Top Banner
1 Forschungszentrum Weihenstephan f ü r Br a u- un d L eb en smi t t el qu al i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler 1 Process and plant for the CONTINUOUS FERMENTATION of fluids Konrad Müller-Auffermann Fritz Jacob EBC-Symposium 2012 „From Chiller to Filler“
50
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: L4 K M Auffermann

1

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

1

Process and plant for the

CONTINUOUS

FERMENTATION

of fluids

Konrad Müller-Auffermann

Fritz Jacob

EBC-Symposium 2012 „From Chiller to Filler“

Page 2: L4 K M Auffermann

2

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

2

Introduction Continuous Fermentation

Improved plant performance, due to the reduction of processing times

Increased space-time yield

A resulting reduction of the cost of capital

Less space consumption due to smaller plants

Reduced energy consumption, especially by avoiding costly energy peaks

Reduced costs for cleaning, detergents, disinfection and amount of wastewater

An increase in labor productivity

Reduced personal costs

Less losses

Improved fermentation gas (e.g. CO2) recovery

Less cleaning intervals

Lower equipment costs

Achievement of high standards of hygiene in closed systems

Qualitative benefits

Achievement of a constant quality of the final product

+ Advantages of continuous (fermentation) processes +

Page 3: L4 K M Auffermann

3

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

3

http://einestages.spiegel.de/ http://farm5.static.flickr.com

http://www.windkraft-journal.de/wp-

content/uploads/2012/03/BASF_Kuantan_Malaysia.jpg

http://www.n-tv.de/img/70/705696/O_1000_680_680_krones.jpg

Introduction Continuous Fermentation

Page 4: L4 K M Auffermann

4

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

4

Introduction Continuous Fermentation

Lack of flexibility with respect to sales fluctuations

Each production line can only produce one type of product

Increased costs for proper organization of work (24-hour operation)

Better qualified personnel is needed

Higher expenses for the preservation of infections

For process stability, a consistent quality of the raw materials is necessary

Increased risk of mutations of organisms due to aging and long-term stress

Significant changes of the product character

- Disadvantages of continuous (fermentation) processes -

Page 5: L4 K M Auffermann

5

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

5

Introduction Continuous Fermentation

R&D effort in continuous fermentation processes

Immobilized cell systems

Free cell systems R&

D e

ffo

rts

More than 150 different relevant systems where found & studied…

Page 6: L4 K M Auffermann

6

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

6

Coutts (1959): Dominon Breweries (New Zealand), New Zealand

Breweries Ltd. (New Zealand), Canadian Breweries Ltd.

(Canada), San Miguel Brewery Co. (Manila)

Fort Woth Fermenter (1965): Carling Brewing Company (USA)

Bishop Process (1970): Watney Mann (England)

APV Tower Fermenter (1960): Cape Hill Brewery (England),

Brewery in Burton upon Trent (England) , Brewery in Runcorn

(England), Brewery in Warrington (England), Oranjeboom

Brewery (Netherlands), Cerevecera del Norte (Spain)

Gotha Fermentation System (1973): Brewery Gotha (East

Germany)

Continuous fermentation processes in praxis

S

F

F

Y

S

G

S

F

Introduction Continuous Fermentation

Page 7: L4 K M Auffermann

7

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

7

Technology offers significant advantages, which will gain importance in

the near future.

In praxis only very view systems with free cells were tested (40-50 years

ago!)

Nearly all of them failed.

Due to those failures and the potential higher efficiency the research and

development has focused on systems with immobilized cell reactors.

Conclusion

Introduction Continuous Fermentation

Page 8: L4 K M Auffermann

8

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

8

•Does further research in this field

make sense?

•Why did systems fail in the past?

•Which systems should be preferred;

Immobilized or Free-Cell Systems?

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t

Concept Continuous Fermentation

Page 9: L4 K M Auffermann

9

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

9

1. Yeast is supposed to stay in the systems for a long time period

Main resons for the failure of existing systems

Permanent stress Aging Mutationes

= Negative influence

on the product

2. Infections

3. Complexity of the systems

Higher affords for the usage and maintenance

Concept Continuous Fermentation

Page 10: L4 K M Auffermann

10

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

10

Demands

www.heyokay.com/images

1. Yeast should be treated nearly identically to classical batch process

2. System has to be safe against infections

3. Simple construction and usage

4. Integable into existing plant

5. Multifunctionality

6. Usage of existing equipment if possible

Economic and ecological advantages

High constant product quality

Concept Continuous Fermentation

Page 11: L4 K M Auffermann

11

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

11

Key to sucess: Properties of the yeasts

Yeasts determine the product character!

Intentionally adapted to batch process since centuries

Significant gain of knowledge within the past 40-50 years!

Influence: •Temperature

•Pressure

•Substrate properties

•Aeration

•Cell amount

•Age http://www.bier.de

http://truthfall.com

Concept Continuous Fermentation

Page 12: L4 K M Auffermann

12

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

12

Concept Continuous Fermentation

www.eurovolvox.org/Resources/yeast.pn

g

Free cell systems Immobilized cell systems

F

S Y

S

G

F

+ Yeast cycles can be reproduced

+ Aged yeast can be discharged

+ Lower risk of permanent infections

+ Small reactors

+ Less produced biomass

+ Uncomplicated systems

= Higher Efficiency?!?

- Larger reactors

- More produced biomass

- Rather complicated systems

= Lower Efficiency?!?

- Long term stress for yeasts

- Yeast ages in system

- Higher risk of yeast mutations

- Higher risk of permanent infection

www.braukultur-franken.de/kompendium

Page 13: L4 K M Auffermann

13

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

13

Stress situations for yeasts in the brewery

Oxidative stress Anaerobic shift Cold shock Cold shock

Osmotic stress Oxidative & osmotic stress Ethanol & nutrient stress Ethanol stress

PROPAGATION FERMENTATION MATURATION

Time

Number of cells Oxygen conc.

Extract conc. Temperature Ethanol conc.

Concept Continuous Fermentation

Page 14: L4 K M Auffermann

14

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

14

www.langersamstag.ch/media/bierbrauer-susch.jpg

Brewers: Traditional & hard to convince…

Concept Continuous Fermentation

Page 15: L4 K M Auffermann

15

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

15

Systemes with free cells!!!

http://amrita.vlab.co.in

http://www.rockefeller.edu http://www.rockefeller.edu http://www.rockefeller.edu http://www.rockefeller.edu

Concept Continuous Fermentation

Page 16: L4 K M Auffermann

16

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

16

Conclusion

Many systems are very complex

Often many mechanical parts are being used

Difficult clean ability higher risk of infections

Commissioning times are often long

Nearly no system focuses on yeast demands

Yeasts are supposed to stay in systems for long

time periods

Often no possibility to remove yeasts and

particles regularly

Concept Continuous Fermentation

Patent- & literature research: Free cell systems

Page 17: L4 K M Auffermann

17

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

17

Concept Continuous Fermentation

• Usage of state of art equipment!

• Simple installation of a central conduction pipe

through which the fermentate can be charged

or discharged

• Other installations for intake/outtake in the top

part of the tank are foreseen

• Further equipment like a cooling system for the

conduction pipe may be integrated

• Particles and yeasts can be discharged at the

tank bottom

• The system is operated continuously or at least

semi-continuously

Conception: Free cell system

Page 18: L4 K M Auffermann

18

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

18

Concept Continuous Fermentation

Page 19: L4 K M Auffermann

19

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

19

0.00

2.92

5.84

8.76

11.68

0

20

40

60

80

100

0 24 48 72 96

Ex

tra

kt [°P

]

Ex

tra

kt [%

]

Advantages Continuous Fermentation

Fermentation progress & resulting yeast stress

Page 20: L4 K M Auffermann

20

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

20

Advantages of this concept

• The yeast cycles, as they exist in classical

batch fermentations can be simulated

• Particles (e.g. trub, yeasts) as well as gases

can be discharged and added to the process

variable

• Pressure and temperature gradients can be

adjusted precisely.

• Existing plants may partly be used by

modification

• The function, commissioning, as well as the

cleaning and maintenance are fairly easy

--? Economic advantages ?--

Advantages Continuous Fermentation

Page 21: L4 K M Auffermann

21

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

21

In a classical batch fermentation the filling time and the discharge times should

each not be longer than 10% (referring to the fermentation)

(Example:5 days main fermentation =120h: Filling/discharge time max =12h each)

Simplified calculation

Longer filling and discharge cycles would lead to the following

disadvantages

(Independent of batch size!)

•Due to the longer supply of amino acids more Diacetyl will be produced

•The oxygen supply might lead to oxidations

•The yeast cycles may be disrupted

•The content can not be cooled fast enough

Advantages Continuous Fermentation

Page 22: L4 K M Auffermann

22

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

22

Filling Fermentation Discharge CIP Occupation time Necessary tanks Tanks/day Tank size

12 h 5 days 12 h 4 h 148,0 h 14 tanks 2 50% daily production

9,6 h 4 days 9,6 h 3,2 h 118,4 h 14 tanks 2,5 40% daily production

7,2 h 3 days 7,2 h 2,4 h 88,8 h 14 tanks 3,3 30% daily production

4,8 h 2 days 4,8 h 1,6 h 59,2 h 14 tanks 5 20% daily production

2,4 h 1 day 2,4 h 0,8 h 29,6 h 14 tanks 10 10% daily production

Filling Fermentation Discharge CIP Occupation time Necessary tanks Tanks/day Tank size

5 days 120 h 5+1 Tanks 100% daily production

4 days 96 h 4+1 Tanks 100% daily production

3 days 72 h 3 +1 Tanks 100% daily production

2 days 48 h 3+1 Tanks 66% daily production

1 day 24 h 3+1 Tanks 33% daily production

Classical Batch Fermentation

Simplified calculation

Continuous Fermentation

Advantages Continuous Fermentation

Page 23: L4 K M Auffermann

23

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

23

Costs of a modern tank cleaning with fresh substances

Detergent Consumption Price/Unit [Euro] Costs[Euro]

Water[m3] 5,6 3,83 21,47

Caustic [l] 37 0,07 3,07

Acid [l] 6,9 0,81 5,58

Desinfection [l] 1,3 1,76 2,29

Total costs [Euro] 32,41

Heating energy Consumption Price/Unit [Cent] Costs [Euro]

1. Step 45°C [kWh] 85,2 1,55 1,32

2. Step 65°C [kWh] 221,6 1,55 3,42

Total costs [Euro] 4,74

Approx. Costs for the cleaning of one tank 37,15 Euro

Advantages Continuous Fermentation

Page 24: L4 K M Auffermann

24

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

24

Fermentation time Tank size Costs per tank cleaning Tanks/day CIP costs/day 300 days production/a

5 days 100% 37,15 Euro 2 74,3 Euro 22.290 Euro/a

4 days 80% 29,72 Euro 2,5 74,3 Euro 22.290 Euro/a

3 days 60% 22,29 Euro 3,3 74,3 Euro 22.290 Euro/a

2 days 40% 14,86 Euro 5 74,3 Euro 22.290 Euro/a

1 day 20% 7,43 Euro 10 74,3 Euro 22.290 Euro/a

Fermentation time Tank size Costs per tank cleaning Tanks/day CIP costs/day 365 days production/a

5 days 100% 37,15 Euro 0,16 6,19 Euro 2.229 Euro/a

4 days 100% 37,15 Euro 0,13 4,95 Euro 1.783 Euro/a

3 days 100% 37,15 Euro 0,1 3,72 Euro 1.337 Euro/a

2 days 66% 24,52 Euro 0,1 2,45 Euro 883 Euro/a

1 day 33% 12,25 Euro 0,1 1,23 Euro 441 Euro/a

Simplified calculation

Classical Batch Fermentation

Continuous Fermentation

Advantages Continuous Fermentation

Page 25: L4 K M Auffermann

25

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

25

Plant concept with focus on simplicity

with focus on brewery yeast demands

Technological advantages

• Low stress for yeasts

• Fractioniszation of particles, gas and organisms possible

• Yeast can live through the same cycles like in batch process

Economical and ecological advantages

• Less tanks = less needed space, lower investment costs, less

equipment- , control-, and cleaning efforts necessary

• Less waste / consumption (beer, water, gas, CIP, yeast, energy,

cooling…)

• Constant product quality

Conclusion

Advantages Continuous Fermentation

Page 26: L4 K M Auffermann

26

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

26

http://t1.ftcdn.net/jpg/00/40/70/26/400

But: not everything can be calculated or prdicted…

Open questiones:

For which drinks is such a technology suitable?

Can realistic conditions be achieved in small scale?

How should experiments be conducted in order to allow scale up?

What are the ideal parameters for a fast fermentation?

How does standard yeast react?

How can the physiological condition of the yeast be measured simple?

Can a small scale plant be built and be run under similar conditions?

How does such a product taste like?

How stable can such a plant be run?

How does the system react to infections?

How can the performance be optimized?

R & D Continuous Fermentation

Page 27: L4 K M Auffermann

27

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

27

In total 278 !!!

different fermented beverages where investigated

152 Drinks where made out of cereals or pseudo-cereals

56 Drinks where milk-based

17 Drinks where fruit-based

53 beverages where made out of different ingredients

Name of

beverage

Raw material

& additives Origin

Fermentation

time

Fermentation

temp. MO Literature

1. Investigation in order to evaluate the process suitability

R & D Continuous Fermentation

Page 28: L4 K M Auffermann

28

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

28

R & D Continuous Fermentation

Page 29: L4 K M Auffermann

29

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

29

1. Raw materials

2. Sales volume

3. Production period

4. Fermentation time

5. Production site

6. Sales area / Market

Assessment of 49 types of beverages

25 35

Buttermilk

Kefir

Lassi

Top fermenting beer

Koumiss

Sorghum beer

Bottom fermenting beer

Berliner Weisse

Yakult

Bionade

Gose

Pulque

Filmjölk

Bios

Amasi

Acidophilis milk

Mead

Bread drinks

Kombucha

Cider, cider, cider

Sake / Rice wine

≥ 40 P = good

30-39 P = suitable

20-29 P = not appropriate

< 20 P = not suitable

80%

20%

45% 55%

27%

73%

14%

86%

Milk-

based

Cereal-

based

Different

Ingredients

Fruit-

based

= not suitable

R & D Continuous Fermentation

Page 30: L4 K M Auffermann

30

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

30

EBC

fermenter

Lietz

fermenter

Laboratory

fermenter

Weinfurter.

fermenter

2. Can small scale fermentations reflect realistic situations?

3. How should they be done in order to allow a scale up?

R & D Continuous Fermentation

Page 31: L4 K M Auffermann

31

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

31

2. Can small scale fermentations reflect realistic situations?

3. How should they be done in order to allow a scale up?

12

.75

8.6

3

2.9

4

12

.75

8.3

8

2.5

5

12

.75

9.7

7

3.7

8

12

.75

9.3

7

2.7

9

0

2

4

6

8

10

12

14

0 3 7

Ex

tra

ct

[G/V

/%]

Fermentation day Kleingärtank KMA

Kleingärtank KMA gerührt

EBC-Gärsäule

EBC-Gärsäule gerührt

R & D Continuous Fermentation

Page 32: L4 K M Auffermann

32

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

32

R & D Continuous Fermentation

2. Can small scale fermentations reflect realistic situations?

3. How should they be done in order to allow a scale up?

Page 33: L4 K M Auffermann

33

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

33

Richtwerte Normwert W E1 E 2 E 3 E4 E 5 E 6 G1 P 1 P 2

FAN [mg/l] 200 - 240 208 153,8 101,7 42,9 89,1 23,2 49,2 170,5 133,2 89,8

Summe AS

[mg/l] 1600-2000 1694 1249 826,3 348,5 723,5 188,7 399,4 1384,7 1082,3 729,2

pH- Wert 5,2 5,2 5,07 5,28 5,53 5,71 4,77 5,5 5,33 5,26 5,75

Ges. Lösl. N

[mg/l] 900 - 1100 1056 1303 1071 450 721 875 544 980 1302 651

noch koagl. N

[mg/l] < 25 21 34 43 15 57 36 19 9 53 64

Scheinbarer

Extrakt [G/V%] 12 12,18 11,98 12,08 12,1 12,26 12,17 12,18 12,53 12,58 12,52

Farbe 5 - 15 12 13 15 19 25 77,5 19 55 31,3 11,25

TBZ < 45 29,5 119,5 116,8 283 66,6 1239 94,9 82,7 280 47,5

Fructose [g/l] 1-2 1,52 1,9 1,68 0,71 0,1 0,51 0,1 0,5 0,49 0,02

Glucose [g/l] 10-12 10,86 13,09 12,41 8,31 2 10 2 3,51 3,03 1,5

Saccharose [g/l] 2-4 3,01 3,08 2,55 0,88 1,5 0,25 1 2,5 0,41 1,7

Maltose [g/l] 56-80 70,61 61,04 66,19 57,45 4,92 12,3 18,03 18,87 16,4 5,73

Maltotriose [g/l] 14-17 15 13,75 18,58 22,89 4,02 2,5 6 7,51 6 5,01

Tests in order to check different substrates for their suitability

2. Can small scale fermentations reflect realistic situations?

3. How should they be done in order to allow a scale up?

R & D Continuous Fermentation

Page 34: L4 K M Auffermann

34

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

34

Fermentations under the variations of

• Cell amount (4 different)

• Aeration (aerated/not aerated)

• Temperature (3 different)

• Pressure (3 different)

Additional tests

• Alkohol stress

• Pressure stress

• High-Gravity-Stress

• Pressure variationes

4.& 5. Reactions to different situations

3 usages,

different

steams

Tests for over one year!!!

Analyses

Extrakt

pH-Value

Alkohol

FAN (alleAA!)

VDK

Biomass/Cell count

GCs

R & D Continuous Fermentation

Page 35: L4 K M Auffermann

35

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

35

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

R & D Continuous Fermentation

4.& 5. Reactions to different situations

Page 36: L4 K M Auffermann

36

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

36

6. Simple method in order to determin the yeast vitality

100

71,11

59,79

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Time [min]

Pro

du

ce

d C

O2

[%

]

Reference/Unstressed 1%mas Ethanol stressed 10%mas Ethanol stressed

Via CO2-built up Via particle sice analysis

R & D Continuous Fermentation

Page 37: L4 K M Auffermann

37

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

37

Technology: Possibilities in small scale

R & D Continuous Fermentation

Page 38: L4 K M Auffermann

38

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

38

R & D Continuous Fermentation

Technology: Possibilities in small scale

Page 39: L4 K M Auffermann

39

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

39

R & D Continuous Fermentation

Technology: Possibilities in small scale

Page 40: L4 K M Auffermann

40

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

40

R & D Continuous Fermentation

Technology: Possibilities in small scale

Page 41: L4 K M Auffermann

41

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

41

R & D Continuous Fermentation

Page 42: L4 K M Auffermann

42

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

42

R & D Continuous Fermentation

Page 43: L4 K M Auffermann

43

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

43

R & D Continuous Fermentation

Page 44: L4 K M Auffermann

44

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

44

R & D Continuous Fermentation

Page 45: L4 K M Auffermann

45

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

45

R & D Continuous Fermentation

Page 46: L4 K M Auffermann

46

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

46

1-Tank Process (6 days)

• No bigger process problems

• Currency tests sucessfull

• Only small changes/simplifications necessary

3-Tank Process (33 days)

• No process problems

• Extract, Alkohol, pH-Value relatively constant

• Taste: constant good

• Contamination with wort bacteria: No long term problem!

4-Tank Process (35 days)

• No process problems

• Extract, Alkohol, pH-Value relatively constant

• Taste: constant good

• Contamination with different bacteria: No long term problem!

Experiments & Results

10 filling, discharging and CIP

processes per tank less!!!

= totally 30-40x less!!!

R & D Continuous Fermentation

Page 47: L4 K M Auffermann

47

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

47

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Extr

akt [°

P]

B-T1

T1

T1-T2

T2

T2-T3

T3

T3-T4

T4

Results

R & D Continuous Fermentation

Page 48: L4 K M Auffermann

48

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

48

Page 49: L4 K M Auffermann

49

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

49

Thank you for your attention!

Dipl.- Ing. Konrad Müller-Auffermann

Alte Akademie 3

85354 Freising-Weihenstephan

Telefon: +49 (0) 8161 / 71-3526

Telefax: +49 (0) 8161 / 71-4181

E-Mail: [email protected]

www.blq-weihenstephan.de

Page 50: L4 K M Auffermann

50

Forschungszentrum Weihenstephan

f ü r B r a u- u n d L e b e n s m i t t e l q u a l i t ä t Konrad Müller-Auffermann EBC 2012 From Chiller to Filler

50

Introduction Continuous Fermentation

Future trends in the beverage industry

Transparency

Sustainability

Energy efficiency

Individuality

Funktionality

Economy // Price

1.392 1.424 1.443

1.479

1.552

1.603

1.696

1.787 1.819 1.833

1.863

1.925

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Weltbierausstoß in Mrd. hl Continuous fermentation