Top Banner
Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct 2016 1 / 14
22

Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

May 29, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Kolmogorov’s Superposition Theorem

Xiling Zhang

06 Oct 2016

Xiling Zhang PG Colloquium 06 Oct 2016 1 / 14

Page 2: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Hilbert’s 13th Problem

Algebraic equations (under a suitable transformation) of degree up to 6can be solved by functions of two variables. What about

x7 + ax3 + bx2 + cx + 1 = 0?

Hilbert’s conjecture: x(a, b, c) cannot be expressed by a superposition(sums and compositions) of bivariate functions.

Xiling Zhang PG Colloquium 06 Oct 2016 2 / 14

Page 3: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Question: can every continuous (analytic, C∞, etc) function of nvariables be represented as a superposition of continuous (analytic, C∞,etc) functions of n − 1 variables?

Theorem (D. Hilbert)

There is an analytic function of three variables that cannot be expressed asa superposition of bivariate ones.

Theorem (A. Vitushkin)

∀n/α > n′/α′, α′ > 1, α, α′ /∈ N, there is an f ∈ C [α],α−[α](Rn) that isnot a superposition of functions in C [α′],α′−[α′](Rn′).

Xiling Zhang PG Colloquium 06 Oct 2016 3 / 14

Page 4: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Question: can every continuous (analytic, C∞, etc) function of nvariables be represented as a superposition of continuous (analytic, C∞,etc) functions of n − 1 variables?

Theorem (D. Hilbert)

There is an analytic function of three variables that cannot be expressed asa superposition of bivariate ones.

Theorem (A. Vitushkin)

∀n/α > n′/α′, α′ > 1, α, α′ /∈ N, there is an f ∈ C [α],α−[α](Rn) that isnot a superposition of functions in C [α′],α′−[α′](Rn′).

Xiling Zhang PG Colloquium 06 Oct 2016 3 / 14

Page 5: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Theorem (A. Kolmogorov, 1956; V. Arnold, 1957)

Given n ∈ Z+, every f0 ∈ C ([0, 1]n) can be reprensented as

f0(x1, x2, · · · , xn) =2n+1∑q=1

gq

n∑p=1

φpq(xp)

,

where φpq ∈ C [0, 1] are increasing functions independent of f0 andgq ∈ C [0, 1] depend on f0.

Can choose gq to be all the same gq ≡ g (Lorentz, 1966).

Can choose φpq to be Holder or Lipschitz continuous, but not C 1

(Fridman, 1967).

Can choose φpq = λpφq where λ1, · · · , λn > 0 and∑

p λp = 1(Sprecher, 1972).

Xiling Zhang PG Colloquium 06 Oct 2016 4 / 14

Page 6: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Theorem (A. Kolmogorov, 1956; V. Arnold, 1957)

Given n ∈ Z+, every f0 ∈ C ([0, 1]n) can be reprensented as

f0(x1, x2, · · · , xn) =2n+1∑q=1

gq

n∑p=1

φpq(xp)

,

where φpq ∈ C [0, 1] are increasing functions independent of f0 andgq ∈ C [0, 1] depend on f0.

Can choose gq to be all the same gq ≡ g (Lorentz, 1966).

Can choose φpq to be Holder or Lipschitz continuous, but not C 1

(Fridman, 1967).

Can choose φpq = λpφq where λ1, · · · , λn > 0 and∑

p λp = 1(Sprecher, 1972).

Xiling Zhang PG Colloquium 06 Oct 2016 4 / 14

Page 7: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Proof (J-P. Kahane, 1975): Let Φ := φ ∈ C [0, 1]: φ increasing,φ(0) = 0, φ(1) = 1 and λ1, · · · , λn > 0 be distinct and sum up to 1.

Let ε > 0 to be determined. For each f ∈ C ([0, 1]n), f 6≡ 0, consider theset Ω(f ) of (φ1, · · · , φ2n+1) s.t. ∃h ∈ C [0, 1] s.t. ‖h‖ 6 ‖f ‖ and∣∣∣∣∣∣f (x1, · · · , xn)−

2n+1∑q=1

h

n∑p=1

λpφq(xp)

∣∣∣∣∣∣ < (1− ε)‖f ‖. (∗)

Ω(f ) is clearly an open set in Φ2n+1. If it is also dense (non-empty), thenconsider an element (φ1, · · · , φ2n+1) in the set

⋂f ∈F Ω(f ), where F is a

countable dense subset of C ([0, 1]n) not containing f ≡ 0.

Xiling Zhang PG Colloquium 06 Oct 2016 5 / 14

Page 8: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Proof (J-P. Kahane, 1975): Let Φ := φ ∈ C [0, 1]: φ increasing,φ(0) = 0, φ(1) = 1 and λ1, · · · , λn > 0 be distinct and sum up to 1.

Let ε > 0 to be determined. For each f ∈ C ([0, 1]n), f 6≡ 0, consider theset Ω(f ) of (φ1, · · · , φ2n+1) s.t. ∃h ∈ C [0, 1] s.t. ‖h‖ 6 ‖f ‖ and∣∣∣∣∣∣f (x1, · · · , xn)−

2n+1∑q=1

h

n∑p=1

λpφq(xp)

∣∣∣∣∣∣ < (1− ε)‖f ‖. (∗)

Ω(f ) is clearly an open set in Φ2n+1. If it is also dense (non-empty), thenconsider an element (φ1, · · · , φ2n+1) in the set

⋂f ∈F Ω(f ), where F is a

countable dense subset of C ([0, 1]n) not containing f ≡ 0.

Xiling Zhang PG Colloquium 06 Oct 2016 5 / 14

Page 9: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Then for all f0 ∈ C ([0, 1]n), f0 6≡ 0, ∃f ∈ F s.t. ‖f ‖ 6 ‖f0‖ and‖f0 − f ‖ 6 ε

2‖f0‖, and a function h satisfying ‖h‖ 6 ‖f ‖ and (∗).

Write h = γ(f0) and put γ(0) = 0. Define, by induction, hj = γ(fj) and

fj+1(x1, · · · , xp) = fj(x1, · · · , xp)−2n+1∑q=1

hj

n∑p=1

λpφq(xp)

.

By (∗) the series∑∞

j=0 hj converges in C [0, 1] to g , et voila.

By Baire’s category theorem, Kolmogorov’s representation holds for quasiall (φ1, · · · , φ2n+1)!

It remains to show that Ω(f ) is dense in Φ2n+1.

Xiling Zhang PG Colloquium 06 Oct 2016 6 / 14

Page 10: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Let G 6= ∅ be an open in Φ2n+1 and δ > 0 to be defined. Denote for j ∈ Z,q = 1, · · · , 2n + 1, Iq = Iq(j) = [qδ + (2n + 1)jδ, qδ + (2n + 1)jδ + 2nδ].

For each fixed q, Iq(j) are disjoint and separated by δ.

∀x ∈ [0, 1] appear in one Iq for all values of q except for at most one.

Define Pq = Pq(j1, · · · , jn) the set of all cubes Iq(j1)× · · · × Iq(jn), thenall points in [0, 1]n appear in one Pq for all values of q except for at mostn, i.e., for at least n + 1 values of q.

Let ∆ ⊂ Φ2n+1 s.t. each φq is constant on each Iq and linear betweenIq(j) and Iq(j + 1). Then choose δ = δ(G , ε, f ) s.t.

ωf (Pq) = supPqf − infPq f 6 ε‖f ‖;

G ∩∆ 6= ∅.

Xiling Zhang PG Colloquium 06 Oct 2016 7 / 14

Page 11: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Let G 6= ∅ be an open in Φ2n+1 and δ > 0 to be defined. Denote for j ∈ Z,q = 1, · · · , 2n + 1, Iq = Iq(j) = [qδ + (2n + 1)jδ, qδ + (2n + 1)jδ + 2nδ].

For each fixed q, Iq(j) are disjoint and separated by δ.

∀x ∈ [0, 1] appear in one Iq for all values of q except for at most one.

Define Pq = Pq(j1, · · · , jn) the set of all cubes Iq(j1)× · · · × Iq(jn), thenall points in [0, 1]n appear in one Pq for all values of q except for at mostn, i.e., for at least n + 1 values of q.

Let ∆ ⊂ Φ2n+1 s.t. each φq is constant on each Iq and linear betweenIq(j) and Iq(j + 1). Then choose δ = δ(G , ε, f ) s.t.

ωf (Pq) = supPqf − infPq f 6 ε‖f ‖;

G ∩∆ 6= ∅.

Xiling Zhang PG Colloquium 06 Oct 2016 7 / 14

Page 12: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Let G 6= ∅ be an open in Φ2n+1 and δ > 0 to be defined. Denote for j ∈ Z,q = 1, · · · , 2n + 1, Iq = Iq(j) = [qδ + (2n + 1)jδ, qδ + (2n + 1)jδ + 2nδ].

For each fixed q, Iq(j) are disjoint and separated by δ.

∀x ∈ [0, 1] appear in one Iq for all values of q except for at most one.

Define Pq = Pq(j1, · · · , jn) the set of all cubes Iq(j1)× · · · × Iq(jn), thenall points in [0, 1]n appear in one Pq for all values of q except for at mostn, i.e., for at least n + 1 values of q.

Let ∆ ⊂ Φ2n+1 s.t. each φq is constant on each Iq and linear betweenIq(j) and Iq(j + 1). Then choose δ = δ(G , ε, f ) s.t.

ωf (Pq) = supPqf − infPq f 6 ε‖f ‖;

G ∩∆ 6= ∅.

Xiling Zhang PG Colloquium 06 Oct 2016 7 / 14

Page 13: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Fix an element (φ1, · · · , φ2n+1) ∈ G ∩∆. By (necessarily) modifying theφq a little bit, the function χq(x1, · · · , xn) :=

∑np=1 λpφq(xp) takes

different (constant) values on different Pq (since λp’s are distinct).

For all Pq set h(χq(Pq)) = 2εf (Pq); it’s well defined since (q, j1, · · · , jn)→ χq(Pq(j1, · · · , jn)) is injective. Extend it onto [0, 1] s.t. ‖h‖ 6 2ε‖f ‖.

For any point x ∈ [0, 1]n, if x ∈ Pq, then h(χq(x)) = 2εf (x) + ρ, where|ρ| = 2ε|f − f | 6 2ε2‖f ‖. Since x appear in at least n + 1 cubes Pq, bychoosing ε < (2n + 1)−1 we have, by the triangle inequality,∣∣∣∣∣∣f (x)−

2n+1∑q=1

h(χq(x))

∣∣∣∣∣∣ 6(1− (2n + 1)ε)|f (x)|+ 2(n + 1)ε2‖f ‖+ 2nε‖f ‖

6 (1− ε)‖f ‖.

That validates (∗) and so G ∩∆ ⊂ Ω(f ). Take G = (Φ2n+1) and thedensity follows from the density of ∆.

Xiling Zhang PG Colloquium 06 Oct 2016 8 / 14

Page 14: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Fix an element (φ1, · · · , φ2n+1) ∈ G ∩∆. By (necessarily) modifying theφq a little bit, the function χq(x1, · · · , xn) :=

∑np=1 λpφq(xp) takes

different (constant) values on different Pq (since λp’s are distinct).

For all Pq set h(χq(Pq)) = 2εf (Pq); it’s well defined since (q, j1, · · · , jn)→ χq(Pq(j1, · · · , jn)) is injective. Extend it onto [0, 1] s.t. ‖h‖ 6 2ε‖f ‖.

For any point x ∈ [0, 1]n, if x ∈ Pq, then h(χq(x)) = 2εf (x) + ρ, where|ρ| = 2ε|f − f | 6 2ε2‖f ‖. Since x appear in at least n + 1 cubes Pq, bychoosing ε < (2n + 1)−1 we have, by the triangle inequality,∣∣∣∣∣∣f (x)−

2n+1∑q=1

h(χq(x))

∣∣∣∣∣∣ 6(1− (2n + 1)ε)|f (x)|+ 2(n + 1)ε2‖f ‖+ 2nε‖f ‖

6 (1− ε)‖f ‖.

That validates (∗) and so G ∩∆ ⊂ Ω(f ). Take G = (Φ2n+1) and thedensity follows from the density of ∆.

Xiling Zhang PG Colloquium 06 Oct 2016 8 / 14

Page 15: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

“The Baire category is a profound triviality which condenses the folkwisdom of a generation of ingenious mathematicians into a singlestatement.”

T. W. Korner, “Linear Analysis”, Sect. 6, p. 13.

Xiling Zhang PG Colloquium 06 Oct 2016 9 / 14

Page 16: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Geometric Interpretation (Doss, Hedberg, Kahane)

Let Γp be the “increasing” curve in R2n+1 defined by

Xq = φpq(t), t ∈ [0, 1], q = 1, · · · , 2n + 1,

and consider the algebraic sum of these n curves E = Γ1 + · · ·+ Γn.Kolmogorov’s theorem then says:

the map Γ1 × · · · × Γn → E is one-one - E is a distorted cube;

E is an interpolation set: every continuous function on E can bewritten in the form g(X1) + · · ·+ g(Xn) where g is continuous.

Theorem (J-P. Kahane, 1980)

Consider increasing curves Γ1, · · · , Γn in Rd . The map Γ1 × · · · × Γn → Eis quasi surely one-one iff d > 2n + 1

Xiling Zhang PG Colloquium 06 Oct 2016 10 / 14

Page 17: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Geometric Interpretation (Doss, Hedberg, Kahane)

Let Γp be the “increasing” curve in R2n+1 defined by

Xq = φpq(t), t ∈ [0, 1], q = 1, · · · , 2n + 1,

and consider the algebraic sum of these n curves E = Γ1 + · · ·+ Γn.Kolmogorov’s theorem then says:

the map Γ1 × · · · × Γn → E is one-one - E is a distorted cube;

E is an interpolation set: every continuous function on E can bewritten in the form g(X1) + · · ·+ g(Xn) where g is continuous.

Theorem (J-P. Kahane, 1980)

Consider increasing curves Γ1, · · · , Γn in Rd . The map Γ1 × · · · × Γn → Eis quasi surely one-one iff d > 2n + 1

Xiling Zhang PG Colloquium 06 Oct 2016 10 / 14

Page 18: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Any Explicit Constructions for λp, φq and g?

For γ ∈ Z+ consider the γ-rationals in [0, 1]: Qγ :=⋃∞

k=1Qγk , where

Qγk :=β(i , k) =

∑kr=1 irγ

−r : ir ∈ 0, 1, · · · , γ − 1

.

Definition (Sprecher’s function, 1996)

Let φ : [0, 1]→ R be the unique continuous function s.t. ∀β(i , k) ∈ Qγk ,

φ(β(i , k)) =k∑

r=1

ir2−mγ−nr−mr−1

n−1 ,

where ir := ir − (γ − 2) 〈ir 〉 , mr := 〈ir 〉(

1 +∑r

s=1

∑r−1t=s [it ]

), ∀r > 1,

with 〈i1〉 = [i1] := 0, and 〈ir 〉 := 1ir=γ−1, [ir ] := 1ir>γ−2 for r > 2.

Xiling Zhang PG Colloquium 06 Oct 2016 11 / 14

Page 19: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Definition (Kolmogorov maps)

λ1 := 12 , λp = 1

2

∑∞r=1 γ

−(p−1) nr−1n−1 for p = 2, · · · , n; λ :=

∑np=1 λp.

φq(x) := 14n+2φ

(x + q

γ(γ−1)

)+ q

(2n+1)λ , q = 0, 1, · · · , 2n.

ξq(x1, · · · , xn) :=∑n

p=1 λpφq(xq), q = 0, 1, · · · , 2n.

The ξq’s take different values on different γ-rational cubes Pq.

Given f ∈ C ([0, 1]n), similar to Kahane’s proof let

g(x) :=1

n + 1f (cq(j1, · · · , jn)),

for all x ∈ ξq(Pq(j1, · · · , n)), where cq(j1, · · · , jn) is the center of eachcube, and linearise in between cubes.

Xiling Zhang PG Colloquium 06 Oct 2016 12 / 14

Page 20: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Definition (Kolmogorov maps)

λ1 := 12 , λp = 1

2

∑∞r=1 γ

−(p−1) nr−1n−1 for p = 2, · · · , n; λ :=

∑np=1 λp.

φq(x) := 14n+2φ

(x + q

γ(γ−1)

)+ q

(2n+1)λ , q = 0, 1, · · · , 2n.

ξq(x1, · · · , xn) :=∑n

p=1 λpφq(xq), q = 0, 1, · · · , 2n.

The ξq’s take different values on different γ-rational cubes Pq.

Given f ∈ C ([0, 1]n), similar to Kahane’s proof let

g(x) :=1

n + 1f (cq(j1, · · · , jn)),

for all x ∈ ξq(Pq(j1, · · · , n)), where cq(j1, · · · , jn) is the center of eachcube, and linearise in between cubes.

Xiling Zhang PG Colloquium 06 Oct 2016 12 / 14

Page 21: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

Can We Compute Them?

Theorem

If the integers n > 2 and γ > 2n + 2, then the Sprecher’s function andKolmogorov maps are all computable. Thus the above construction gives acomputable representation.

Let ρ be the Cauchy representation of R, i.e. ρ(x) = (qj) ∈ QN convergingto x rapidly: |qk − qj | 6 2−k , ∀j > k.

Definition (Computable functions)

A function f : R→ R is computable if there exists a Turing machine Mwith one-way output tape and alphabet Σ that computes a functionFM : Σω → Σω s.t. ρ FM(a) = f ρ(a) for all a ∈dom(f ρ).

Xiling Zhang PG Colloquium 06 Oct 2016 13 / 14

Page 22: Kolmogorov’s Superposition Theorem › ~xzhang › files › oct_2016_xiling.pdf · Kolmogorov’s Superposition Theorem Xiling Zhang 06 Oct 2016 Xiling Zhang PG Colloquium 06 Oct

References

1 J-P. Kahane, Sur le Theoreme de Superposition de Kolmogorov,Journal of Approximation Theory 13 229-234, 1975.

2 J-P. Kahane, Baire’s Category Theorem and Trigonometric Series,Journal d’Analyse Mathematique, vol 80, 2000.

3 J-P. Kahane, Sur le Treizieme Probleme de Hilbert, Le Theoreme deSuperposition de Kolmogorov, et les Sommes Algebrique d’ArcsCroissants, Harmonic Analyis Iraklion 1978 Proceedings, LectureNotes in Math. 781, Springer-Verlag, Berlin, 1980, pp. 76-101.

4 E. Charpentier, A. Lesne, N. Nikolski, Kolmogorov’s Heritage inMathematics, Springer, 2004

Xiling Zhang PG Colloquium 06 Oct 2016 14 / 14