Top Banner
EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 1 EE247 Lecture 14 • Administ rative issues Midterm exam postponed to Thurs. Nov. 5th o You can only bring one 8x11 paper with your own written notes (please do not photocopy) o No books, cla ss or any othe r kind of handouts/notes, calculators, computers, PDA, cell phones.... o Midterm includes material co vered to end of lecture 14 EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 2 EE247 Lecture 14 • D/ A c onverters  D/A conve rters: Va rious Arc hitecture s (contin ued) • Cha rge scalin g DACs (continued ) • R- 2R type DACs Cur ren t base d DACs  Stat ic per formance o f D/As Component matchi ng Syst emati c & rando m errors  Practica l aspec ts of current- switched DACs  Segmen ted current- switched DACs  DAC dyn amic no n-id eali ties  DAC des ign co nsiderations
34

L14_2_f09

Apr 07, 2018

Download

Documents

Hari Babu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 1/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 1

EE247

Lecture 14• Administrative issues

Midterm exam postponed to Thurs. Nov. 5tho You can only bring one 8x11 paper with your

own written notes (please do not photocopy)o No books, class or any other kind of

handouts/notes, calculators, computers, PDA,cell phones....

o Midterm includes material covered to end of lecture 14

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 2

EE247Lecture 14• D/A converters

– D/A converters: Various Architectures (continued)• Charge scaling DACs (continued)• R-2R type DACs• Current based DACs

– Static performance of D/As• Component matching• Systematic & random errors

– Practical aspects of current-switched DACs – Segmented current-switched DACs – DAC dynamic non-idealities – DAC design considerations

Page 2: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 2/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 3

Summary of Last Lecture

• Data Converters – Data converter testing (continued)

• Dynamic tests (continued) – Relationship between: DNL & SNR, INL & SFDR – Effective number of bits (ENOB)

– D/A converters: Various Architectures• Resistor string DACs• Serial charge redistribution DACs• Charge scaling DACs

• R-2R type DACs• Current based DACs

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 4

Charge Scaling DACUtilizing Split Array

• Split array reduce the total area of the capacitors required for highresolution DACs – E.g. 10bit regular binary array requires 1024 unit Cs while split array

(5&5) needs 64 unit Cs – Issue: Sensitive to parasitic capacitor

series

a l l L S B a r ra y C C C

a l l M S B a r ra y C =

C 2C 4C

Vref

Vout

reset

b5b4b3b2

+

-

8/7C

C 2C 4C

b1b0

C

Page 3: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 3/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 5

Charge Scaling DAC

• Advantages: – Low power dissipation capacitor array does not dissipate DC power – Output is sample and held no need for additional S/H – INL function of capacitor ratio – Possible to trim or calibrate for improved INL – Offset cancellation almost for free

• Disadvantages: – Process needs to include good capacitive material not compatible

with standard digital process

– Requires large capacitor ratios – Not inherently monotonic (more later)

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 6

Segmented DACResistor Ladder (MSB) & Binary Weighted Charge Scaling (LSB)

C C 2C 4C 8C 32 C

reset

b1b2b3b5

16C

b4

V out

b0

..........

SwitchNetwork

6bitresistor ladder

6-bitbinary weightedcharge redistribution DAC

• Example: 12bitDAC

– 6-bit MSB DACR- string

– 6-bit LSB DACbinary weightedcharge scaling

• Component countmuch lower compared to full R-

string

– Full R string4096 resistors – Segmented 64

R + 7 Cs (64 unitcaps)

Page 4: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 4/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 7

Current Based DACs

R-2R Ladder Type• R-2R DAC basics:

– Simple R networkdivides both voltage& current by 2

R

V

V/2

2R 2R I I/2 I/2

Increase # of bits by replicating circuit

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 8

R-2R Ladder DAC

V B

2R 2R

Emitter-follower added to convert to high output impedance currentsources

2R 2R 2R 2R

R R R RV EE

I out

Page 5: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 5/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 9

R-2R Ladder DAC

How Does it Work?

V B

Consider a simple 3bit R-2R DAC:

2R 2R 2R 2R R R

V EE

I out

1x Aunit 1x Aunit 2x Aunit 4x Aunit

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 10

R-2R Ladder DACHow Does it Work?

V B

Simple 3bit DAC:1- Consolidate first two stages:

2R 2R 2R 2R

R RV EE

I T I 1 I 2 I 3

Aunit Aunit 2Aunit 4Aunit

QT Q1Q2Q3 V B

2R 2R R

R RV EE

I 1+I T I 2 I 3

2Aunit 2Aunit 4Aunit

Q2Q3

Page 6: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 6/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 11

R-2R Ladder DACHow Does it Work?

Simple 3bit DAC-2- Consolidate next two stages:

V B

2R 2R R

R RV EE

I 1+I T I 2 I 3

2Aunit 2Aunit 4Aunit

Q2Q3

V B

2R R

RV EE

I 2+I 1+I T I 3

4Aunit 4Aunit

Q2Q3

Tot al Tota l Total 3 2 1 3 2 1T

I I I I I I I I , I , I 2 4 8

= + + → = = =

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 12

R-2R Ladder DACHow Does it Work?

V B

Consider a simple 3bit R-2R DAC:

2R 2R 2R 2R

R RV

EE

I I 2I 4I

2I 4I

I out

Aunit Aunit 2Aunit 4Aunit

Ref: B. Razavi, “ Data Conversion System Design”, IEEE Press, 1995, page 84-87

In most cases need to convert output current to voltage

Page 7: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 7/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 13

R-2R Ladder DAC

V B

2R 2R

Trans-resistance amplifier added to:- Convert current to voltage- Generate virtual ground @ current summing node so that outputimpedance of current sources do not cause error - Issue: error due to opamp offset

V out

R-

+

2R 2R 2R 2R

R R R RV EE

I I 2I 4I 8I 16I

2I 4I 8I 16I

RTotal

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 14

R-2R Ladder DACOpamp Offset Issueout in

os os Tota l

Tota l out inos os

Tota l

out inos os Tota l

Tota l ou t os

R1V V R

If R l a rg e,

V V

If R not l a rg e R1V V R

Problem:

Sin ce R is co de d ep en dan t V w ou ld be c od e d ep en da nt

Gives r ise to INL & DNL

⎛ ⎞+= ⎜ ⎟⎝ ⎠

=

→ ≈

=⎛ ⎞+→ = ⎜ ⎟⎝ ⎠

V out

R

-

+

RTotal

osV

OffsetModel

Page 8: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 8/34

Page 9: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 9/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 17

Current Source DAC

Unit Element

• Output resistance of current source gain error problemUse transresistance amplifier

- Current source output held @ virtual ground- Error due to current source output resistance eliminated- New issues: offset & speed of the amplifier

I ref I ref I ref I ref

……………

……………

Vout

R

-

+

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 18

Current Source DACBinary Weighted

• “Binary weighted”

• B current sources & switches (2 B-1 unit current sources but less# of switches)

• Monotonicity depends on element matching not guaranteed

4 I ref I ref

I out

2I ref 2 B-1 I ref

……………

……………

Page 10: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 10/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 19

Static DAC Errors -INL / DNL

Static DAC errors mainly due to component mismatch – Systematic errors

• Contact resistance• Edge effects in capacitor arrays• Process gradients• Finite current source output resistance

– Random variations• Lithography etc…• Often Gaussian distribution (central limit theorem)

*Ref: C. Conroy et al, “Statistical Design Techniques for D/A Converters,” JSSCAug. 1989, pp. 1118-28.

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 20

Current Source DACDNL/INL Due to Element Mismatch

• Simplified example: – 3-bit DAC – Assume only two of the current sources mismatched (# 4 & #5)

I ref I ref I ref I ref I ref

I ref +Δ I I ref -Δ I

Vout

-

+

Page 11: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 11/34

Page 12: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 12/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 23

Gaussian Distribution

-3 -2 -1 0 1 2 30

0.1

0.2

0.3

0.4

(x- μ ) / σ

P r o

b a

b i l i t y d e n s

i t y p

( x )

( )22

2

x2

2 2

variance

is the expected value and

1 p( x ) e2

where:

standard deviation : E( X )

μ σ

μ

πσ

σ μ σ

−−

=

= −

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 24

Yield

( )2 x X

2

X

P X x X

1e dx

2

X er f 2

π

+ −

− ≤ ≤ + =

=

⎛ ⎞

= ⎜ ⎟⎝ ⎠

0

0.1

0.2

0.3

0.4

P r o

b a

b i l i t y d e n s

i t y

p ( x )

0 0.5 1 1.5 2 2.5 30

0.20.4

0.60.8

1

X/σ

38.3

68.3

95.4

P ( - X

≤ x

≤+

X )

In most cases we areinterested in finding thepercentage of components(e.g. R) falling withincertain bounds:

Integral has no analyticalsolution found by numericalmethods

Page 13: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 13/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 25

Yield

X/σ P(-X ≤ x ≤ X) [%]

0.2000 15.85190.4000 31.08430.6000 45.14940.8000 57.62891.0000 68.26891.2000 76.98611.4000 83.84871.6000 89.0401

1.8000 92.81392.0000 95.4500

X/σ P(-X ≤ x ≤ X) [%]

2.2000 97.21932.4000 98.36052.6000 99.06782.8000 99.48903.0000 99.73003.2000 99.86263.4000 99.93263.6000 99.9682

3.8000 99.98554.0000 99.9937

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 26

Example• Measurements show that the offset voltage of

a batch of operational amplifiers follows aGaussian distribution with σ = 2mV and μ = 0.

• Find the fraction of opamps with |V os | < 6mV: – X/ σ = 3 99.73 % yield

• Fraction of opamps with |V os | < 400 μV: – X/ σ = 0.2 15.85 % yield

Page 14: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 14/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 27

Component Mismatch

R

R

Δ

10000

100

200

300

400

N o .

o f r e s

i s t o r s

1004 1008 1012996992988 R[ ]Ω

Example: Resistors layouted outside-by-side

E.g. Let us assume in this example 1000 Rs measured& 68.5% fall within +-4OHM or +-0.4% of average

1σ for resistors 0.4%

After fabrication large # of devices measured& graphed typically if sample size large shapeis Gaussian

…….…….

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 28

Component Mismatch

1 2

1 2

2dR

R

R R R

2

dR R R

1

Areaσ

+=

= −

R

R

Δ

00

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P r o

b a

b i l i t y d e n s

i t y p

( x )

σ 2σ 3σ−σ−2σ−3σdR

RFor typical technologies & geometries1σ for resistors 0.02 to 5%

In the case of resistors σ is a function of area

Example: Two resistorslayouted out side-by-side

Page 15: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 15/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 29

DNL Unit Element DAC

i i re f R I Δ =

E.g. Resistor string DAC:Assumption: No systematic error- only random error I ref

V ref

B

i

i

2 1

io

median ref med ian B

i i ref

i med iani

median

i median

imed ian median

DNL dR

R

R R I where R

2 R I

DNL

R R dR dR

R R R

σ σ

Δ = =

Δ =

Δ − Δ=

Δ

−= = ≈

=

To first order DNL of unit element DAC is independent of resolution!Note: Similar results for other unit-element based DACs

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 30

DNL Unit Element DACExample:If σ dR/R = 0.4%, whatDNL spec goes intothe DAC datasheet sothat 99.9% of allconverters meet the

spec?

E.g. Resistor string DAC:

i

i

DNL dR

R

σ σ =

Page 16: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 16/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 31

YieldX/σ P(-X ≤ x ≤ X) [%]

0.2000 15.85190.4000 31.08430.6000 45.14940.8000 57.62891.0000 68.26891.2000 76.98611.4000 83.84871.6000 89.0401

1.8000 92.81392.0000 95.4500

X/σ P(-X ≤ x ≤ X) [%]

2.2000 97.21932.4000 98.36052.6000 99.06782.8000 99.48903.0000 99.73003.2000 99.86263.4000 99.93263.6000 99.9682

3.8000 99.98554.0000 99.9937

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 32

DNL Unit Element DACExample:If σ dR/R = 0.4%, what DNL specgoes into the datasheet so that99.9% of all converters meetthe spec?

Answer:From table: for 99.9%

X/σ = 3.3σ

DNL= σ

dR/R= 0.4%

3.3 σ DNL = 3.3x0.4%=1.3%

DNL= +/- 0.013 LSB

E.g. Resistor string DAC:

i

i

DNL dR

R

σ σ =

Page 17: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 17/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 33

DAC INL Analysis

B

A

N=2 B-1n

n

N

O u

t p u

t [ L S B ]

Input [LSB]

E

Ideal Variance A=n+E n n .σ ε

2

B=N-n-E N-n ( N-n) .σ ε 2

E = A-n r =n/N N=A+B= A-r(A+B)= (1-r). A - r.B Variance of E:

σ E2 =(1-r) 2 .σ Α

2 + r 2 .σ B2

= N.r .(1-r). σ ε2 = n .(1- n/N). σ ε

2

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 34

DAC INL

• Error is maximum at mid-scale ( N/2):

• INL depends on both DAC resolution & element matching σ ε

• While σ DNL = σ ε is to first order independent of DAC resolution and isonly a function of element matching

Ref: Kuboki et al, TCAS, 6/1982

2 2 E

2 E

2 2 E

B INL

B

n1n

N d

T o find max. var iance : 0dn

N n N / 2

4

12 1

2wi th N 2 1

ε

ε

ε

σ σ

σ

σ σ

σ σ

⎛ ⎞−= ×⎜ ⎟

⎝ ⎠

=

→ = → = ×

= −

= −0.5 1

0

(2 B-1)0.5 /2

0n/N

σ INL / σ ε

Page 18: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 18/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 35

Untrimmed DAC INL

max

max

max

max

1% B 8.6bits

0.5% B 10.6bits

0.2% B 13.3bits

0.1% B 15.3bits

ε

ε

ε

ε

σ

σ

σ

σ

= → =

= → =

= → =

= → =

Example:

Assume the following requirementfor a DAC:

σ INL = 0.1 LSB

Find maximum resolution for:

Note: In most cases, a number of systematic errors preventsachievement of above results

B INL

INL2

1 2 12

B 2 2log

ε

ε

σ σ

σ σ

⎡ ⎤

⎢ ⎥⎣ ⎦

≅ −

≅ +

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 36

Simulation Exampleσ ε = 1%B = 12Random #generator used inMatLab

Computed INL:σ INL

max = 0.32 LSB(midscale)

Why is theresults not asexpected per our derivation?

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

D N L [ L S B ]

12 Bit converter DNL and INL

-0.04 / +0.03 LSB

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

I N L

L S B ] -0.2 / +0.8 LSB

Page 19: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 19/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 37

INL & DNL for Binary Weighted DAC

• INL same as for unitelement DAC

• DNL depends on transition –Example:

0 to 1 σ DNL2 = σ (d Ι/Ι)

2

1 to 2 σ DNL2 = 3 σ (d Ι/Ι)

2

• Consider MSB transition:0111 … 1000 …

4 I ref I ref

I out

2I ref 2 B-1 I ref

……………

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 38

DAC DNLExample: 4bit DAC

0000 0001 0010 0011 0100 0101 0110 0111 1000

DigitalInput

AnalogOutput [I ref ]

8

7

6

5

4

3

2

1

0

4I ref I ref

I out

2I ref 8I ref

I 8 I 4 I 2 I 1

I 2on ,I 1on

I 2

on ,I 1

off

I 1on

• DNL depends on transition

– Example:

0 to 1 σ DNL2 = σ (d Ι ref /Ι ref )

2

1 to 2 σ DNL2 = 3 σ (d Ι ref /Ι ref )

2

I 4 on ,I 2off ,I 1off

.....

. . . . .

I 8off , I 4 on ,I 2on ,I 1on

I 8on , I 4 off ,I 2off ,I 1off

Page 20: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 20/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 39

Binary Weighted DAC DNL

( ) ( )

DNLma x B

INL DNLma x ma x

2 B 1 2 B 1 2 DNL

B 2

B / 2

1 12 1

2 2

2 1 2

0111.. . 1000. ..

2

2

ε

ε ε

ε

ε

σ σ σ

σ

σ σ

σ σ σ

− −

=

≅ − ≅

= − +

1442443 14243

• Worst-case transitionoccurs at mid-scale:

• Example:B = 12, σ ε = 1%

σ DNL = 0.64 LSB

σ INL = 0.32 LSB

2 4 6 8 10 12 140

5

10

15

DAC Output [LSB]

σ D N L

2 / σ

ε 2

DNL for a 4-Bit DAC

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 40

MOS Current Source VariationsDue to Device Matching Effectsd1 d2

d

d d1 d2

d d

W d th L

W GS d th L

I I I

2

dI I I

I I

dI d 2 dV

I V V

+=

−=

×= +

I d1 I d2

• Current matching depends on:- Device W/L ratio matching

Larger device area less mismatch effect- Current mismatch due to threshold voltage variations:

Larger gate-overdrive less threshold voltage mismatch effect

Page 21: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 21/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 41

Current-Switched DACs in CMOS

W d th L

W d GS th L

dI d 2dV

I V V = +

I out

I ref

……

Switch Array

• Advantages:Can be very fastReasonable area for resolution < 9-10bits

• Disadvantages:Accuracy depends on device W/L & V th matching

256 128 64 ………..…..1

Example: 8bit Binary Weighted

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 42

Unit Element versus Binary Weighted DAC

Unit Element DAC Binary Weighted DAC

Number of switched elements:

Key point: Significant difference in performance and complexity!

B22 2 DNL INL

B 122 INL

S B

σ σ σ ε

σ σ ε

≅ =

−≅

=

DNL

B 122 INL

BS 2

σ σ ε

σ σ ε

=

−≅

=

Page 22: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 22/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 43

Unit Element versus Binary Weighted DAC

Example: B=10

B2

DNL

1

B

INL 2 1

S 2 1 24

6

0

ε

ε ε

σ σ

σ σ σ −

=

≅ =

= =

Significant difference in performance and complexity!

B2

B2

DNL

1 INL

2 3

2 16

S B 10

ε ε

ε σ σ

σ σ

σ

σ −

≅ =

≅ =

= =

Unit Element DAC Binary Weighted DAC

Number of switched elements:

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 44

“Another” Random Run … Now (by chance) worstDNL is mid-scale.

Close to statistical result!500 1000 1500 2000 2500 3000 3500 4000-2

-1

0

1

2

bin

D N L [ L S B ]

DNL and INL of 12 Bit converter

-1 / +0.1 LSB,

500 1000 1500 2000 2500 3000 3500 4000-1

0

1

2

bin

I N L [ L S B ]

-0.8 / +0.8 LSB

Page 23: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 23/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 45

10Bit DAC DNL/INL ComparisonPlots: 100 Simulation Runs Overlaid

Ref: C. Linand K. Bult,"A 10-b,500-MSample/sCMOS DACin 0.6mm2," IEEE Journal of Solid-StateCircuits, vol.33, pp. 1948- 1958,December 1998.

Note: σε =2%

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 46

10Bit DAC DNL/INL ComparisonPlots: RMS for 100 Simulation Runs

Ref: C. Linand K. Bult,"A 10-b,500-MSample/sCMOS DACin 0.6mm2," IEEE Journal of Solid-StateCircuits, vol.33, pp. 1948- 1958,December 1998.

Note: σε =2%

Page 24: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 24/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 47

DAC INL/DNL Summary• DAC choice of architecture has significant impact on

DNL

• INL is independent of DAC architecture and requireselement matching commensurate with overall DACprecision

• Results assume uncorrelated random elementvariations

• Systematic errors and correlations are usually alsoimportant and may affect final DAC performance

Ref: Kuboki, S.; Kato, K.; Miyakawa, N.; Matsubara, K. Nonlinearity analysis of resistor string A/Dconverters. IEEE Transactions on Circuits and Systems, vol.CAS-29, (no.6), June 1982. p.383-9.

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 48

Segmented DACCombination of Unit-Element & Binary-Weighted

• Objective:Compromise between unit-element and binary-weighted DAC

• Approach:B1 MSB bits unit elementsB2 LSB bits binary weighted

• INL: unaffected same as either architecture• DNL: Worst case occurs when LSB DAC turns off and one more MSB DAC

element turns on Same as binary weighted DAC with (B 2+1) # of bits• Number of switched elements: (2 B1-1) + B 2

Unit Element Binary Weighted

V Analog

MSB (B1 bits) (B2 bits) LSB

… …

BTotal = B 1+B2

Page 25: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 25/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 49

ComparisonExample:

B = 12, B 1 = 5, B 2 = 7 B1 = 6, B 2 = 6

Assuming: σ ε = 1%

( ) B 122

B2

DNL INL

1 INL

B12

2 2

2

S 2 1 B

ε

ε

σ σ σ

σ σ

+

≅ =

= − +

409563+6=6931+7=38

12

0.010.1130.16 0.64

0.320.320.320.32

Unit element (12+0)Segmented (6+6)Segmented (5+7)Binary weighted(0+12)

# of switchedelements

σ DNL[LSB]σ INL[LSB]DAC Architecture(B1+B2)

MSB LSB

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 50

Practical AspectsCurrent-Switched DACs

Binary Thermometer 000 0000000001 0000001010 0000011011 0000111100 0001111101 0011111110 0111111111 1111111

• Unit element DACs ensure monotonicity byturning on equal-weighted current sources insuccession

• Typically current switching performed bydifferential pairs

• For each diff pair, only one of the devices areon switch device mismatch not an issue

• Issue: While binary weighted DAC can use theincoming binary digital word directly, unitelement requires a decoder

N to (2 N-1) decoder

Page 26: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 26/34

Page 27: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 27/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 53

Segmented Current-Switched DACCont’d

• MSB Decoder Domino logicExample: D4,5,6,7=1 OUT=1

• Register Latched NAND gate:CTRL=1 OUT=INB

Register

Domino Logic

IN

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 54

Segmented Current-Switched DACReference Current Considerations• I ref is referenced

to V DD

Problem:Referencecurrentvaries withsupply

voltage

+

-

I ref =(V DD-V ref ) / R

Page 28: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 28/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 55

Segmented Current-Switched DACReference Current Considerations

• I ref isreferenced toV ss GND

+-

I ref =(V ref -V ss ) / R0

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 56

Segmented Current-Switched DACConsiderations• Example:

– 2bit MSB Unitelement DAC & 3bit

binary weighted DAC

• To ensure monotonicityat the MSB LSBtransition: First OFFMSB current source isrouted to LSB currentgenerator

MSB

LSB

Page 29: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 29/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 57

DAC Dynamic Non-Idealities

• Finite settling time – Linear settling issues: (e.g. RC time constants) – Slew limited settling

• Spurious signal coupling – Coupling of clock/control signals to the output via

switches

• Timing error related glitches – Control signal timing skew

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 58

Dynamic DAC Error: Timing Glitch

• Consider binary weightedDAC transition 011 100

• DAC output depends ontiming

• Plot shows situation wherethe control signals for LSB &MSB

– LSB/MSBs on time – LSB early, MSB late – LSB late, MSB early

1 1.5 2 2.5 30

5

10

I d e a

l

1 1.5 2 2.5 30

5

10

E a r l y

1 1.5 2 2.5 30

5

10

Time

L a

t e

DAC Output

Page 30: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 30/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 59

Glitch Energy• Glitch energy (worst case) proportional to: dt x 2 B-1

• dt error in timing & 2 B-1 associated with half of the switches changingstate

• LSB energy proportional to: T=1/f s

• Need dt x 2 B-1 << T or dt << 2-B+1 T

• Examples:

Timing accuracy for data converters much more critical compared to digitalcircuitry

<< 488<< 1.5<< 0.5

121612

120

1000

dt [ps]B f s [MHz]

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 60

DAC Dynamic Errors• To suppress effect of non-idealities:

– Retiming of current source control signals• Each current source has its own clocked latch

incorporated in the current cell• Minimization of latch clock skew by careful

layout ensuring simultaneous change of bits

– To minimize control and clock feed throughto the output via G-D & G-S of the switches• Use of low-swing digital circuitry

Page 31: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 31/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 61

DAC Implementation Examples• Untrimmed segmented

– T. Miki et al, “An 80-MHz 8-bit CMOS D/A Converter,” JSSCDecember 1986, pp. 983

– A. Van den Bosch et al, “A 1-GSample/s Nyquist Current-SteeringCMOS D/A Converter,” JSSC March 2001, pp. 315

• Current copiers: – D. W. J. Groeneveld et al, “A Self-Calibration Technique for

Monolithic High-Resolution D/A Converters,” JSSC December 1989, pp. 1517

• Dynamic element matching: – R. J. van de Plassche, “Dynamic Element Matching for High-

Accuracy Monolithic D/A Converters,” JSSC December 1976, pp.795

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 62

2μ tech ., 5Vsupply6+2 segmented8x8 array

Page 32: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 32/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 63

Two sources of systematic error:- Finite current source output resistance- Voltage drop due to finite ground bus resistance

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 64

Current-Switched DACs in CMOS

I out

Example: 5 unit element current sources

V DD

I 1 I 2 I 3 I 4

Rx4I Rx3I Rx2I

M 1 M 2 M 3 M 4 I 5M 5

Rx I

Assumptions: RxI small compared to transistor gate-overdriveTo simplify analysis: Initially, all device currents assumed to be equal to I

( )

M 2 M1

M 3 M1

M4 M1

M 5 M1

M 2

M1

GS GS

GS GS

GS GS

GS GS

2GS th2

2

2 1GS th

V V 4RI

V V 7RI

V V 9RI

V V 10RI

V V I k

4R I 1 I I

V V

⎛ ⎞

⎜ ⎟⎜ ⎟⎝ ⎠

= −

= −

= −

= −

−=

−=−

V G

Page 33: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 33/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 65

Current-Switched DACs in CMOS

I out

Desirable to have g m small

Example: 5 unit element current sources

V DD

I 1 I 2 I 3 I 4

Rx4I Rx3I Rx2I

M 1 M 2 M 3 M 4 I 5M 5

Rx I

( )

( )

( )

( )

( )

M2

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

M1

22

GS th2 1GS th

1m

GS th2

m2 1 1 m

2m

3 1 1 m

2m

4 1 1 m

2m

5 1 1 m

4R I 1V V I k I

V V 2I

g V V

4R g I I I 1 4Rg 12

7R g I I I 1 7Rg 12

9R g I I I 1 9Rg 12

10Rg I I I 1 10Rg 1

2

⎛ ⎞−−= = ⎜ ⎟

−⎝ ⎠

=−

⎛ ⎞→ = ≈ −−⎜ ⎟

⎝ ⎠

⎛ ⎞→ = ≈ −−⎜ ⎟

⎝ ⎠

⎛ ⎞→ = ≈ −−⎜ ⎟

⎝ ⎠

⎛ ⎞→ = ≈ −−⎜ ⎟

⎝ ⎠

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 66

Current-Switched DACs in CMOSExample: INL of 3-Bit unit element DAC

Input

I N L [ L S B ]

Example: 7 unit element current source DAC- assume g m R=1/100

• If switching of current sources arranged sequentially (1-2-3-4-5-6-7) INL= +0.25LSB

• If switching of current sources symmetrical (4-3-5-2-6-1-7 ) INL = +0.09, -0.058LSB INL reduced by a factor of 2.6

-0.1

0

0.1

0.2

0.3

1 2 3 4 5 6 70

Sequential currentsource switching

Symmetrical currentsource switching

Page 34: L14_2_f09

8/6/2019 L14_2_f09

http://slidepdf.com/reader/full/l142f09 34/34

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 67

Current-Switched DACs in CMOSExample: DNL of 7 unit element DAC

Input

D N L [ L S B ]

Example: 7 unit element current source DAC- assume g m R=1/100

• If switching of current sources arranged sequentially (1-2-3-4-5-6-7) DNLmax= + 0.15LSB

• If switching of current sources symmetrical (4-3-5-2-6-1-7 ) DNLmax = + 0.15LSB DNLmax unchanged

-0.2

-0.1

0

0.1

0.2

1 2 3 4 5 6 7

Sequential currentsource switching

Symmetrical currentsource switching

EECS 247 Lecture 14: Data Converters- DAC Design © 2009 Page 68

Two sources of systematic error:- Finite current source output resistance- Voltage drop due to finite ground bus resistance