i v a l e n c e ( d e f i n i t i o n 8 ) o f p a r t i c u l a r t y p e s o f f o r e s t s a n d a r e

d e d u c e d b y t h e a p p l i c a t i o n o f p r o p o s i t i o n 9 .

N o t a t i o n s : F o r e v e r y p o s i t i v e i n t e g e r p , a n d f o r e v e r y p - u p l e

i n [ O . . k - 1 ] ~ , we d e n o t e b y

Ei "''i the set of forests belonging to ~k having at 1

least p+k-1 vertices such that V j E [1.,p], ~(j)=ij,

" ei ...i 1

t h e f o r e s t o f ~ x w i t h p + k - 1 v e r t i c e s s u c h t h a t

V j E [ 1 . . p ] , 6 ( j ) = i j .

By conventions let E (resp. e) be ~ (resp. ~,o)"

E x a m p l e : t h e f o r e s t ~ o f t h e e x a m p l e 1 i s e x a c t l y e 2 2 o 2 1 1 a n d

b e l o n g s t o t h e s e t s E j E 2 , E ~ 2 j E 2 2 0 , . . . .

Page 9: Labeled Trees and Relations on Generating Functions

201

Lemma 12. For euery p - u p ~ e

and

( i l , i ~ , . . , i p) of [ O . . k - l ] p,

k - 1

Ei 1 ...i p = ei i ...i p + ~ Ei i ...i p h • (I)

h=O

k-i

P t I . . . i p = ~o ( e i i . . . i P ) + ~ P i 1 . . . i p h - ( 2 )

h = O

i s I n d e e d ~ a f o r e s t o f E i . . . i 1 p

- e i t h e r t h e f o r e s t e~ . . . i :P

1 p

- o r a f o r e s t h a v i n g a t l e a s t p + k v e r t i c e s ~ s u c h t h a t t h e

h a l f d e g r e e o f t h e v e r t e x p + l i s i n [ O . . k - 1 ] .

k - i k-I

E x a m p l e s : E = e + E i , @ ( ~ ) = Yo + P i ,

i = O i = O

k - I k - I

E i = e i + E i j ' P i = Y l Yo ÷ P i j

j = O j = O

P

Lemma 1 3 . P p ( p - 1 ) . . . z o = Yo Y p , z C~(~k) ( 4 )

P r o o f : An e l e m e n t ~ o f E ~ ( ~ _ l ) . . . 1 o ( s e e f i g u r e 3) i s a f o r e s t

{ u j ~ ' } w h e r e u i s t h e l a b e l e d t r e e w h o s e r o o t l a b e l e d p + l h a s a

l o o p a n d p s o n s l a b e l e d f r o m 1 t o p a n d w h e r e ~" i s a n y f o r e s t o f

~k w h e r e e a c h l a b e l 1 o f a v e r t e x h a s b e e n c h a n g e d i n ( t + p )

T h u s we h a v e t h e a n n o u n c e d r e s u l t u s i n g t h e p r o p e r t y 7 .

p+l

1 p

U

F i g u r e 3 . An e l e m e n t o f E ~ ( p _ l ) . . . 1 o .

Page 10: Labeled Trees and Relations on Generating Functions

202

I n t h e s a m e w a y , we f i x j s u p p l e m e n t a r y v e r t i c e s a n d we g e t

Lemma 16. P~<p-~)...~o~ ...i = Y0PY~+I P i ...i j I j

E x a m p l e : P o = y l ¢ ( ~ k ) , P l o = y o y ~ ( ~ k ) , P 2 1 o = Y o 2 y s ~ ( ~ k ) ...

a n d a l s o P o l = y l P ~ , P l o 2 3 = y o y ~ P 2 3 . . .

(5 )

Lemma 1 5 . L e t i 1 = a + p - l , i ~ = a + p - 2 , . . . , i p = ~ a n d

i p + 1 ¢ ~ - l , i p + 2 ~ - 2 , . . . , i ~ ÷ ~ ¢ O ( 6 )

t h e n

P~ i . . . i = Y o P - t Y p P i . . . i ( 7 ) I 2 ~ + p p+l ~ + p

L e t ~ b e a f o r e s t f r o m Pi i . . . i s a t i s f y i n g ( 6 ) . I 2 ~ + p

T h e n t h e v e r t e x l a b e l e d p+~ h a s e x a c t l y p s o n s l a b e l e d f r o m 1 t o

p a s s h o w n i n f i g u r e 4 . I n d e e d , t h e c o n d i t i o n i p + q C a - q i n ( 6 )

m e a n s t h a t t h e v e r t e x l a b e l e d p + a h a s no s o n o t h e r t h a n t h o s e

l a b e l e d f r o m 1 t o p . T h u s ~ i s e q u i v a l e n t t o t h e f o r e s t o b t a i n e d

b y d i s p l a c i n g t h e v e r t i c e s l a b e l e d f r o m 1 t o p so t h a t t h e

v e r t e x p i s a l o o p h a v i n g p - 1 s o n s l a b e l e d f r o m 1 t o p - 1 a s s h o w n

i n f i g u r e 4 . T h e r e f o r e , we c a n u s e t h e l e m m a 14 w h i c h p r o v e s

l e m m a 15.

Example: Ps23s:yoy2P3~.

p+a

A.2 1 p

P i i . . . t i 2 ~ + p

0

1 p-1 / p+~

yo~ - lyp D ~i . . . i

p÷l ~+p

F i g u r e 4 . An e x a m p l e f o r l e m m a 1 6 .

Page 11: Labeled Trees and Relations on Generating Functions

2 0 3

Lemma 16. I f t h e f o r e s t ~ of ~ i s s u c h t h a t , f o r s o m m e p o s i t i v e

i n t e g e r s a , ~ , ¥ , ~ , f a t h e r ( a ) = ~ + B + ¥ + ~ a n d f a t h e r ( a + ~ ) = a + ~ + ¥ , t h e n ,

i s e q u i v a l e n t t o t h e f o r e s t o b t a i n e d b y t h e p e r m u t a t i o n of t h e

s u b t r e e s r a i s i n g f r o m t h e v e r t i c e s a a n d a + ~ .

The p r o o f i s i m m e d i a t e b e c a u s e t h i s t r a n s f o r m a t i o n d o e s n o t

a f f e c t t h e e n t e r i n g d e g r e e . Thus we h a v e t h e f o l l o w i n g

C o r o l l a r y 1 7 . I f i~=B+¥+~ a n d i~÷~=~ t h e n

e i . . l . . i . . i 1 • ~ ÷ ~

Ei .. | ..i .. i 1 • ~ + ~

P i . . i . . i . . i 1 • ~ ÷ ~

where i ' ~ = B + ¥ a n d i ' ~ j = ¥ + ~ .

= e i . . i . . i . . i • p 1 ~ a ÷ ~ p

J ~ i . . i . . i . . i •

p 1 ~ ~ + ~ p

= P i . . i ' . . i ' o . i • (a)

E x a m p l e : P 2 o = P l l

5 . ENUMERATION OF THE K-SHAPED FORESTS

In t h i s s e c t i o n , we e n u m e r a t e t h e k - s h a p e d f o r e s t s

a c c o r d i n g t o t h e d i s t r i b u t i o n o f e a c h v e r t i c e s i n t h e f o r e s t s .

The lemmas o f t h e s e c t i o n 4 a l l o w us t o w r i t e o u t a l i n e a r s y s t e m o f e q u a t i o n s s a t i s f i e d by ~ ( ~ k ) " H o w e v e r • t h e

n u m b e r o f e q u a t i o n s i n c r e a s e s e x p o n e n t i a l y w i t h k . Thus i t was i n e f f i c i e n t t o w r i t e i n Macsyma [ 1 2 ] an a l g o r i t h m o f g e n e r a t i o n

f o r s u c h a g e n e r a l s y s t e m . T h u s , we j u s t s o l v e e x p l i c i t l y t h e s y s t e m s f o r k = 2 , 3 and 4 .

T h e o r e m 18. T h e g e n e r a t i n g f u n c t i o n f o r k - s h a p e d f o r e s t s a r e

Y0 f o r k = 2 , ~ (Y~) = •

(I-Yl)2 - YoY2

yo s f o r k = 3 , ~b(Y3) =

(l_y i)s (1-yl-ylS)-2YoY s (l_y 12)_yos (Yss÷Y3)

yo 3 ( 1 + yl s - YoY2 )

a n d fo r . k = 4 • ~ ( ~ 4 > ---- •

Qo + Q1Yo + QsYo s + QsYo 3 + Q4Yo 4

w h e r e Qo= ( l - y l ) 2 ( 1 - y l - y 1 2 - y l S ) •

Qt = - 2 y o y ~ ( l - y l ) ( 2 + y t - y t ~ - 3 Y t 3 - 3 Y t 4 - 2 Y 1 S ) , Q~= 2 Y 3 ( Y I - 1 ) ( l + 3 Y I + Y I s + Y ~ s) - y s ~ ( 1 - 4 Y 1 s - 6 y 1 4 ) ,

Q3 = - ( Y ~ s + 4 y ~ Y 3 + Y 4 ) + 2YIY~(Y~-Y~ 2) -Y1 2 (Y4+4Y2Y3+4Y~3) ,

Q4 = (Y2+Y3)~ + Y~Y4 - 2Y3 ~.

Page 12: Labeled Trees and Relations on Generating Functions

204

We w r i t e s y s t e m s o f l i n e a r e q u a t i o n s b y u s i n g f i r s t t h e l e m m a 1 2 ,

t h e n b y a p p l y i n g l e m m a s 13 t o 1 6 .

F o r k = 2 ~ we h a v e

~ ( ~ 2 ) = Y0 + P0 + P 1 ,

P I = YoY1 + P10 + P l 1 ~

Po = YI~(~2)'

PIo = YoY2¢(~2)'

P11 = YIPI "

S o l v i n g i t , g i v e s t h e r e s u l t o f t h e o r e m 1 8 . We g i v e i n

t h e a n n e x t h e s y s t e m f o r k = 3 a n d 4 . T h e y h a v e b e e n s o l v e d u s i n g

t h e s y m b o l i c m a n i p u l a t i o n s y s t e m MACSYMA f r o m MIT [ 1 2 ] o We d e d u c e

f r o m t h e t h e o r e m 19 t h e e x p r e s s i o n o f F k ( X ) f o r k = 2 ~ 3 a n d 4

u s i n g t h e t h e o r e m 1 1 . N o t e t h a t i n t h e c a s e k = 3 , we f i n d t h e

r e s u l t o f R. S t a n l e y [ 1 0 ] t h a t i s

P r o p o s i t i o n 19 . D e f i n e N ( n ) = ~ ( f ~ + f ~ + f ~ ) ( f ~ + f . + f n ) ' ' ' ( f . + fR + f . ) ,

1 2 3 £ 3 4 s S + I S + £

w h e r e f i s a n y f u n c t £ o n f : ~ ~ ¢ a n d w h e r e t h e s u m i s o u e r u l $

o r d e r e d p a r t i t i o n s n l + n 2 + . . . + n s ÷ 2 = n o f n ( n i ~ l ) . By c o n v e n t i o n ,

a s u m m a n d w i t h s=O i s 1 . D e f i n e

i " F ( X ) = N ( n ) X ~ , f = 2 f ~ X ~ , A = X / ( 1 - X ) . n=l 4=I

L e t ~ d e n o t e H a d a m a r d p r o d u c t . T h e n

A 2

F (X) =

( l - f ) 2 ( 1 - f - f ~ ) - 2 A ( f z f ) ( 1 - f 2 ) - A S ( ( f z f ) ~ + ( f z f x f ) )

H o w e v e r , we d i d n o t f i n d a g e n e r a l f o r m u l a f o r F ~ ( X ) j

o r , a t l e a s t a r e c u r s i v e r e l a t i o n o n t h e s e f u n c t i o n s . Y e t ~ t h e

t i m e o f c o m p u t a t i o n w a s v e r y s l i g h t , a n d we t h i n k t h a t i t i s

p o s s i b l e t o c o m p u t e t h e r e s u l t f o r k = 5 .

REFERENCES [ 1 ] C. BERGE, G r a p h e s e t h y p e r g r a p h e s , D u n o d , P a r i s ( 1 9 7 0 ) .

[ 2 ] N . G . d e B R U I J N a n d B . J . M . MORSELT, A n o t e o n p l a n e t r e e s , J .

C o m b . T h . 2 ( 1 9 6 7 ) , 2 7 - 3 4 .

[ 3 ] R. CORI a n d B . VAUQUELIN, P l a n a r m a p s a r e w e l l l a b e l e d t r e e s ,

C a n a d i a n J . o f M a t h . 33 ( 1 9 8 1 ) 1 0 2 3 - 1 0 4 2 .

[ 4 ] M . P . DELEST , U t i l i s a t i o n d e s l a n g a g e s a l g ~ b r i q u e s e t d u o a l -

c u l f o r m e l p o u r l e c o d a g e e t l ' 6 n u m ~ r a t i o n d e s p o l y o m i n o s ,

T h ~ s e d ' E t a t j U n i v e r s i t ~ d e B o r d e a u x I , 1 9 8 7 .

[ 5 ] J . M . FEDOU, E n u m e r a t i o n d e o e r t a i n s p o l y o m i n o s s e l o n l e s

p a r a m ~ t r e s p ~ r i m ~ t r e e t a i r e , m 6 m o i r e d e D . E . A , B o r d e a u x I ,

1 9 8 7 .

Page 13: Labeled Trees and Relations on Generating Functions

205

[ 6 ] P . FLAJOLET, A n a l y s e d ' a l g o r i t h m e s de m a n i p u l a t i o n d ' a r b r e s

e t de f i c h i e r s , C a h i e r s du B . U . R . O . 3 4 - 3 5 ( 1 9 8 1 ) , 1 - 2 0 9 .

[ 7 ] A. JOYAL, Une t h ~ o r i e c o m b i n a t o i r e d e s s ~ r i e s f o r m e l l e s , A d v .

i n M a t h . , 42 ( 1 9 8 1 ) , 1 - 8 2 . [ 8 ] D. KNUTH, The a r t of c o m p u t e r p r o g r a m m i n g , V o l . 1, A d d i s o n

Wesley Reading, 1968.

[9] J.W. MOON, A note on an identity and labelled forests,

C a r i b b . J . M a t h . , 3, (2 ) 5 9 - 6 5 . [ 1 0 ] R . P . STANLEY, G e n e r a t i n g f u n c t i o n , S t u d i e s i n Comb, 1 0 0 - 1 4 8 ,

17 , M a t h . A s s o c . A m e r i c a W a s h i n g t o n DC 7 8 .

[ii] J.M. STEYEART, Complexit~ et structure des algorithmes,

Th~se Universit~ Paris VII, 1984.

[12] SYMBOLICS INC., Macsyma Reference manual version ten, third

printing, december 1984.

[13] G. VIENNOT, Heap of pieces: Basic definitions and combinato-

rial lemmas, in C o m b i n a t o i r e E n u m d r a t i v e , UQAM 1985,

Montreal, G. Labelle et P. Leroux ed., Lecture Notes in

M a t h e m a t i c s , n ° 1 2 3 4 , S p r i n g e r V e r l a g , 3 2 1 - 3 5 0 , 1 9 8 6 .

[ 1 4 ] G. VIENNOT, T r e e s , R i v e r s , RNAs and many o t h e r t h i n g s ,

p r e p r i n t , B o r d e a u x I , 1 9 8 7 .

ANNEXE

For k=3,

@(~a) = Yo ~+ Po + P1 + Ps ,

P1 = YoSYl + P l o + P i i + P 1 2 , P~ = Yo 'Yo + P~o + P s i + P 2 z ,

P$o = Yo2Yl 2 + P~oo + P ~ o i + P 2 o 2 , P21 = Yo3Y2 + P21o + P211 + P 2 1 2 ,

P~s = YoSYl ~ + P s s o + P 2 s i + P 2 2 ~ ,

Po = Yl ~(~a),

P1o = Yo Y2¢(~a),

P11 = Yo Pi,

Px~ = Yo P~,

P~oo = Pilo = Yl Pio,

Psol = P~ll = Y* Pil,

Psos = P~is = Yl P~s,

P~io = YoSY~ ~(~)'

Psii = YoYs Pi"

F o r k--4 ,

~(5'4) = YO a+ Po + Pi +P2 + Pa'

Po = Yl ~)<~4 >' P1 = YoaY l + P l o + P i i + P12 + P l a ,

P~ = Yo3Yo + P20 + P21 + P22 + P~'a,

Pa = YoSYo + P3o + Pa~ + Pa~ + P 3 a ,

Plo -- Yo Y2~('~4 ) " P11 = Yl Pi ,

Page 14: Labeled Trees and Relations on Generating Functions

II

II

I|

|1

I1

II

II

II

II

II

II

II

II

II

II

II

il II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

v -I

-

4-

-I-

4-

4-

4-

÷ ÷

o o

-I-

4-

-1-

÷ ÷

4-

"U

'4-

4-

4.

v