Top Banner
Kogge Stone adder Peeyush Pashine(2011H140033H)
15

Kogge Stone Adder

Dec 07, 2014

Download

Documents

Peeyush Pashine

 
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Kogge Stone Adder

Kogge Stone adder

Peeyush Pashine(2011H140033H)

Page 2: Kogge Stone Adder

Prefix adder

• What is a prefix circuit ?

Page 3: Kogge Stone Adder

CSE 246 3

Prefix Adder

• Given:– n inputs (gi, pi)– An operation o

• Compute:– yi= (gi, pi) o … o (g1, p1) ( 1 <= i <= n)

• Associativity– (A o B) o C = A o ( B o C)

(g’’, p’’) o (g’, p’) = (g, p) g=g’’ + p’’g’ p=p’’p’

gi=

pi=

a, i=1

aibi , otherwise

1, i=1

ai xor bi , otherwise

Page 4: Kogge Stone Adder

Group PG logic

Page 5: Kogge Stone Adder

CSE 246 5

Prefix Adder: Graph Representation

• Example: Ripple Carry Adder

ai bi

(gi , pi)

x y

xoy xoy

Page 6: Kogge Stone Adder

Prefix adder(continued…)

Prefix circuit theory provides a solid theoretical basis for wide range of design trade-offs between

• Delay• Area• Wire complexity

Page 7: Kogge Stone Adder

Basic type of prefix circuits

Page 8: Kogge Stone Adder

8CSE 246

Prefix Adders: Brent – Kung Adder15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sc(16) = 26 dc(16) = 6 total = 32

Page 9: Kogge Stone Adder

Kogge stone adder radix 2(A

0, B

0)

(A1, B

1)

(A2, B

2)

(A3, B

3)

(A4, B

4)

(A5, B

5)

(A6, B

6)

(A7, B

7)

(A8, B

8)

(A9, B

9)

(A10

, B10

)

(A11

, B11

)

(A12

, B12

)

(A13

, B13

)

(A14

, B14

)

(A15

, B15

)

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

Page 10: Kogge Stone Adder

Kogge Stone adder

Brent –kung adder

Page 11: Kogge Stone Adder

11CSE 246

Kogge stone Prefix Adder

8 7 6 5 4 3 2 1

35

36

7

10

9

14

11

15

13

22 18

15

21

26

2836

Page 12: Kogge Stone Adder

12CSE 246

Prefix Adders: Conditional Sum Adder

• For output yi, there is an alphabetical tree covering inputs (xi, xi-1, …, x1)

8 7 6 5 4 3 2 1 alphabetical

tree: Binary tree Edges do not

cross

Page 13: Kogge Stone Adder

13CSE 246

Prefix Adders: Conditional Sum Adder

• From input x1, there is a tree covering all outputs (yi, yi-1, …, y1)

8 7 6 5 4 3 2 1

The nodes in this tree can be reduced to

(g, p) o c = g+pc

Page 14: Kogge Stone Adder

Kogge stone radix 4 adder(a

0, b

0)

(a1, b

1)

(a2, b

2)

(a3, b

3)

(a4, b

4)

(a5, b

5)

(a6, b

6)

(a7, b

7)

(a8, b

8)

(a9, b

9)

(a1

0, b

10)

(a1

1, b

11)

(a1

2, b

12)

(a1

3, b

13)

(a1

4, b

14)

(a1

5, b

15)

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

0

S1

1

S1

2

S1

3

S1

4

S1

5

Page 15: Kogge Stone Adder

Comparison between radix 2 and radix 4 koggstone