Top Banner
La célula, unidad básica de la vida, se caracteriza por una compleja estructura en la que tienen lugar las reacciones bioquímicas fundamentales para los procesos vitales y la sustentación de su propia existencia. Las investigaciones realizadas por los científicos a través de los siglos permitieron desarrollar una “Teoría Celular” que ha resultado corroborada por las evidencias experimentales. Todo ser vivo está construido de la misma manera y constituido por las mismas unidades fundamentales: las Células, hay seres vivos con una sola célula y otros de muchas células. Las células se clasifican en Procariótica y Eucariótica. Las células Procarióticas son más pequeñas (como regla general) y carecen mucho de las divisiones y la complejidad interna de las células Eucarióticas. No importa que tipo de célula consideramos, todas tienen ciertas características en común: membrana celular, el ADN, el citoplasma y los ribosomas.
50

La Célula Procariota

Jul 11, 2015

Download

Education

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: La Célula Procariota

La célula, unidad básica de la vida, se caracteriza por una compleja

estructura en la que tienen lugar las reacciones bioquímicas

fundamentales para los procesos vitales y la sustentación de su propia

existencia. Las investigaciones realizadas por los científicos a través de

los siglos permitieron desarrollar una “Teoría Celular” que ha resultado

corroborada por las evidencias experimentales.

Todo ser vivo está construido de la misma manera y constituido por las

mismas unidades fundamentales: las Células, hay seres vivos con una

sola célula y otros de muchas células. Las células se clasifican en

Procariótica y Eucariótica. Las células Procarióticas son más pequeñas

(como regla general) y carecen mucho de las divisiones y la complejidad

interna de las células Eucarióticas. No importa que tipo de célula

consideramos, todas tienen ciertas características en común: membrana

celular, el ADN, el citoplasma y los ribosomas.

Page 2: La Célula Procariota
Page 3: La Célula Procariota

DESARROLLO DE LA TEORIA CELULAR

Esta teoría dice que: ”Todos los organismos vivos están compuestos de

una o más células" y que estas células son las unidades más pequeńas

Que pueden llamarse "vivas". El inglés Robert Hooke observo la estructura

Celular de la corteza del árbol y también realizo un corte fino del corcho y

las examino con la ayuda de un microscopio primitivo, presentando las

Laminas dibujadas a la Real Sociedad de Londres.

Libro Micrographia

publicado en 1665.

Hooke ideó un

microscopio

compuesto y un

sistema de

iluminación.

Page 4: La Célula Procariota
Page 5: La Célula Procariota
Page 6: La Célula Procariota

Existen dos clases generales de celulas: las Procariotas y las Eucariotas,

la evolución de las celulas procariotas precede a las eucariotas en dos mil

millones de años.

Page 7: La Célula Procariota

Específicamente las células Eucariotas contienen compartimientos limitados por

Membranas donde se cumple una actividad metabólica especifica y lo más

importante es la presencia de un núcleo, que es un compartimiento limitado por

una membrana donde reside el ADN.

En contraste las células

Procariotas no tienen

compartimientos

delimitados

por membranas, las

Procariotas se podrían

pensar como un saco

de enzimas

donde tienen lugar las

reacciones celulares.

Page 8: La Célula Procariota

Se observo que ambos tipos de celulas contienen un gran compartimiento

celular conocido como Citoplasma, el cual esta rodeado por una membrana,

pero también notaron compartimientos membranosos adicionales dentro del

citoplasma Eucariota y la falta de los mismos en los Procariotas. En el siglo 20

los biólogos refinaron su conocimientos de los compartimientos de las Células

Eucariotas, cada uno es una clase de órgano subcelular, de hecho cada

compartimento es llamado Organelo, albergando todos los elementos necesarios

para realizar una función metabólica especifica.

Cada organelo opera eficientemente

porque tiene todos los requerimientos

biomoleculares para realizar un trabajo

particular. En contraste, las Procariotas

carecen de organelos membranosos y

el típico citoesqueleto Eucariota, Por

consiguiente su metabolismo es

ineficiente.

Page 9: La Célula Procariota

Todo lo contrario, las células Procariotas realizan sus funciones biológicas con bellísima eficiencia. Compartimientos Funcionales. La idea es similar a los departamentos que les faltan las paredes, pero que aun podemos identificar un lugar para preparar la comida en la que se puede ver una cocina y otro para dormir, donde hay una cama y estos objetos no pueden desplazarse en forma aleatoria.

Page 10: La Célula Procariota

LOS SISTEMAS MODERNOS DE CLASIFICACIÓN (Whittaker)

Reino Monera (Procarionte): Están las Bacterias (Esquizofitas) y las

Algas Verde - Azuladas (Cianofitas).

Reino Protista (Eucariota): Constituido por las Algas y los

Protozoarios.

R. Fungi (Hongos)(Eucariota): Están los Ascomicetos, Cigomicetos,

Basidiomicetos.

Reino Plantae (Eucariota): Están las Eriophytas, Tracheophyta.

Reino Animalia (Eucariota): Están los Parazoos y los Eutazoos.

Organismos vivos sin

ubicación taxonómica: Virus, virioides, ricketsias, Micoplasma.

Page 11: La Célula Procariota

CLASIFICACIÓN FILOGENÉTICA BACTERIANA

Taxonomía: (taxis=orden, rango). Es la rama de la biología que se ocupa de la clasificación de los seres vivos.

DENOMINACIÓN DE ESPECIES

De acuerdo con la convención que establece el “Sistema Binomial” de

nomenclatura, cada especie biológica lleva un nombre latinizado que consiste

en dos palabras: la primera indica en grupo (género) a que pertenece la especie,

y la segunda palabra indica la especie de ese género: por ejemplo, Escherichia

coli, Escherichia (género) y coli (especie).

LOS GRUPOS DE CLASIFICACIÓN

El sistema de clasificación es jerárquico. Consiste en una serie de grupos

más pequeños que se organizan en grupos más grandes.

Especie / Género / Familia / Orden / Clase / Fílum / Reino

Page 12: La Célula Procariota

EL SISTEMA DE LOS TRES DOMINIOS

En 1990 Carl Woese, planteó la necesidad de definir un nuevo taxón, el Dominio, que estaría por encima del Reino y reagrupar a los seres vivos en 3 grandes dominios (que englobarían a los clásicos reinos).

El Sistema de los Tres Dominios, propone que una célula antepasada común (progenote) dio lugar a tres tipos diferente de célula, cada una representaría un dominio. Los tres dominios son: Archaea (Archaebacterias), Bacteria (Eubacterias), y Eukarya (Eucariotas).

ARCHAEA (ARCHAEBACTERIA): Son células Procariotas, tienen rRNA y regiones del tRNA claramente diferentes de Bacterias y Eukarya. Viven a menudo en ambientes extremos e incluyen a los metanógenos, halófilos extremos, y termoacidófilos.

BACTERIA (EUBACTERIA): Son células Procariotas. Incluyen a mycoplasmas, cyanobacteria, bacterias Gram-positivas, y bacterias Gram-negativas.

EUKARYA (EUKARYOTA): son Eucariotas. No son sensibles a los antibióticos antibacterianos tradicionales y tienen rRNA y regiones del tRNA claramente diferente de Bacterias y Archaea. Incluyen a protistas, hongos, plantas, y animales.

Page 13: La Célula Procariota
Page 14: La Célula Procariota

CLASIFICACIÓN DE LAS BACTERIAS: BERGEY'S MANUAL

"En su segunda edición, el Bergey's Manual of Systematic Bacteriology está

organizado filogenéticamente para reflejar el estado actual de la taxonomía de

los procariotas". Y así, en su última revisión (Enero 2001) presenta la siguiente

organización del Dominio Eubacteria:

Page 15: La Célula Procariota
Page 16: La Célula Procariota

DOMINIO EUBACTERIA

Filum Aquificae (5 géneros)Filum Thermotogae (5 géneros)Filum Thermodesulfobacteria (1 género) Filum "Deinococcus-Thermus" (3géneros). Filum Chrysiogenetes (1 género) Filum Chloroflexi (5 géneros) Filum Thermomicrobia (1 género) Filum Nitrospira (4 géneros) Filum Deferribacteres (5 géneros) Filum Cyanobacteria (57 géneros) Filum Chlorobi (5 géneros)Filum Proteobacteria (441 géneros)

Clase AlphaproteobacteriaClase BetaproteobacteriaClase GammaproteobacteriaClase DeltaproteobacteriaClase Epsilonproteobacteria

Filum Firmicutes (184 géneros)

Clase ClostridiaClase MollicutesClase Bacilli

Filum Actinobacteria (139 géneros) Filum Planctomycetes (4 géneros)Filum Chlamydiae (5 géneros)Filum Spirochaetes (13 géneros)Filum Fibrobacteres (1 género) Filum Acidobacteria (3 géneros) Filum Bacteroidetes (53 géneros)

Clase BacteroidetesClase FlavobacteriaClase Sphingobacteria

Filum Fusobacteria (7 géneros) Filum Verrucomicrobia (3 géneros) Filum Dictyoglomus (1 género)

Page 17: La Célula Procariota

¿QUÉ ES UNA BACTERIA?

Una bacteria es un microorganismo constituido por una sola célula. Es tan pequeña que sólo podemos verla a través del microscopio. Al igual que nosotros, necesita del alimento para vivir y multiplicarse. En condiciones adecuadas puede dividirse en dos cada 20 minutos; esto produce más de mil millones de bacterias al cabo de 10 horas, a partir de una sola célula. Entre los factores que afectan el crecimiento de una bacteria, los más importantes son la temperatura, la acidez o pH, la disponibilidad de agua, el oxígeno y el tiempo.

BACTERIA (DEL GRIEGO, BAKTERIA = BASTÓN, VARA PEQUEÑA).

Por lo general, más pequeño que el de las

células eucarióticas pero existen bacterias

Gigantes (>0,5 mm); Enanas (<0,1 micra);

Un tamaño “típico”: 0,5 x 3 micras

Page 18: La Célula Procariota
Page 19: La Célula Procariota

ESTRUCTURA BACTERIANA

Page 20: La Célula Procariota
Page 21: La Célula Procariota
Page 22: La Célula Procariota

ESTRUCTURA EXTERNA

Page 23: La Célula Procariota

FLAGELOS

Son sumamente delgados, que sobresalen a través de la pared celular, y se

originan, al parecer, en una formación granular situada inmediatamente

debajo de dicha pared, en el citoplasma. La Flagelina, Los organismos Gram

Positivos tienen 2 anillos, uno en la pared de la célula y uno en la membrana de

La célula. Los Gram negativos tienen 4 anillos, 2 en la pared de la célula y 2 en la

membrana de la célula. Los Flagelos se aprecian al microscópio y presentan una

Composición antigénica y química diferente al resto de la célula, por lo que

provocan producción de Anticuerpos específicos.

Page 24: La Célula Procariota
Page 25: La Célula Procariota
Page 26: La Célula Procariota

FIMBRIAS (PILI)

Muchas bacterias tienen apéndices filamentosos diferentes de los flagelos. Estos apéndices, denominados fimbrias (pelos), son más pequeños, más cortos y más numerosos que los flagelos, y no forman ondulaciones regulares como hacen éstos. Las fimbrias sólo pueden verse por microscopia electrónica. Se encuentran tanto en las bacterias que no se mueven como en las móviles, y por consiguiente, no tienen función motora. Se supone que estos pelos sirven como órganos de adherencia.

Pili de un Bacilo G (-)

Page 27: La Célula Procariota

CÁPSULA

Algunas células bacterianas están rodeadas de una sustancia viscosa que forma una capa que cubre o envuelve la célula y está normalmente compuesta de polisacárido, polipéptido, o ambos. Esta formación se denomina Glicocálix, cápsula o cubierta mucilaginosa. No todas las especies de bacterias producen cápsulas.

Funciones de la Cápsula:

(a). Adherirse a las

superficies para formar

colonias.

(b). Antifagocitica.

(c). Antigénica.

(d). Proteje al organismo de

La deshidratación.

Page 28: La Célula Procariota

MORFOLOGÍA

Page 29: La Célula Procariota

COCOS

Micrococos, aparecen aislados y

dispersos tras la división celular.

Diplococos, aparecen por pares.

Estreptococos, tienden a unirse

formando cadenas. Estafilococos,

aparecen en grupos irregulares, a

veces de gran tamaño

Page 30: La Célula Procariota

BACILOS

Grandes variaciones morfológicas: fusiformes, estreptobacilos, cocobacilos

Espirales (Treponemas, Borrelias )

Page 31: La Célula Procariota

Spiroqueta en una lamina de sangre

Page 32: La Célula Procariota

FISIOLOGÍA BACTERIANA

Page 33: La Célula Procariota

Las llamadas Mesófilas tienen una temperatura óptima de

crecimiento entre los 30 °C y 42 °C.

Las Termófilas, prefieren el calor y crecen mejor entre los

55 °C y 65 °C.

Las Psicrófilas prefieren el frío y su temperatura para

reproducirse está entre los 10 °C y 20 °C.

Las bacterias Mesófilas detienen su crecimiento alrededor de los 8°C, temperatura que no las mata; tampoco mueren a la temperatura de congelación de los alimentos Estas bacterias tienen la propiedad de volver a multiplicarse cuando regresan a temperaturas favorables. Por encima de los 60°C comienzan a alterarse; si la temperatura llega a 100°C, y se mantiene por algunos minutos, sólo sobreviven las denominadas esporas.

Acidez / pH:

La mayoría de los alimentos tiene un pH de alrededor de 7 o levemente ácido; aunque algunos cítricos pueden llegar a valores mucho más bajos. Un alto porcentaje de las bacterias (patógenas) que causan enfermedades crecen en un medio con un pH de alrededor de 7. Un alimento con un pH menor a 4,5 se considera, generalmente, libre de bacterias patógenas pero no necesariamente libre de hongos

LA TEMPERATURA

Page 34: La Célula Procariota

EL OXÍGENO

Requerido para la respiración aerobia y para la producción de energía. Los Organismos pueden clasificarse de acuerdo a sus requerimientos respiratorios:

Aerobios Obligados: La Glucosa es completamente oxidada a CO2 y H2O requiriendo 21% de oxígeno.

Microaerófilos: El proceso metabólico es similar al de los aerobios obligados, pero requiere 1-15% de oxígeno.

Anaerobio Facultativo: En presencia de O2, la glucosa es completamente oxidada a CO2 y H2O como en los aerobios obligados. En ausencia de O2, la glucosa sufre glicólisis a ácido pirúvico, entonces tiene lugar la fermentación.

Anaerobio Obligado: La Glucosa sufre glicolisis a ácido pirúvico, entonces tiene lugar la fermentación o respiración anaerobia en la que el oxígeno no es el aceptor final de electrones. Algunos organismos usan nitrato, sulfato o carbonato

Page 35: La Célula Procariota
Page 36: La Célula Procariota

DISPONIBILIDAD DE AGUA: Las bacterias están formadas por un 80% de agua y

necesitan de ella para vivir, pero no les sirve si está en estado sólido (hielo) o

gaseoso. Tampoco si el agua está combinada con sólidos, por ejemplo sal o

azúcar. Es por esta razón que algunos alimentos son estables y no se alteran

rápidamente y otros se descomponen a los pocos días.

EL TIEMPO: Posiblemente el tiempo sea el factor más importante para la

reproducción de las bacterias. Éstas pueden crecer a valores peligrosos en las

condiciones adecuadas, pero sólo si disponen del tiempo suficiente.

CARBONO: Requerido para la construcción de todas las moléculas orgánicas.

Los autótrofos usan carbono inorgánico (CO2) como fuente de carbono, mientras

los heterótrofos usan carbono orgánico.

NITRÓGENO: Obtenido de un fuente inorgánica, por ej. Nitrógeno gas (N2), Nitrato

(NO3), Nitrito (NO2), Amoníaco (NH3), o de fuente orgánica, por ej. Proteínas,

descomposición de aminoácidos. Muchos organismos usan gas nitrógeno para

producir amoníaco.

OTROS NUTRIENTES: Requeridos en pequeñas cantidades son Hierro, Azufre,

Fósforo y Minerales, etc.

Page 37: La Célula Procariota

CRECIMIENTO BACTERIANO

La división de la célula bacteriana se produce por un proceso asexual llamado Fisión Binaria, y el tiempo que tarda en dividirse (duplicar) se llama tiempo de Generación. El crecimiento de un cultivo se produce en 4 fases en el tiempo, tal y como se ve en el gráfico siguiente.

A. FASE DE LATENCIA: Los organismos están adaptándose al ambiente (poca o ninguna división). Están sintetizando ADN, ribosomas y enzimas por descomposición de nutrientes, para ser usados posteriormente para el crecimiento.

B. FASE DE CRECIMIENTO EXPONENCIAL (Logarítmica): La división se produce en una proporción constante (tiempo de Generación) pero varía con las distintas especies, con la temperatura y los medios. En este momento las células son muy susceptibles a los inhibidores.

C. FASE ESTACIONARIA: La muerte y la división de los organismos están en equilibrio. La muerte es debida a la reducción de nutrientes, cambios de pH, desechos tóxicos y reducción de oxígeno. Las células son más pequeñas y tienen menos ribosomas. En algunos casos las células no muere pero no están

multiplicándose.

Page 38: La Célula Procariota

D. FASE DE MUERTE O DECLINACIÓN: La población está muriendo en forma geométrica así hay más muertes que aparición de nuevas células. Las muertes son debidas a los factores de la fase estacionaria además de las enzimas líticas que se liberan cuando se lisan las bacterias.

CRECIMIENTO EXPONENCIAL

Page 39: La Célula Procariota

FISIÓN BINARIA

Crecimiento individual continuo,

hasta que la célula se divide en

dos células hijas, exactamente

iguales

GENÉTICA BACTERIANA

Page 40: La Célula Procariota

Fisión Binaria del Staphylococcus aureus

Page 41: La Célula Procariota
Page 42: La Célula Procariota

LA CONJUGACIÓN

Page 43: La Célula Procariota

Por medio de un bacteriófago

(virus bacteriolítico)

LA TRANSDUCCIÓN

Page 44: La Célula Procariota

LA TRANSFORMACIÓN

es un proceso de transferencia de genes donde la célula bacteriana capta Dnadesnudo a partir del medio, lo incorpora y expresa

Page 45: La Célula Procariota

¿QUÉ ES UNA ENDOSPORA O ESPORA BACTERIANA?

Son formas de resistencia que desarrollan ciertos bacilos y cocos Gram positivos. Entre los bacilos formadores de endosporas se encuentran las especies Bacillus (aeróbicos), Sporolactobacillus (microaerófilos), Clostridium (anaeróbicos), Desulfotomaculum (anaeróbico reductor de sulfato), Sporohalobacter (anaeróbico halófilo) y Anaerobacter (anaeróbico fijador de nitrógeno), mientras que los cocos son de la especie Sporosarcina (aeróbicos).

Page 46: La Célula Procariota
Page 47: La Célula Procariota
Page 48: La Célula Procariota

RESISTENCIA DE LAS ENDOSPORAS

Las esporas bacterianas comienzan a formarse durante la fase estacionaria de

crecimiento, pueden sobrevivir en ambientes adversos durante meses o años,

Y una vez que las condiciones de crecimiento sean apropiadas pueden germinar

y desarrollarse para formar células vegetativas, son altamente resistentes a la

desecación, congelación, radiación y a la acción de ciertas sustancias químicas.

El bajo contenido de agua retarda o altera las reacciones químicas que afectan alDNA.

El DNA de la espora se encuentra unido a unas proteínas denominadas alfa /beta-SASP (small acid-soluble proteins) que disminuyen el daño térmico del DNA evitando la depurinización y cambian la reactividad fotoquímica del DNAFrente al UV.

Las esporas presentan una elevada concentración de ácido dipicolínico que Permite complejar grandes cantidades de calcio iónico (Ca2+). El ácido Dipicolínico es una sustancia característica de la espora pero no se encuentra en la célula vegetativa.

Page 49: La Célula Procariota
Page 50: La Célula Procariota