Top Banner
1 Name__________________________________________________ Date:_____________ Block:_____ Lab – Dihybrid Corn Genetics Background Before Mendel, it was thought that offspring characteristics were the result of blended traits received from each parent. Mendel, based on his observations while breeding pea plants and with his background in mathematics and statistics, hypothesized that hereditary material is passed as discrete packets from parents to offspring. Today we know that genetic information is coded in DNA on different chromosomes that are sorted and passed from parent to offspring. Genes located on the same chromosome are called linked. Genes located on different chromosomes are unlinked and assort independently of one another. Corn (Zea mays) is a large, coarse grass. Male and female flowers are separate (Figure 1). Many male flowers make up each of the tassels, which are located at the tips of stems. The tiny pollen grains are transported by wind. Female flowers nestle lower down, close to the stout part of the stem and are combined in structures we refer to as an ear. Each kernel in an ear of corn is the swollen ovary of a flower; a single strand of silk extends from each kernel to the outside of the ensheathing husk. A kernel only matures if its silk is pollinated. Thus each kernel in an ear of corn represents a separate fertilization of an ovum by a sperm. An ear of corn holds the results of hundreds of separate genetic crosses. As you know from class and your textbook, it is possible to predict the results of a cross involving parents who are heterozygous for two traits. In this investigation, you will use hybrid corn to study the inheritance patterns of corn kernel color and shape. In corn, purple kernels are the dominant to yellow kernels. Smooth kernels are dominant to wrinkled kernels. In this lab, you will use statistical methods to answer the following question: Are the genes for kernel color and kernel texture most likely linked or unlinked? In other words, are they most likely found on the same chromosome or on different chromosomes? Figure 1: Structure of Zea mays Figure 2: Kernel phenotypes Purple & Smooth (A), Purple & Wrinkled (B), Yellow & Smooth (C) and Yellow & Wrinkled (D).
5

LAB Dihybrid Corn Genetics - nnhsbergbio.pbworks.comnnhsbergbio.pbworks.com/w/file/fetch/118362129/LAB_Dihybrid Corn... · Lab&–&Dihybrid&Corn&Genetics& Background&...

Jun 04, 2018

Download

Documents

dangliem
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: LAB Dihybrid Corn Genetics - nnhsbergbio.pbworks.comnnhsbergbio.pbworks.com/w/file/fetch/118362129/LAB_Dihybrid Corn... · Lab&–&Dihybrid&Corn&Genetics& Background& BeforeMendel,!it!was!thought!that!offspringcharacteristics!weretheresult!of!blended!traits!received!from!each!

  1  

Name__________________________________________________  Date:_____________  Block:_____  

Lab  –  Dihybrid  Corn  Genetics  

Background  Before  Mendel,  it  was  thought  that  offspring  characteristics  were  the  result  of  blended  traits  received  from  each  parent.  Mendel,  based  on  his  observations  while  breeding  pea  plants  and  with  his  background  in  mathematics  and  statistics,  hypothesized  that  hereditary  material  is  passed  as  discrete  packets  from  parents  to  offspring.  Today  we  know  that  genetic  information  is  coded  in  DNA  on  different  chromosomes  that  are  sorted  and  passed  from  parent  to  offspring.    Genes  located  on  the  same  chromosome  are  called  linked.    Genes  located  on  different  chromosomes  are  unlinked  and  assort  independently  of  one  another.      

 

 

 

 

 

 

 

 

 

Corn  (Zea  mays)  is  a  large,  coarse  grass.  Male  and  female  flowers  are  separate  (Figure  1).  Many  male  flowers  make  up  each  of  the  tassels,  which  are  located  at  the  tips  of  stems.  The  tiny  pollen  grains  are  transported  by  wind.  Female  flowers  nestle  lower  down,  close  to  the  stout  part  of  the  stem  and  are  combined  in  structures  we  refer  to  as  an  ear.  Each  kernel  in  an  ear  of  corn  is  the  swollen  ovary  of  a  flower;  a  single  strand  of  silk  extends  from  each  kernel  to  the  outside  of  the  ensheathing  husk.  A  kernel  only  matures  if  its  silk  is  pollinated.  Thus  each  kernel  in  an  ear  of  corn  represents  a  separate  fertilization  of  an  ovum  by  a  sperm.  An  ear  of  corn  holds  the  results  of  hundreds  of  separate  genetic  crosses.  

As  you  know  from  class  and  your  textbook,  it  is  possible  to  predict  the  results  of  a  cross  involving  parents  who  are  heterozygous  for  two  traits.  In  this  investigation,  you  will  use  hybrid  corn  to  study  the  inheritance  patterns  of  corn  kernel  color  and  shape.    In  corn,  purple  kernels  are  the  dominant  to  yellow  kernels.    Smooth  kernels  are  dominant  to  wrinkled  kernels.      

 

 

 

 

 

   In  this  lab,  you  will  use  statistical  methods  to  answer  the  following  question:  

• Are  the  genes  for  kernel  color  and  kernel  texture  most  likely  linked  or  unlinked?  In  other  words,  are  they  most  likely  found  on  the  same  chromosome  or  on  different  chromosomes?      

 

Figure  1:  Structure  of  Zea  mays  

Figure  2:  Kernel  phenotypes  Purple  &  Smooth  (A),  Purple  &  Wrinkled  (B),  Yellow  &  Smooth  (C)  and  Yellow  &  Wrinkled  (D).      

Page 2: LAB Dihybrid Corn Genetics - nnhsbergbio.pbworks.comnnhsbergbio.pbworks.com/w/file/fetch/118362129/LAB_Dihybrid Corn... · Lab&–&Dihybrid&Corn&Genetics& Background& BeforeMendel,!it!was!thought!that!offspringcharacteristics!weretheresult!of!blended!traits!received!from!each!

  2  

Part  I:  Determining  the  Expected      If  the  genes  are  located  on  DIFFERENT  chromosomes,  we  would  expect  them  to  assort  independently  from  each  other  according  to  Mendel’s  Law.  If  the  genes  are  located  on  the  SAME  chromosome,  however,  the  predictions  we  make  using  a  Punnett  square  would  not  be  accurate.      You  will  use  a  Punnett  square  to  predict  the  results  of  a  cross  between  two  dihybrid  F1  corn  plants,  assuming  the  genes  are  unlinked  (not  on  the  same  chromosome)  and  thus  assort  independently  in  meiosis.      

1. Draw  a  Punnett  square  that  shows  expected  genotypic  and  phenotypic  results  from  crossing  2  dihybrid  corn  plants  that  are  heterozygous  for  purple  and  smooth  kernels.    Please  use  the  assigned  letters  for  each  allele.      

A=  purple    a=  yellow    B=  smooth         b=  wrinkled.  

 

 

 

 

 

 

 

 

 

 

 

 

2. Using  the  results  of  your  Punnett  Square,  complete  the  following  Expected  Phenotype  table:  

Table  1:  Expected  Phenotypes  Phenotypes   Phenotypic  Ratios  

purple,  smooth    

/  16  

purple,  wrinkled    

/16  

yellow,  smooth      

/16  

yellow,  wrinkled    

/16  

TOTAL    

16  /  16  

 3. What  is  the  expected  Phenotypic  Ratio?  ____:  ____:  ____:____  4. Hypothesize:  How  will  the  observed  phenotypic  ratios  compare  to  the  prediction  you  made  in  #3?  

Page 3: LAB Dihybrid Corn Genetics - nnhsbergbio.pbworks.comnnhsbergbio.pbworks.com/w/file/fetch/118362129/LAB_Dihybrid Corn... · Lab&–&Dihybrid&Corn&Genetics& Background& BeforeMendel,!it!was!thought!that!offspringcharacteristics!weretheresult!of!blended!traits!received!from!each!

  3  

Part  II:  The  Actual  Observed  Outcome    

5. Obtain  an  ear  of  dihybrid  corn.      6. Observe  and  record  the  phenotypes  of  4  rows  of  kernels  in  Table  2  below.    

a. One  person  should  call  out  the  phenotypes  for  each  kernel  in  the  row,  while  another  person  records  tally  marks  in  the  appropriate  cells  in  the  data  table.  

b. Continue  this  process  for  4  continuous  rows  of  corn  (total  kernels  should  be  150-­‐200).  c. Record  class  data  in  Table  2.    

Table  2:  Data  Table  for  a  Dihybrid  Cross  Observed  Outcomes  

Phenotype   Number  Counted  (o)  GROUP  

Number  counted  (o)  CLASS  

Purple  smooth    

   

Purple  wrinkled    

   

Yellow  smooth    

   

Yellow  Wrinkled    

   

Total    

   

 

 

7. What  is  the  observed  phenotypic  ratio  based  on  class  data?  ____:  ____:  ____:____  8. Is  your  ratio  close  to  the  expected  ratio  of  9:3:3:1  ratio?    Explain.      

 

 

 

 

 

Part  III:    Determining  Significance  of  Data  

What  is  the  𝑿𝟐  test?    The  Chi-­‐Square  Test  calculates  two  statistical  measures:  

1. The  deviation  between  your  observed  numbers  and  your  expected  numbers.  2. The  probability  that  the  deviation  is  due  to  chance  or  that  the  deviation  is  statistically  significant.    

 If  the  deviation  between  your  expected  and  observed  phenotypic  ratios  is  found  to  be  due  to  chance  (p-­‐value  greater  than  5%),  then  your  results  support  (fail  to  reject)  the  null  hypothesis  that  no  significant  difference  exists  between  the  expected  and  observed  values.  If  the  deviation  between  your  expected  and  observed  phenotypic  ratios  is  found  to  be  less  than  5%,  then  you  reject  the  null  hypothesis  and  conclude  that  the  difference  between  the  observed  and  expected  data  is  likely  caused  by  something  other  than  chance.    

   

Page 4: LAB Dihybrid Corn Genetics - nnhsbergbio.pbworks.comnnhsbergbio.pbworks.com/w/file/fetch/118362129/LAB_Dihybrid Corn... · Lab&–&Dihybrid&Corn&Genetics& Background& BeforeMendel,!it!was!thought!that!offspringcharacteristics!weretheresult!of!blended!traits!received!from!each!

  4  

The  𝑿𝟐Method    Step  1:  Determine  the  ratio  of  phenotypes  and  the  number  of  kernels  of  each  phenotype  you  expected.  

Phenotype     Expected  Ratio     Expected  Number  of  Kernels  (“e”)  out  of  class  totals.  

1.        

2.        

3.        

4.        

 Step  2:  Record  the  ratio  of  phenotypes  and  the  number  of  kernels  of  each  phenotype  you  observed.  

Phenotype     Observed  Ratio     Observed  Number  of  Kernels  (“o”)  out  of  class  totals.  

1.        

2.        

3.        

4.        

 Step  3:  Complete  the  table  using  class  data.  For  “o”  and  “e”  values,  use  the  actual  numbers  of  corn  kernels  rather  than  ratios.    

The  formula  for  the  chi-­‐square  test  is:      𝑋! = {(!!!)!

!}        Where  

 𝑋!=  chi  square  value   o=  observed  results        e  =  expected  results.         Σ  =  sum    

Table  3:  Data  Table  for  a  Dihybrid  Cross  Observed  Outcomes    

 Expected  Outcome    (out  of  class  totals  )  

(𝑜 − 𝑒)!

𝑒  

Phenotype   Count  (o)   Expected  (e)    Purple  smooth    

     

Purple  wrinkled    

     

Yellow  smooth    

     

Yellow  wrinkled    

     

Chi  Squared  Value!    Add  the  numbers  from  the  rows  above.    

   

 

Step  4:  Calculate  the  degrees  of  freedom  by  subtracting  1  from  the  number  of  possible  phenotypes.  

Possible  phenotypes  =  _______________  

Degrees  of  freedom  =  _______________  

 

 

Page 5: LAB Dihybrid Corn Genetics - nnhsbergbio.pbworks.comnnhsbergbio.pbworks.com/w/file/fetch/118362129/LAB_Dihybrid Corn... · Lab&–&Dihybrid&Corn&Genetics& Background& BeforeMendel,!it!was!thought!that!offspringcharacteristics!weretheresult!of!blended!traits!received!from!each!

  5  

Step  5:  Decide  whether  to  accept  or  reject  your  hypothesis.  Using  the  table  below,  determine  the  probability  that  the  deviation  between  the  expected  results  and  observed  results  is  due  to  chance.  The  numbers  below  the  percentages  are  the  chi-­‐squared  values.    

Chi-­‐Square  Distribution  Table    

Degrees  of  Freedom  

Probability  of  a  Chance  Occurrence  

90%     70%     50%     30%     20%     10%     5%     1%    

1     0.016     0.148     0.455     1.074     1.642     2.706     3.841     6.635    

2     0.211     0.713     1.386     2.408     3.219     4.605     5.991     9.210    

3     0.584     1.424     2.366     3.665     4.642     6.251     7.815     11.341    

4     1.064     2.195     3.357     4.878     5.989     7.779     9.488     13.277    

 

Probability  (P)  Value  =  ____________    

If  the  probability  value  is  5%  or  greater,  then  your  results  support  the  null  hypothesis  that  there  is  no  difference  between  the  observed  and  expected  values  and/or  if  there  is  a  slight  difference,  this  difference  is  caused  by  chance  and  chance  alone.  If  the  probability  is  less  than  5%,  then  your  results  do  not  support  the  null  hypothesis  that  the  difference  is  due  to  chance.  Instead,  you  reject  the  null  hypothesis  and  conclude  that  the  difference  between  your  results  is  not  due  to  chance;  the  difference  is  statistically  significant.    

Post  Lab  Questions    

1. Is  the  observed  outcome  consistent  with  the  expected  outcome?  Explain  your  answer  using  your  data  as  evidence.      

             

2. Are  the  genes  for  kernel  color  and  kernel  texture  most  likely  “linked”  (on  the  same  chromosome)  or  “unlinked”  (on  separate  chromosomes)?    Explain  your  answer  using  your  knowledge  of  meiosis  and  your  data  as  evidence.