Top Banner
Konstantin A. Lukin IEEE Fellow Laboratory for Nonlinear Dynamics of Electronic Systems LNDES National Academy of Sciences of Ukraine , Kharkov 61085, Ukraine Tel: +38-057-7203349Email: [email protected]
163

Konstantin A. Lukin · 2014. 4. 27. · “Noise-modulated distance measuring systems” Proceedings of the IRE, vol. 47, no. 5, pp. 821-828, May 1959. 4/7/2014 NRT-2012 Yalta Crimea

Jan 30, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Konstantin A. Lukin IEEE Fellow Laboratory for Nonlinear Dynamics of Electronic Systems LNDES National Academy of Sciences of Ukraine , Kharkov 61085, Ukraine Tel: +38-057-7203349Email: [email protected]

    mailto:[email protected]

  • Institute for Radiophysics and Electronics NAS of Ukraine

    Laboratory for Nonlinear Dynamics of Electronic Systems

    LNDES

    PhD. Выплавин П.Л. ,Земляный О.В., Кудряшов В.В.

    Researchers

    С.Лукин, Ю.Шиян, Д. Татьянко

    Engineers Паламарчук В.П.

    Н.К.Заец, П.Сущенко. В.Щербаков

    Antenna Laboratory Скресанов В.Н., М.Натаров

    .

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Outline Introduction Why use noise waveforms ? Noise Radar over the past 50 years Noise Radar Technology Developments in LNDES Conclusions

    3 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Definition

    Noise Radar Technology (NRT) is a radar technology that uses the noise/random/chaotic continuous or pulsed waveform as a radar signal and coherent processing of radar returns for their optimal reception (matched filtration), i.e. correlation reception or spectral interferometery method.

    4 LNDES IRE NASU Konstantin LUKIN

    Introduction

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    ОПРЕДЕЛЕНИЕ

    Шумовая радарная технология (ШРТ) - это радарная технология, которая использует непрерывные и импульсные шумовые/хаотические/случайные сигналы в качестве зондирующих и когерентную обработку принятых отражений для их оптимального приема, согласованной фильтрации

    5 NRT-2012 Yalta Crimea UKRAINE 4/7/2014

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    6

    Military operations require low probability of intercept (LPI), low probability of exploitation (LPE), low probability of detection (LPD) of operating noise radar, and best anti-jam characteristics, EMC, etc.

    NRT-2012 Yalta Crimea UKRAINE 4/7/2014

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    7

    Military operations require low probability of intercept (LPI), low probability of exploitation (LPE), low probability of detection (LPD) of operating noise radar, and best anti-jam characteristics, EMC, etc.

    Traditional radar and communications systems use conventional deterministic waveforms

    NRT-2012 Yalta Crimea UKRAINE 4/7/2014

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    8

    Military operations require low probability of intercept (LPI), low probability of exploitation (LPE), low probability of detection (LPD) of operating noise radar, and best anti-jam characteristics, EMC, etc.

    Traditional radar and communications systems use conventional deterministic waveforms

    Deterministic waveforms (such as impulse/short-pulse and linear/stepped frequency modulated) do NOT possess above desirable features

    NRT-2012 Yalta Crimea UKRAINE 4/7/2014

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    9

    Military operations require low probability of intercept (LPI), low probability of exploitation (LPE), low probability of detection (LPD) of operating noise radar, and best anti-jam characteristics, EMC, etc.

    Traditional radar and communications systems use conventional deterministic waveforms

    Deterministic waveforms (such as impulse/short-pulse and linear/stepped frequency modulated) do NOT possess above desirable features

    One has to apply Noise /Random Waveform

    NRT-2012 Yalta Crimea UKRAINE 4/7/2014

  • ADVANTAGES OF NOISE RADAR TECHNOLOGY Noise/Random/Chaotic waveforms enables: A. Optimal coherent reception of noise radar returns B. High rate compression C. Independent control of velocity and range resolutions when measuring jointly range and Doppler frequency D. No side lobes in Ambiguity Function E. No range ambiguity for CW and pulse waveforms

    10 NRT-2012 Yalta Crimea UKRAINE 4/7/2014

  • ADVANTAGES OF NOISE RADAR TECHNOLOGY Noise/Random/Chaotic waveforms enables: A. Optimal coherent reception of noise radar returns B. High rate compression C. Independent control of velocity and range resolutions when measuring jointly range and Doppler frequency D. No side lobes in Ambiguity Function (just residual fuctuations) E. No range ambiguity for CW and pulse waveforms

    11

    NOISE RADAR TECHNOLOGY has an attractive potentiality for design of radar systems having the best performance for civil and military applications: A. Low Probability of Interception (LPI) and LPE exploiting of noise radar returns B. High resistance against EM interference C. Electromagnetic Compatibility: possibility to use simultaneously many radars within the same area

    NRT-2012 Yalta Crimea UKRAINE 4/7/2014

  • Waveform comparison

    0 500 1000 1500-0.5

    0

    0.5

    1Impulse waveform

    Ampli

    tude

    0 500 1000 1500-1

    -0.5

    0

    0.5

    1LFM waveform

    Ampli

    tude

    0 500 1000 1500

    -2

    0

    2

    Random noise waveform

    Time

    Ampli

    tude

    12 NRT-2012 Yalta Crimea UKRAINE 4/7/2014

  • 0 01( , , ) ( ) ( )

    2T

    TR T X t X t dt

    Tτ τ τ τ

    −= − −∫

    Block diagram of CW Noise Radar with correlation processing

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    7

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    6

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    5

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    4

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    3

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    2

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    1

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    0

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Range

    Ambiguity Function of a Single Pulse of Noise/ Random Waveform with Gaussian Frequency Spectrum Shape

    ( ) 2, ,Tχ τΩ

    Doppler Frequency

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Richard Bourret & Billy Horton’s seminal papers

    R. Bourett, “A proposed technique for the improvement of range

    determination with noise radar” Proceedings of the IRE, December 1957. B. M. Horton, “Noise-modulated distance measuring systems” Proceedings of the IRE, vol. 47, no. 5, pp. 821-828, May 1959.

    23 NRT-2012 Yalta Crimea UKRAINE 4/7/2014

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Double Spectral Processing in Noise Radar

    24 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Double Spectral Processing in Noise Radar

    25 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Noise Radar Development Eras 1960S AND 1970S: Initial studies and performance analyses by a

    handful of researchers

    26 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Noise Radar Development Eras 1960S AND 1970S: Initial studies and performance analyses by a

    handful of researchers 1980S: Relatively little development took place,

    27 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Noise Radar Development Eras 1960S AND 1970S: Initial studies and performance analyses by a

    handful of researchers 1980S: Relatively little development took place, 1990s AND 2000S: Advanced system development and

    demonstration by several groups all over the world

    28 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Noise Radar Development Eras 1960S AND 1970S: Initial studies and performance analyses by a

    handful of researchers 1980S: Relatively little development took place, but two

    crucial experiments have been done in LNDES IRE NAS of Ukraine!

    1990s AND 2000S: Advanced system development and

    demonstration by several groups all over the world

    29 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    The 1980s Not much work published during this decade,

    but it has been shown in LNDES, IRE NAS of Ukraine:

    1. Dynamical Chaos may be used for design of random noise sources: Ka-band transmitter with 700MHz bandwidth noise signals based on BWO

    2. Autodyne phenomenon in wideband Chaos generator has been revealed to be used for both Range and Doppler measurement

    30 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Autodyne Effect in MMW Chaos Generator

    31

    K.Lukin & V.Rakitaynsky IRE NAS of UKRAINE 1986 and 1987

    4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Early 1990s Konstantin Lukin , et al. Digital-Analog Correlator for

    random signals (MSMW-Symposium,1992) . NR Research at Ohio State University was pioneered by Prof. Eric Walton: Implemented short range solid state noise radar for target detection,

    recognition, and ISAR imaging Demonstrated ultrawideband (UWB) noise radar with very good resolution Two representative papers listed below: E.K. Walton, V. Fillimon, and S. Gunawan, “ISAR imaging using UWB noise radar,” Proc. 18th Annual AMTA

    Symposium, Seattle, WA, pp. 167-171, September-October 1996. I.P. Theron, E.K. Walton, S. Gunawan, and L. Cai, “Ultrawide-band noise radar in the VHF/UHF band,” IEEE Transactions on Antennas and Propagation, vol. 47,

    pp. 1080-1084, June 1999.

    32 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    33

    Ka-band CW Noise Radar Chaos Generator on the basis of IMPATT diode Relay Type Digital-Analog Correlator

    1993

    4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    34 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

    USA Canada Brazil Mexico

    UKRAINE Poland Sweden France Russia UK Italy Germany Portugal Finland

    Noise Radar Countries

    CHINA South Korea Australia

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Active research groups on both sides of the Atlantic (and beyond!)

    Prof. Ram Narayanan (USA) Prof. Konstantin Lukin (Ukraine) Prof. Krzysztof Kulpa (Poland) Dr. T. Thayaparan (Canada) Dr. Andy Stove (UK) Prof. Douglas Gray (Australia) Dr. Mark Govoni (USA) Prof. Jeong Phill Kim (South Korea) Prof. Heinrich Loele (Germany) Dr. Sune Axelsson (Sweden) Dr. Joao Moreira (Brazil)

    35 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Intensive research on noise radar technology and implementation

    R. Narayanan – Correlation in Time Domain UWB Noise Radar MIMO Noise Radar

    K. Lukin – Correlation in Time Domain and

    Frequency Domain + Double spectral method or Spectral Interferometry Software Defined Noise Radar Stepped Frequency and Stepped Delay Noise Radar Pulse Coherent Noise Radar

    36 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Noise Radar Technology in

    UKRAINE

    Konstantin A. Lukin LNDES IRE NASU

    Institute of Radiophysics and Electronics National Academy of Sciences of Ukraine

    12 Akad. Proskura Str., Kharkov, 61085, Ukraine Tel.+38-057-7203349, Fax +38-057-3152105

    E-mail: [email protected] ; [email protected]

    37 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future.. Noise Radar Technology (NRT)

    uses noise waveforms (NW) as a sounding signal and coherent processing for radar return reception

    Noise waveform generation: 1.Noise Oscillators (vacuum tubes and IMPATT) 2. Frequency/Phase modulation of VCOs 3. Digital sources – AWG and FPGA (ПЛИС)

    For the radar return reception, the following techniques may be used, for instance: (1) Correlation Reception of NW radar returns, implying the use of a delay line or (2) Spectral Interferometry, enabling range and velocity measurements without the need for a delay line.

    Fast ADC and FPGA may be used for both types of processing

    Employment of NW in combination with coherent processing of radar returns

    gives an excellent basis for significant enhancement in technical performance of radar systems.

    38 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    39 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    40

    4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    41

    First X-band Ground Based SAR

    4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    First X-band Ground Based SAR

    42 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    43 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    44 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    45 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Surveillance mode

    47 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Arc-SAR scanning Radar is mounted at the height of 20 m

    48 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Arc-SAR Performance Central frequency 9.2 GHz Spectrum bandwidth 250 MHz Peak transmitted power 400 mW Polarization V V Boom length 1.75 m Scanning angle 99 degrees Scanning step 0.9 degree Range resolution 32 cm Cross-range resolution at 45 m 32 cm Precision of Shift detection 1 mm

    49 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Optical image

    Radar

    50 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Optical and SAR images

    Radar

    51 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Antennae with Beam Synthesis

  • Helical – Slot Antenna with Beam Synthesis 2-D Horn

    Stator

    Slot Input-output Waveguide

    Slot Short-circuit Groove

    Rotor Rectangle Waveguide

  • Helical-Slot Synthetic Aperture Antenna Testing

    Proving Ground SAR Image

    Object Locations

  • Schematic of 1D Tape Sliding –Slot Antenna

  • SAR Images generated with help of 1D Tape Sliding –Slot Antenna

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    57

    Антенна с синтезируемой диаграммой направленности

    Рупор

    Выход

    Резонансная щель

    Датчик угла повотора

    Шаговый двигатель

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Ka-band Ground Based Noise Waveform SAR

    and Measurement of Shifts in Bell Tower of

    Sophia Cathedral (Kiev)

  • Ground Based Synthetic Aperture Radar Sensors for Detection of Small Shifts

    Ground based noise SAR

  • Realization of Noise Radar signal

    Energy Spectrum of Transmit Signal

    Ka-band Ground Based NW SAR signal

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Measurements

    Ka-band Ground Based Noise Waveform SAR operated in “monostatic” mode using single frequency channel.

    It was deployed on the ground at the distance of 22 meters from the Bell Tower.

    Measurements have been carried out during 24 hours.

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Monitoring of Bell Tower of Sophia Cathedral in Kiev, UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    GB NW-SAR images of Sophia Bell Tower

    Images obtained with 1 hour interval

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Differential Interferogramms of Sophia Bell Tower

    1 hour delay, sunrise 1 hour delay, night

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    D-InSAR precision

    0.707

    3 deg

    3 degrees width of the histogram gives ~ 0.03 mm precision at the 8mm wavelength

  • LNDES IRE NASU (Ukraine) and

    NATO/RTO-SET-101/RTG057 on Noise Radar Technology

  • Andy Stove (UK) and Konstantin Lukin (UA) before field trials , June 2008, Kharkov

    Field Trials Campaign.

    Kharkov, UKRAINE Summer 2008

    Ka-band Ground Based Noise Waveform SAR

    Krzysztof Kulpa (PL),Andy Stove (UK), and David Calugi (IT) in the test field

    June 2008, Kharkov 67 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • GB NW-SAR specifications

    1. Frequency range 36 37 GHz 2. Synthetic aperture 0.7 m 3. Coverage sector in azimuth 80 deg 4. Coverage sector in elevation 20 deg 5. Range resolution 0.3 m 6. Azimuth resolution at 50m distance 0.5 m 7. Potential accuracy of displacement measurement 0.1 mm 8. Single Scan time ~20 s 9. Working range 3 80 m

    68 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • 69 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • SAR image of the lake. Generated by A. Stove

    (UK) using the data obtained during the trial campaign of Ka-band

    Noise Waveform SAR developed by K.Lukin’s team from LNDES IRE

    NASU, Kharkov, UKRAINE

    70 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Proposed netted MIMO noise radar system

    71 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • Possible field implementation

    72 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Intrusion detection Noise Radar Tunable Doppler Noise Radar for range estimation Stepped-Frequency and Stepped delay Noise Radar Pulse coherent Noise Radar Radiometric Coherent Imaging

    Noise Radar Distinguishing Features

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Interference Immunity of Pulse Radar using Noise Waveform and Chirp

    Monochromatic Interference Narrowband Interference RF Interference Gaussian Noise Interference SAR Interference Immunity

  • Received signal after compression without interference

    chirp noise waveform

  • Averaged compressed signal (monochromatic interference)

    1 50 200 Number of averages

    NW

    chirp

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    SAR Interference Immunity (coherent monochromatic Interference)

    NW

    chirp

    no SIR=-10dB SIR=-20dB interference

  • Noise Signal Properties

    Power spectrum Coherence (autocorrelation) functions

    (1) not modulated SF signal;

    (2) RFM signal with 27 MHz bandwidth;

    (3) RFM signal with 54 MHz bandwidth

    (1) not modulated SF signal;

    (2) 1.8 MHz;

    (3) 27 MHz;

    (4) 54 MHz;

    (5) 100 MHz

    /cl c f= ∆Coherence length

  • Isolating properties of noise signal in stepped frequency radar

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    NoiseGenerator

    PowerSupply Mixer

    DSP

    F.C.

    LeakageReference

    Homodyne Noise Radar

    Obstacle Approaching Sensor

  • INTRUISION DETECTION SENSOR

    - DOPPLER SIGNAL IS GENERATED WHEN A MOVING OBJECT IS WITHIN THE SENSORWORKING RANGE ONLY (CORRELATION VOLUME) - THE WORKING RANGE IS DEFINED BY THE COHERENCE LENGTH OF THE WAVEFORM, BUT NOT TRANSMITTED POWER

    NOISE AUTODYNE SENSOR

    I NGLPF

    DOPPLER SIGNAL

    APPLICATION

    Системи автоматичного контролю у місцяхпаркування автомобілів

    POWER SPECTRUM

    PERFORMANCE 1.1 TRANSMITTED POWER 36 mW 1.2 CENTRAL FREQUENCY 36.5 GHz 1.3 BANDWIDTH 2 GHz 1.4 COHERENCE LENGTH ≈0.3 m 1.5 WORKING CURRENT 100 mA 1.6 WORKING VOLTAAGE 30 V 1.7 ORKING RANGE 1.5м

    COHERENCE LENGTH

    L = c/ ΔF

    ΔF SPECTRUM BANDWID с – VELOCITY OF LIGHT

  • Wideband Noise Doppler Sensor

    p-i-n

    p-i-n

    Bend spectrum control

    Swich

    Signal out put

    Detector 1

    NoiseGenerator

    Directional Coupler

    Controlling

    Detector 2 Isolator

    Controlling

    Power Supply

    Controlling

    Modulator 1

    Modulator 2

    Isolator Attenuator

    Attenuator

    Antenna

    Antenna

    Frequency control

    Directional Coupler

    2c fc

    c cf Tl L

    ∆ = >> =

    +==

    00

    0 122

    22LVtL

    cf

    Lcf ππϕ

  • -60

    -40

    -20

    0

    20

    40

    60

    80

    2 19 43,57 78 95,21 ∆F,MHz

    A,dBАс.,dBАш.,dB

    -40

    -20

    0

    20

    40

    60

    80

    100

    2 19 43,57 78 95,21 ∆F,МГц

    A,dB

    Ас.,dBАш.,dB

    б)

    г)

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    2 19 43,57 78 95,21 ∆F,МГц

    A,dB

    Ас.,dBАш.,dB

  • Range Estimation using K-band Autodyne Noise Doppler Radar

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Stepped frequency Noise Radar Switching of central frequency of narrowband random waveforms

    Time realizations:

    Stepped frequency Noise stepped frequency

    Stepped frequency Noise stepped frequency

    Frequency spectra of signals:

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Signal processing stages in stepped frequency radar

    0 10 20 30 40 50 60 70 80 90 1000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 100 200 300 400 500 600-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 100 200 300 400 500 600-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    04sin nnR fSc

    π = n n n

    S S w= ( )m nR FFT S=

    Quadratic detector signal with harmonic modulation due to presence of target

    Weighting in order to decrease sidelobes of the range profile

    Range profile generated by application of FFT to the weighted data

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    AWG472 – 4 GSPS 12-bit Dual-Channel Arbitrary Waveform Generator

    • два 12-разрядных ЦАП с линейностью 10 разрядов • IQ-фазовая синхронизация выходных сигналов • максимальная тактовая частота 4 ГГц • память с объемом 2 x 4M x 12 бит с многостраничной

    организацией • максимальная длительность выборки 1 мс при тактовой

    частоте 4 ГГц • режимы непрерывной генерации, непрерывной генерации

    с запуском, однократного запуска • динамическая генерация страниц • возможность запуска от внешнего сигнала или программно

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Генерация шумовых сигналов с использованием AWG472

    Time series, power spectrum and autocorrelation function of noise waveform in 0MHz-200MHz frequency band

    Time series, power spectrum and autocorrelation functionof noise waveform in 400MHz-800MHz frequency band

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

  • SAR Image of the LNDES room generated with Noise Stepped-Frequency Radar with Regular Steps

    Two spherical targets where placed at the range 2.8 m from the SF Noise SAR

    Noise Waveform Bandwidth 10 MHz Noise Waveform Bandwidth 30MHz Sinusoidal signal

  • Noise 10 MHz Range = 3.5m Noise 30 MHz Range = 3.5m

    Noise Waveform Bandwidth 10 MHz

    SAR Image of the LNDES room generated with Noise Stepped-Frequency Radar with Regular Steps

    Noise Waveform Bandwidth 30MHz

    Two spherical targets where placed at the range 3.5 m from the SF Noise SAR

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future.. Программно-задаваемый шумовой радар для непрерывных сигналов

    Тестовая конфигурация на базе платы

    Результат теста в управляющей программе для ПК

    Низкочастотный программно-задаваемый шумовой радар (ПЗШР) на базе платы RVI

    Корреляционная функция, полученная с помощью ПЗШР на RVI в программе на ПК

    Плата разработки Altera (DK-NIOS-2S60N)

    Плата разработки Actel RVI (ICTP M-LAB)

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Experimental validation of the stepped-delay method using AWG

    Sounding signal (CH2) - array of digital samples obtained in a PC.

    The reference signal (CH1)– digital samples with consequent time-delay steps.

    Analog mixer + LPF output – sequence of samples of cross-correlation function

    AWG

    CH1

    CH2 10-180MHz

    10-180MHz

    С

    С

    RADC

    Cross-correlation between transmitted signal and the reference

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Спирально-щелевая сканирующая антенна с синтезированием диаграммы направленности

    Микроволоновая видеокамера

  • Геометрия АРСА

    Неподвижная, непереключаемая антенная решетка для наземной шумовой РСА

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    • частота сигнала: 30 ГГц • частота дискретизации: 2 ГГц • апертура антенны: 100 см • количество излучателей: 200 • средняя задержка между элементами

    антенны ~90 см • дальность до сцены: 100 м

    Один скан Три скана Десять сканов Геометрия сцены

    Характеристики АРСА

    Неподвижная, непереключаемая антенная решетка для наземной шумовой РСА

  • 1;1

    k;q

    SAR plane

    SAR & wideband noise waveform -> 3D image

    3D SAR image.

    ++

    ==

    Noise waveform

    3D SAR image formation

    Combination of 2D synthetic aperture and noise signals with high bandwidth enables to obtain high

    resolution 3D radar images

    PresenterPresentation NotesIt was advanced black magic class. Now we can form 3D image :D

  • 1

    2

    R.

    Target 1 (Sphere)

    Target 2 (corner reflector)

    0

    Rang

    e

    2 m

    5 m

    Room wall

    SD

    LN

    E

    MOR

    O

    1.4

    m

    ~ <

    1m

    Ele

    vatio

    n.

    Azimuth

    SAR sensor

    Scene for 3D imaging

    LNDES, IRE NASU UKRAINE .& ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Scene for 3D imaging

    Sphere

    Corner reflector

    LNDES, IRE NASU UKRAINE .& ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • 3D images. Detection of targets

    4 2. . 2

    :0.3 ,

    4 19.73c r

    Corner reflectorl m

    l mπσλ

    =

    = 2 2.

    :0.1 ,

    0.03 .sph

    Spherer m

    r mσ π=

    = ( ).for monostatic configuration

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1 m

    2 m

    3 m

    4 m

    5 m

    6 m

    7 mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7m

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Target 1

    0

    The wall 7.8 m

    0

    1 m

    - Az + Az

    R+H

    -H

    SAR plane

    1m

    2m

    3m

    4m

    5m

    6m

    7mTarget 2

    Short range 3D imaging with NW SAR

    LNDES, IRE NASU UKRAINE & ITCC, Industry-University Collaboration Foundation, CNU, Korea APSAR-2011

  • Geometry of Static Nonswitchable Antenna Array

  • Geometry of Static Nonswitchable Antenna Array

    τ −qτ −( 2QτY

    X

    Di(q)

    targetPi

    yi

    xi

    xqAAA Q−AAAτ −0τQτ −AQAτA2τZ

    Y

    targetPi

    z0

    0

    Dsr

    yi

    ( ;ξ ϑa)

    b)

    - distance from q-th radiator to i-th local reflectingarea (resolution cell)

    ( ) 2D 2q Q- is a radiator numberQ +- is total number of radiatorsz- is height of the array over the plane(0 0- coordinates of the phase center of the radiatorA( X(x y- are coordinates of the i-th local reflecting areaof the sceneP( 0x- are the Cartesian coordinates q-th radiatorA

  • LO freq: 30 GHz sampling freq: 2 GHz antenna length: 100cm number of radiators: 100 Equal delays between antenna

    elements – 90 cm Two targets

    Modeled scene

    Range 65m 10m

  • SAR Image using Static Antenna Array and Random Waveform

    LO freq: 30 GHz sampling freq: 2 GHz antenna length: 100cm number of radiators: 200 Random delays between

    antenna elements – 90 cm

    Modeled scene

    Range 100m

    Single scan

  • SAR Image using Static Antenna Array and Random Waveform

    LO freq: 30 GHz sampling freq: 2 GHz antenna length: 100cm number of radiators: 200 Random delays between

    antenna elements – 90 cm

    Modeled scene

    Range 100m

    Integration of ten realizations

  • Antenna with Aperture synthesizing for W-band (4 mm) Microwave “Video Camera”

    D2 and 3D imaging in real-time scale and Video in W-band (4 mm)

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    146

    Обзор существующих методов и систем приема радиоизлучений

    Детектор / Коррелятор

    Компьютер / Передача данных

    Усилитель промежуточной частоты~

    Гетеродин

    Усилитель радио

    частоты

    Радиотелескоп(аппаратура)

    Смеситель

    (α;Τ ∗)Θ∼λ/L

    1

    Пеленгатор

    Антенна Антенна

    β∆l=

    l 1-l2

    Радио

    сигна

    л

    Радио

    сигна

    л

    +Задержка сигнала ∆t=∆l/c

    Радиометр

    B (База)

    β∼λ/B2

    Радиометр

    3

    Радиометр

    Радиометр

    Радиометр

    Радиометр

    Радиометр

    Радиометр

    Радиометр

    Многоканальный радиометр

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    147

    Обзор существующих методов и систем приема радиоизлучений

    4Механическое перемещение объекта в фокальном пятне

    Радиометр

    5

    B (База)

    Триангуляция

    Радиометр

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    148

    Основные характеристики радиометра:

    ΔfВх.=500 (МГц) КУс. ≤ 97 (дБ) Кш ≤ 3 , Tш ≤ 600K δT ≈ 0,06K

    АЧХ приемных трактов

    Основные характеристики измерительного комплекса, модернизированного для работы в радиометрическом режиме

    Антены с синтезируемой диаграммой направленности

    Радио приемное

    устройство 1

    Блок управления 2

    Блок управления 1

    Радио приемное

    устройство 2

    Разработка ОНДЭС, ИРЭ НАН Украины, авторы: К.А. Лукин и другие

  • SAR processor

    Radiometric coherent image

    Rec.

    Ref.

    Ran

    ge

    Point-like source(emitting object)

    Interferometric radiometer response Synthesized (SAR) beam

    OX

    Y

    Radiometric Coherent Imaging

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    150

    Даль

    ность

    Отклик бистатического радиометра

    Луч антенны с синтезируемой диаграммой направленности

    1 2

    Даль

    ност

    ь

    Моделирование откликов бистатического радиометра с антеннами с синтезируемой диаграммой направленности от системы точечных излучателей.

    Даль

    ность

    Радар

    Объект

    Бистатический радар

    Объект

    Бистатический радиометр

    Объект

    l1-l2l1+l22l

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    ( ) ( ),

    ( , ) ,1

    A jw x yc aI x y R x y ea aa

    τ = ∆τ ⋅∑

    =

    ( , ) aal (x, y)

    x yc

    ∆∆τ =

    ( )( )

    1exp 22 22i

    w j la i ap

    εµ ϕ = π − λ

    (1)

    (2)

    (3)

    Radiometric Coherent Imaging

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    Radiometer calibration using NW generator

    SAR beam 1

    SAR beam 2 Resolution

    cell

    Target

    SAR beam 1

    SAR beam 2

    Range

    Baseline

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    4.2) Radiometric coherent imaging

    antennas positions= 31 (La=9cm)

    Temperature of all objects is near 300K. Absorbers are objects with the highest emissivity and “beam usage efficiency” Near range targets are not repeatable from measurement to measurement.

    antennas positions= 51 (La=15cm)

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Conclusions Noise radar gives radar engineers unique Capabilities in Radar design….

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Conclusions Noise Radar gives radar engineers unique Capabilities in Radar design…. …but it requires from them overcoming stereotypes of Traditional Radar engineering

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    What is needed

    156 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    What is needed FUNDING!

    157 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    What is needed FUNDING!

    More researchers making advances

    158 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    Final thoughts (borrowed from Ram Narayanan –

    Penstate)

  • R.Narayanan & K.Lukin Noise Radar History and Future.. PENSTATE &

    What is needed FUNDING!

    International cooperation of NR

    and SP researchers High-level industry involvement to

    promote commercial development 160 4/7/2014 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    4/7/2014 161 NRT-2012 Yalta Crimea UKRAINE

  • PENSTATE &

    R.Narayanan & K.Lukin Noise Radar History and Future..

    4/7/2014 162 NRT-2012 Yalta Crimea UKRAINE

    International Conference on Noise Radar Technology

    Yalta, Crimea, UKRAINE, September 27-29, 2012

    Organized by

    Laboratory of Nonlinear Dynamics of Electronic Systems, Institute for Radiophysics and Electronics, NAS of Ukraine,

    IRE NASU

    in cooperation with

    IEEE AP/C/EMC/SP Kharkov Joint Chapter of Ukraine Section, Academy of Sciences of Applied Radioelectronics, and National Antenna Association of Ukraine

    APPLIEDRADIO

    ELECTRONICS

    Noise Radar Technology - NRT-2012

    …10 Years after NRTW-2002…

    27-29 September, 2012, Yalta, Crimea, UKRAINE

  • Thank You !

    History and Current Research of the Noise Radar �(Fifty Years of Noise Radar) �NRT Developments�in LNDES �IRE NAS of UkraineSlide Number 2OutlineSlide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Waveform comparisonSlide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Richard Bourret & Billy Horton’s seminal papersDouble Spectral Processing in Noise RadarDouble Spectral Processing in Noise RadarNoise Radar Development ErasNoise Radar Development ErasNoise Radar Development ErasNoise Radar Development ErasThe 1980sAutodyne Effect in MMW Chaos Generator Early 1990sKa-band CW Noise RadarSlide Number 34Active research groups on both sides� of the Atlantic (and beyond!)Intensive research on noise radar technology and implementationSlide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41First X-band Ground Based SARSlide Number 43Slide Number 44Slide Number 45Pulse-Coherent �Noise Radar� and�Noise Waveform Arc SAR Surveillance modeArc-SAR scanningArc-SAR PerformanceOptical imageOptical and SAR imagesSlide Number 52Helical – Slot Antenna with Beam Synthesis Helical-Slot Synthetic Aperture Antenna Testing Schematic of 1D Tape Sliding –Slot AntennaSAR Images generated with help of �1D Tape Sliding –Slot AntennaSlide Number 57Ka-band Ground Based �Noise Waveform SAR�and � Measurement of Shifts in Bell Tower of Sophia Cathedral (Kiev)��Slide Number 59Slide Number 60MeasurementsSlide Number 62GB NW-SAR images of �Sophia Bell TowerDifferential Interferogramms �of Sophia Bell TowerD-InSAR precision�Field Trials Campaign.�Kharkov, UKRAINE�Summer 2008 Andy Stove (UK) and Konstantin Lukin (UA) �before field trials , June 2008, Kharkov GB NW-SAR specificationsSlide Number 69Slide Number 70Proposed netted MIMO noise radar systemPossible field implementationSlide Number 73Interference Immunity of Pulse Radar using Noise Waveform and ChirpReceived signal after compression without interferenceAveraged compressed signal�(monochromatic interference)SAR Interference Immunity�(coherent monochromatic Interference)Slide Number 78Slide Number 79Slide Number 80Slide Number 81Slide Number 82Slide Number 83Slide Number 84Stepped frequency Noise Radar�Switching of central frequency of narrowband random waveforms Signal processing stages in stepped frequency radarSlide Number 87Slide Number 88Slide Number 89Slide Number 90Slide Number 91Slide Number 92Slide Number 93Slide Number 94Slide Number 95Slide Number 96Slide Number 97Slide Number 98Slide Number 99Slide Number 100Slide Number 1013D SAR image formationScene for 3D imagingScene for 3D imaging3D images. Detection of targetsSlide Number 106Slide Number 1071.82.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.05.25.45.65.86.06.26.46.66.87.07.27.47.67.8Slide Number 139Slide Number 140Slide Number 141SAR Image using Static Antenna Array and Random Waveform SAR Image using� Static Antenna Array and Random Waveform Antenna with Aperture synthesizing for �W-band (4 mm) Microwave “Video Camera” RANGE-AZIMUTH RADIOMETRIC IMAGING�USING Ka-BAND� ANTENNA WITH SYNTHESIZED BEAMSlide Number 146Slide Number 147Slide Number 148Slide Number 149Slide Number 150Slide Number 151Slide Number 152Slide Number 153ConclusionsConclusionsWhat is neededWhat is neededWhat is neededFinal thoughts� (borrowed from Ram Narayanan – Penstate)��What is neededSlide Number 161Slide Number 162Slide Number 163