Top Banner
Dynamical Systems Innovation Lab July 812, 2013 Working Definitions for Key Constructs and Complex Systems Graphics/Figures Contents: 1. Working Definitions for Key Constructs……………………........................................................................ p. 2 2. Complex Systems Graphics/Figures………………………………………………….……………………………. p. 10
15

Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Mar 13, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

 

 

 

Dynamical  Systems  Innovation  Lab    July  8-­‐12,  2013  

Working  Definitions  for  Key  Constructs  and                                                                                                                                    Complex  Systems  Graphics/Figures  

     Contents:    

1. Working  Definitions  for  Key  Constructs……………………........................................................................   p.  2  

2. Complex  Systems  Graphics/Figures………………………………………………….…………………………….   p.  10        

Page 2: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Working  Definitions  for  Key  Constructs                         2  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

Adaptivity    

Adaptivity  is  an  individual  competency  that  allows  for  “the  use  of  different  orientations  and  strategies  in  order  to  satisfy  goals  in  a  manner  not  incongruent  with  the  demands  of  the  situations  encountered”  (Vallacher  et  al.,  2013;  p.  85-­‐6).      

Attractor   “An  attractor  [italics  added]  refers  to  a  subset  of  potential  states  or  patterns  of  change  to  which  a  system’s  behavior  converges  over  time.  Metaphorically,  an  attractor  “attracts”  the  system’s  behavior,  so  that  even  very  different  starting  states  tend  to  evolve  toward  the  subset  of  states  defining  the  attractor.”  (Vallacher  et  al.,  2010;  p.  264-­‐5)  In  social  systems,  an  attractor  represents  “stable  patterns  of  thought,  feeling,  and  action  on  the  part  of  group  members.”  (Vallacher  et  al.,  2013;  p.  105)    

Basin  of  Attraction    

“A  basin  of  attraction  [sic]  specifies  the  range  of  states  [within  the  attractor  landscape  model]  that  will  evolve  toward  the  attractor.”  (Vallacher  et  al.,  2010;  p.  266)  “If  a  system  has  multiple  attractors,  a  strong  influence  on  the  system  can  throw  the  system  in  to  the  basin  of  attraction  of  a  different  attractor,  resulting  in  movement  toward  an  entirely  different  equilibrium  state.”  (Nowak  &  Vallacher,  1998;  p.  59)    

Bifurcation    

A  bifurcation  is  a  change  in  the  attractor  landscape.  “Bifurcations  can  be  manifest  in  several  different  ways:  a  change  from  a  single  attractor  to  two  attractors,  a  change  from  a  single  attractor  to  a  periodic  attractor  (oscillation  between  two  or  more  coherent  states  on  some  timescale),  and  a  sequence  of  changes  from  a  single  attractor  through  periodic  and  multi-­‐periodic  attractors  to  a  chaotic  attractor  (a  complex  trajectory  of  behavior  that  never  repeats  and  is  highly  sensitive  to  initial  conditions).”  (Vallacher  et  al.,  2013;  p.  151)    

Catastrophe  Theory    

Catastrophe  Theory  describes  the  phenomenon  where,  in  a  system  of  low  complexity,  a  perturbation  has  the  potential  to  change  the  system  in  a  disproportionate,  non-­‐linear  manner  such  that  it  leads  to  widespread,  perhaps  even  catastrophic,  effects.  This  is  in  contrast  to  a  high-­‐complexity  system,  where  perturbations  are  more  likely  to  stay  confined  to  only  the  relevant  components  of  the  system.    

Cellular  Automata    

Cellular  automata  are  a  type  of  aggregation  model  that  demonstrates  how  a  simple  system  of  interdependent  actors,  following  very  simple  rules,  can  create  randomness  or  complexity.  This  type  of  model  was  exemplified  by  Stephen  Wolfram,  in  his  book  A  New  Kind  of  Science  (2002),  to  show  how  simple  rules  can  be  used  to  explain  many  different  types  of  complex  systems.    

Chaos    

Chaos,  in  dynamical  systems  theory,  “means  that  a  deterministic  system,  which  is  completely  uninfluenced  by  chance,  can  generate  effects  so  complex  and  unpredictable  that  they  appear  to  be  due  to  chance.”  (Vallacher  et  al.,  2013;  p.  45)  In  other  words,  social  behaviors  that  seem  random  can  actually  be  the  result  of  deterministic  social  mechanisms  operating  in  the  system.      

Page 3: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Working  Definitions  for  Key  Constructs                         3  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

Collapse  of  Multi-­‐dimensionality    

Specific  to  conflict,  a  collapse  of  multidimensionality  occurs  when  individuals  and  groups  who  normally  share  rich,  multidimensional  dynamics  of  relations  and  common  goals,  lose  this  multidimensionality  and  collapse  into  a  one-­‐dimensional  dynamic  system  organized  around  antagonism  between  parties.  (Vallacher  et  al.,  2013;  p.  130-­‐131)    

Complex  Systems  

 A  complex  system  is  a  system  “composed  of  many  interconnected  elements.”  (Vallacher  et  al.,  2010)  A  complex  adaptive  system  is  a  type  of  complex  system  in  that  is  composed  of  multiple  interconnected  elements,  and  has  the  capacity  to  adapt  and  change  in  response  to  perturbations  from  the  environment.    

Complexity  Science    

 “Complexity  science  [italics  added]  introduces  a  new  way  to  study  regularities  that  differs  from  traditional  science.  Traditional  science  has  tended  to  focus  on  simple  cause–effect  relationships.  In  the  ideal  gas  law,  a  rise  in  temperature  leads  to  a  corresponding  rise  in  pressure.  Similarly,  Newton’s  well-­‐known  formula  that  force  equals  the  product  of  mass  and  acceleration  (F=MA)  also  expresses  a  simple  relationship…  Complexity  science  posits  simple  causes  for  complex  effects.  At  the  core  of  complexity  science  is  the  assumption  that  complexity  in  the  world  arises  from  simple  rules.  However,  these  rules…are  unlike  the  rules  (or  laws)  of  traditional  science…”  (p.130).  “Traditional  science  seeks  direct  causal  relations  between  elements  in  the  universe,  whereas  complexity  theory  drops  down  a  level  to  explain  the  rules  that  govern  the  interactions  between  lower-­‐order  elements  that  in  the  aggregate  create  emergent  properties  in  higher-­‐level  systems.”  (Phelan,  2001,  p.  132)    

Control  Parameter    

Within  the  attractor  landscape  model,  a  control  parameter  is  an  external  factor  that  can  “promote  quantitative  changes  in  a  system’s  behavior  (e.g.  moving  the  system  from  a  manifest  attractor  to  a  latent  attractor).”  (Vallacher  et  al.,  2013;  p.  151)  In  simulations,  control  parameters  represent  the  simple  rules  that  operate  within  each  cell  of  the  simulation  grid,  which  are  set  with  a  specific  level  of  probability.  For  example,  in  a  basic  simulation  of  Deutsch’s  Crude  Law  of  Social  Relations,  a  rule  might  be  that  a  competitive  behavior  will  elicit  a  new  competitive  behavior.    

Coordination    

Coordination  refers  to  the  pattern  of  mutual  influences  between  elements  of  a  complex  system  that  maintains  the  “coherence  and  stability  of  the  higher-­‐order  state.”  (Vallacher  et  al.,  2013;  p.  61)  A  related  concept  is,  synchronization.  This  occurs  when  individuals  within  a  system  begin  to  align  their  mental  models  of  the  system,  which  contributes  to  the  construction  of  a  shared  reality.  For  example,  “synchronization  of  different  mental  models  of  a  conflict  …can  contribute  to  the  construction  of  a  shared  reality  regarding  a  conflict  that  might  otherwise  be  intractable.”  (Vallacher  et  al.,  2013;  p.  217)    

Dynamical  Minimalism    

Dynamical  minimalism  describes  the  seemingly  paradoxical  insight,  from  the  nonlinear  dynamical  systems  perspective,  that  extremely  complex  phenomena  can  be  understood  based  on  a  small  number  of  simple  rules.  

Page 4: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Working  Definitions  for  Key  Constructs                         4  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

 Dynamical  Systems  (Time  and  Space)    

 “A  dynamical  system  [italics  added]  is  defined  as  a  set  of  inter-­‐connected  elements  (such  as  beliefs,  feelings,  and  behaviors)  that  change  and  evolve  over  time  in  accordance  with  simple  rules.  A  change  in  each  element  depends  on  influences  from  other  elements.  Due  to  these  mutual  influences,  the  system  as  a  whole  evolves  in  time.  [For  example],  the  effects  resulting  from  changes  in  any  element  of  a  conflict  (such  as  level  of  hostilities),  depends  on  rules-­‐based  influences  of  various  other  elements  (each  person’s  motives,  attitudes,  actions,  etc.),  which  evolve  over  time  to  affect  the  general  pattern  of  interactions  (positive  or  negative)  of  the  disputants.”  (Coleman,  in  press;  p.  9)    

Emergence   Emergence  refers  to  the  observation  that  “the  properties  of  the  whole  system  are  often  quite  different  from  the  properties  of  its  parts.  This  is  widely  recognized  in  the  physical  sciences.  For  example,  hydrogen  and  oxygen  together  are  an  explosive  mixture  of  gasses,  but  water—which  represents  the  interaction  of  hydrogen  and  oxygen—is  stable  and  wet.  Examples  of  emergence  abound  as  well  in  the  social  sciences.  For  example,  individually  peaceful  people  can  assemble  into  a  dangerous,  violent  mob”  (Vallacher  et  al.,  2013;  p.  11).    Or,  viewed  in  another  way,  “[emergence]  simply  means  that  the  higher-­‐order  property  or  behavior  that  results  from  the  mutual  influence  among  elements  cannot  be  reduced  to  the  properties  of  the  elements.”  (Vallacher  et  al.,  2013;  p.  60).    Burns  (2007),  from  an  action  research  perspective,  suggests  that  emergence  is  also  important  when  responding  to  complex  social  systems.    He  notes  that  in  addition  to  understanding  systems  through  the  lens  of  emergence,  emergence  should  also  characterize  action  research  design.    

Feedback  Loops  

“Each  element  [of  a  dynamical  system]  can  be  stimulated  and  perpetuated  along  its  current  path  through  reinforcing  feedback  loops  [sic]  between  elements,  where  one  element  stimulates  another  along  its  current  trajectory  and  this  element,  in  turn,  stimulates  the  first  –  thus  making  a  loop.  We  see  this  when  a  negative  act  by  an  outgroup  member  links  to  negative  memories  and  feelings  from  previous  encounters  and  increase  a  general  sense  of  animosity  toward  the  outgroup  and  the  likelihood  that  they  will  perceive  future  acts  as  negative.  Elements  can  also  obstruct  or  reverse  one  another  via  inhibiting  feedback  loops  [sic]  where  one  element  constrains  another…”  (Vallacher  et  al.,  2013,  p.  121).    

Fixed-­‐Point  Attractor  

“A  fixed  point  attractor  describes  a  system  in  which  all  trajectories  tend  to  a  single  point  in  phase  space,  regardless  of  the  system’s  initial  conditions.  This  means  that  the  set  of  all  dynamical  variables  converges  on  some  set  of  time-­‐independent  constant  values  corresponding  to  an  equilibrium  point  for  the  system.  Fixed-­‐point  attractors  may  prove  useful  in  describing  thoughts  and  behaviors  that  tend  to  a  particular  set  of  values  over  time…  despite  differences  in  initial  conditions  and  external  factors…”  (Nowak  &  Vallacher,  1998;  p.  58-­‐9)      

Page 5: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Working  Definitions  for  Key  Constructs                         5  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

Game  Theory    

Game  theory  is  a  theoretical  approach  to  measuring  conflicts  of  interest  over  time,  which  emphasizes  the  interdependent  nature  of  competition.  The  approach  assumes  rational  decision-­‐making,  and  is  most  effective  at  predicting  behaviors  and  outcomes  in  “zero-­‐sum”  situations.  Overall,  research  using  this  approach  has  established  that  competition  is  not  the  best  strategy,  and  that  instead  parties  that  respond  in  a  “tit-­‐for-­‐tat”  manner  with  a  readiness  to  move  to  cooperation  achieve  the  best  outcomes.  The  “prisoner’s  dilemma”  is  a  well-­‐known  version  of  this  approach.    

Hysteresis    

A  signature  of  non-­‐linear  dynamic  systems,  hysteresis  describes  a  social  phenomenon  where,  upon  the  introduction  of  a  stimulus,  the  initial  point  at  which  a  non-­‐linear  increase  in  a  behavior  is  observed  is  not  the  same  point  for  which  a  decrease  is  observed  following  the  withdrawal  of  that  stimulus.  (Vallacher  et  al.,  2013;  p.  92)  Simply,  hysteresis  is  the  “the  tendency  for  a  system  to  remain  at  its  current  attractor”  (Coleman  et  al,  2011).    

Internal-­‐external  Complexity  Fit      

 “External  complexity  measures  the  amount  of  input,  information,  energy  obtained  from  the  environment  that  the  system  is  capable  of  handling,  processing….Internal  complexity  measures  the  complexity  of  the  representation  of  this  input  by  the  system”  (Vallacher  et  al.,  2013;  p.  71).“The  adaptive  capacity  of  complex  systems  is  thought  to  depend  on  the  match  between  internal  complexity  in  an  organization  and  the  complexity  of  its  environment,  which  is  deemed  the  law  of  requisite  complexity…”  which  “…supports  adaptation  by  engaging  networks  of  interacting  agents  for  learning,  creativity,  and  adaptability.”  (Lord,  Hannah  &  Jennings,  2010;  p.  105)  “The  aim  of  the  system  then  is  to  handle  as  much  input,  as  many  data  as  possible  with  as  simple  a  model  as  possible…Thus,  the  system  will  try  to  increase,  to  maximize  its  external  complexity,  and  to  reduce,  to  minimize  its  internal  complexity”  (Jost,  2004;  p.  71).  “Each  of  these  two  processes  will  operate  on  its  own  time  scale(s),  but  they  are  also  intricately  linked  and  mutually  dependent  upon  each  other.”  (Jost,  2004;  p.  70)    

Initial  Conditions    

Dynamical  systems  are  extremely  sensitive  to  the  initial  conditions  of  the  system.  Even  slight  differences  in  initial  conditions  can  lead  to  very  different  outcomes.  This  is  more  commonly  referred  to  as  the  “Butterfly  Effect.”  (Vallacher  et  al.,  2013;  p.  44)    

Intrinsic  Dynamics    

Intrinsic  dynamics  refer  to  the  internally  generated  processes  that  occur  within  intrapersonal,  interpersonal,  or  even  macro-­‐societal  level  systems.      

Latent  Attractor  

With  regards  to  the  attractor  landscape  model,  a  latent  attractor  represents  “an  alternative  range  of  possible  behaviors  for  the  system.”  (ç  p.  107)  In  other  words,  latent  attractors  are  possible  alternative  attractors  that  the  system  can  shift  to  following  a  change  in  the  control  parameters,  or  rules,  that  describe  the  system.      

Mouse  Paradigm    

The  mouse  paradigm  is  computer  program  based,  dynamic  measurement  tool  designed  to  record  the  location  of  the  mouse  cursor  on  the  screen  second  by  second.  During  measurement,  constructs  are  presented  on  the  left,  right  and  (sometimes)  center  

Page 6: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Working  Definitions  for  Key  Constructs                         6  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

sections  of  the  screen.  Participants,  while  listening  to  an  audio  recording,  are  asked  to  indicate  their  moment-­‐to-­‐moment  reaction  to  the  recording  by  moving  the  cursor  to  the  appropriate  side  of  the  screen.  For  example,  positive  and  negative  emotions  can  be  recorded  dynamically:  The  participant  would  move  the  mouse  to  the  side  of  the  screen  displaying  marked  ‘positive’  when  they  are  reacting  positively  to  what  they  hear,  and  to  the  side  marked  ‘negative’  when  they  are  having  a  negative  response.  The  tool  can  be  used  to  collect  both  categorical  and  continuous  data.    

Multi-­‐dimensionality    

Multidimensionality  refers  to  situations  or  systems  that  are  inherently  complex  and  are  composed  of  multiple  interacting  elements.  A  related  concept  is  integrative  complexity,  which  is  a  construct  used  to  describe  an  individual’s  ability  to  integrate  and  differentiate  within  a  multidimensional  cognitive  space  –  i.e.  a  complex  system.    

Multilevel   “Fundamental  to  the  levels  perspective  is  the  recognition  that  micro  phenomena  are  embedded  in  macro  contexts  and  that  macro  phenomena  often  emerge  through  the  interaction  and  dynamics  of  lower-­‐level  elements…  The  macro  perspective  is  rooted  in  its  sociological  origins.  It  assumes  that  there  are  substantial  regularities  in  social  behavior  that  transcend  the  apparent  differences  among  social  actors…  In  contrast,  the  micro  perspective  is  rooted  in  psychological  origins.  It  assumes  that  there  are  variations  in  individual  behavior,  and  that  a  focus  on  aggregates  will  mask  important  individual  differences  that  are  meaningful  in  their  own  right.  Its  focus  is  on  variations  among  individual  characteristics  that  affect  individual  reactions.”  (Kozlowski  &  Klein,  2001;  p.  7)  “A  levels  approach,  combining  micro  and  macro  perspectives,  engenders  a  more  integrated  science…”  (Kozlowski  &  Klein,  2001;  p.  8)    

Networks      

“A  network  (or  graph)  is  simply  a  collection  of  nodes  (vertices)  and  links  (edges)  between  nodes.  The  links  can  be  directed  or  undirected,  and  weighted  or  unweighted.  Many—perhaps  most—natural  phenomena  can  be  usefully  described  in  network  terms.  The  brain  is  a  huge  network  of  neurons  linked  by  synapses.  The  control  of  genetic  activity  in  a  cell  is  due  to  a  complex  network  of  genes  linked  by  regulatory  proteins.  Social  communities  are  networks  in  which  the  nodes  are  people  (or  organizations  of  people)  between  whom  there  are  many  different  types  of  possible  relationships.  The  Internet  and  the  World-­‐Wide-­‐Web  are  of  course  two  very  prominent  networks  in  today’s  society”  (Mitchell,  2006,  p.  1196).    

Non-­‐linearity    

“Linearity  refers  to  proportionality  between  a  source  of  influence  (e.g.,  a  cause)  and  the  resultant  change  (e.g.,  the  effect).  Non-­‐linearity  [italics  added]  refers  to  any  other  type  of  influence  relation.  In  a  threshold  function,  for  example,  a  cause  has  no  effect  until  a  particular  level  of  intensity  is  reached,  beyond  which  the  effect  appears  at  full-­‐strength.  Other  examples  of  non-­‐linearity  include  inverted-­‐U  functions,  in  which  moderate  values  of  a  cause  have  greater  effects  than  do  extreme  values  of  the  cause,  and  U  functions,  in  which  both  extremes  of  a  cause  promote  the  same  extreme  effect,  while  moderate  values  of  the  cause  produce  no  (or  minimal)  effect.”    (Dynamics  of  Conflict:  FAQs;  retrieved  from:  http://www.dynamicsofconflict.iccc.edu.pl/index.php?page=faq  )  

Page 7: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Working  Definitions  for  Key  Constructs                         7  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

 Perturbation    

A  perturbation  represents  a  significant  disruption  to  a  system  that  can  occur  either  due  to  changes  within  the  system  that  “pull  parts  and  actions  out  of  alignment  with  each  other  or  the  environment…”  (Gersick,  1994;  p.  21)  or  environmental  changes  that  disrupt  the  system’s  ability  to  survive.  An  intervention  designed  to  bring  about  change  in  a  system  would  be  described  as  a  perturbation.    

Phase  Transition    

A  phase  transition  represents  a  rapid  change  in  a  system  that  occurs  in  a  non-­‐linear  manner.  Bifurcation  and  hysteresis  are  closely  related  concepts.  

Reciprocal  Causality    

Reciprocal  causality  is  a  temporal  pattern  where  the  effect  of  a  causal  factor  in  a  system  subsequently  functions  as  a  cause  in  an  unfolding  reciprocal  process.  Over  time  this  process  can  intensify,  diminish  in  intensity,  or  follow  a  more  complex  course.  (Vallacher  et  al.,  2013;  p.  9)    

Repeller    

A  repeller,  conceptually,  is  the  opposite  of  an  attractor.  While  an  attractor  represents  a  stable  equilibrium  for  a  system,  a  repeller  is  state  of  unstable  equilibrium  that  the  system  attempts  to  avoid.      

Resilience    

Resilience  is  the  capacity  of  an  individual  to  react  adaptively  to  complex,  extremely  difficult  circumstances.  Individuals  high  in  resilience  demonstrate  higher  levels  of  cognitive  complexity,  emotional  complexity,  tolerance  for  contradiction,  and  openness  and  uncertainty.  In  the  context  of  complex  social  conflicts,  resilience  can  be  described  as  an  individual’s  capacity  to  “[maintain]  an  adaptive  course  of  identity  development  and  a  constructive  orientation  to  conflict  despite  a  highly  polarized  environment”  (Coleman  and  Lowe,  2007,  p.382).        

Resistance  to  Perturbation    

An  open,  complex  adaptive  system  –  a  system  capable  of  changing  its  structures  and  functions  in  response  to  an  environmental  change  –  would  be  described  as  resistant  to  perturbation.  Resistance  to  perturbation  can  occur  in  response  to  environmental  stressors,  as  well  as  interventions  aimed  at  introducing  positive  change  to  the  system.    

Resonance   At  points  of  convergence  within  social  systems  there  is  ‘resonance’  and  an  increased  energy  for  change.    Burns  (2007)  uses  the  word  ‘resonance’  to  mean  that  • “people  ‘see’  and  ‘feel’  the  connection  between  things    • they  ‘know’  that  it  is  related  to  their  experience    • they  are  ‘energised’  and  motivated    …Resonance  enables  sense  making,  and  change  occurs  where  there  is  resonance”  (p.  53).  Burns  (2007)  encourages  action  research  facilitators  to  “design  spaces  within  which  resonance  can  be  tested”  (p.  54),  for  example  through  large  events  and  the  collection  and  analysis  of  narratives  (p.  54).    He  also  suggests  that  "[r]esonance  may  be  a  more  useful  concept  than  representativeness  for  both  identifying  issues  of  concern  and  possibilities  for  mobilization"  (p.  54).  

Page 8: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Working  Definitions  for  Key  Constructs                         8  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

 Semantic  Networks    

A  sematic  network,  also  known  as  a  shared  reality  or  mental  model,  is  a  pattern  of  the  relations  between  ideas/concepts  representing  the  shared  knowledge  and  understanding  among  individuals  or  groups  within  a  system.    

Self-­‐Organization    

Self-­‐organization  is  an  ongoing  process  where  “higher-­‐level  properties  and  behaviors  emerge  from  the  internal  workings  of  the  system”  (Vallacher  et  al.,  2013;  p.  60).    “Local  interactions  can  create  large-­‐scale  patterns.  The  movement  of  tiny  patches  of  moist  hot  air  forms  a  hurricane  extending  over  hundreds  of  miles.  Actions  of  individual  investors  create  economic  bubbles  and  then  burst  them.  The  decisions  by  a  few  local  Liberian  mothers  and  grandmothers  to  employ  non-­‐violent  forms  of  anti-­‐war  civil-­‐  disobedience  result  in  the  downfall  of  the  strongman  Charles  Taylor  and  the  emergence  of  peace  in  Liberia”  (Vallacher  et  al.,  2013;  p.  11).    The  challenge  is  to  recognize  the  self-­‐organizing  and  emerging  patterns  as  they  evolve  and  change  over  time.    

Unintended  Consequences  

Unintended  consequences  -­‐  in  complex,  dynamical  systems,  small  changes  in  one  place  can  lead  to  completely  unanticipated  results  in  another  part  of  the  system  and  even  across  system  boundaries.  “Small  tinkering  with,  or  changing  the  pieces  of  a  system  can  lead  to  surprising  and  completely  unanticipated  results.  A  tree  falls  on  an  electrical  transmission  wire  in  a  forest  in  the  U.  S.  Midwest  and  cascading  electrical  failures  put  out  the  lights  of  tens  of  million  of  people  in  the  Northeast.  The  Internet,  originally  designed  to  transfer  data  files  between  military  computers,  leads  to  on-­‐line  social  networks  that  mobilize  average  citizens  into  toppling  a  dictatorship”  (Vallacher  et  al.,  2013;  p.  11-­‐12).  An  intervention  in  one  part  of  the  system  can  even  “affect  the  ability  of  the  system  as  a  whole  to  coordinate  its  activities,  thereby  disabling  the  system  at  another  level”  (Burns,  2007;  p.  29).      

Visualization   “Conflict  maps  provide  a  sketch  of  the  process  architecture  [sic]…  Ultimately…  it  [is]  useful  to  move  from  mapping  to  working  with  a  simple  visualization  software  program  to  begin  to  see  how  the  different  elements  of  a  conflict  interact  together  over  time  [sic].  This  is  critical  for  focusing  our  understanding  on  how  the  conflict  system  evolves  and  establishes  temporal  patterns  or  attractors  over  time.”  (p.  155)  

     

Page 9: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Working  Definitions  for  Key  Constructs                         9  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

 References  

 Burns,  D.  (2007).  Systemic  action  research:  a  strategy  for  whole  system  change.  Bristol:  Policy  Press.    Coleman,  Peter  T.  (unpublished).    A  dynamical-­‐systems  model  of  intractable  conflict.    Concept  paper  for  

Dynamical  Systems  Innovation  Lab,  July  2013.    Coleman,  Peter  T.,  and  J.  Krister  Lowe  (2007).  "Conflict,  Identity,  and  Resilience:  Negotiating  Collective  

Identities  within  the  Israeli  and  Palestinian  Diasporas."  Conflict  Resolution  Quarterly  24.4  (2007):  377-­‐412.    

 Gersick,  C.  J.  (1991).  Revolutionary  change  theories:  A  multilevel  exploration  of  the  punctuated  

equilibrium  paradigm.  Academy  of  Management  Review,  16(1)  10-­‐36.    Jost,  J.  (2004).  External  and  internal  complexity  of  complex  adaptive  systems.  Theory  in  Biosciences,  123,  

69-­‐88.      Kozlowski,  S.  W.  J.,  &  Klein,  K.  J.  (2000).  A  multilevel  approach  to  theory  and  research  in  organizations:  

Contextual,  temporal,  and  emergent  processes.  In  K.  J.  Klein  &  S.  W.  J.  Kozlowski  (Eds.),  Multilevel  theory,  research,  and  methods  in  organizations.  San  Francisco:  Jossey-­‐Bass.  

 Lord,  R.  G.,  Hannah,  S.  T.,  &  Jennings,  P.  L.  (2011).  A  framework  for  understanding  leadership  and    

individual  requisite  complexity.  Organizational  Psychology  Review,  1(2),  104-­‐127.    Mitchell,  M.  (2006).  Complex  systems:  Network  thinking.  Artificial  Intelligence,  170(18),  1194-­‐1212.      Nowak,  A.  S.,  &  Vallacher,  R.  R.  (1998).  Dynamical  social  psychology.  New  York:  The  Guilford  Press.    Phelan,  S.  E.  (2001).  What  is  complexity  science,  really?.  Emergence,  A  Journal  of  Complexity  Issues  in  

Organizations  and  Management,  3(1),  120-­‐136.    Vallacher,  R.  R.,  Coleman,  P.  T.,  Nowak,  A.,  &  Bui-­‐Wrzosinska,  L.  (2010).  Rethinking  Intractable  Conflict.  

American  Psychologist,  65,  262-­‐278.    Vallacher,  R.  R.,  Coleman,  P.  T.,  Nowak,  A.,  Bui-­‐Wrzosinska,  L.,  Liebovitch,  L.,  Kugler,  K.,  Bartoli,  A.    

(2013).  Attracted  to  conflict:  Dynamic  foundations  of  destructive  social  relations.  Berlin,  Heidleberg:  Springer-­‐Verlag.    

 Wolfram,  S.  (2002).  A  new  kind  of  science  (Vol.  5).  Champaign:  Wolfram  media.

Page 10: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Complex  Systems  Graphics/Figures                         10  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

 

 

Figu

re  1:    Map

 of  C

omplexity

 Scien

ce  by  Brian  Ca

stellani  

“The

 abo

ve  m

ap  is  a  con

ceptua

l  and

 historical  overview  of  com

plexity

 science  an

d  complexity

 theo

ry.”  

(http://www.art-­‐scien

cefactory.com/com

plexity

-­‐map

_feb

09.htm

l    

Page 11: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Complex  Systems  Graphics/Figures                         11  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

                     

     

Figure  2:    Visual  and  Organizational  Map  of  Complex  Systems    

“Visual,  organizational  map  of  complex  systems  broken  into  seven  sub-­‐gorups,  create  by  Hiroki  Savama,  D.  Sc.”  (http://www.sandia.gov/CasosEngineering/images/Sayama_Complex_systems_organizational_map.png.)    Also  found  in  http://commons.wikimedia.org/wiki/File%3AComplex_systems_organizational_map.jpg  .          

Page 12: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Complex  Systems  Graphics/Figures                         12  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

 Figure  3:    Components  of  Web  Science    

Attributed  to  Sir  Nigel  Shadbolt,  University  of  Southampton  as  found  at  http://intersticia.com/blog/?p=1059)    

 

   

Figure  4:    Ordered,  Complex  and  Random  Source:    University  of  Southampton  Computational  Modeling  Group  website  (http://cmg.soton.ac.uk/research/categories/transdisciplinary/complexity/)  

Page 13: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Complex  Systems  Graphics/Figures                         13  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

   

     

Figure  5:    Simple,  Complicated  and  Complex    

Source:    ODI  presentation,  Exploring  the  Science  of  Complexity  of  Aid  Policy  and  Practice,  London,  09  July  2008.  (http://www.slideshare.net/ODI_Webmaster/exploring-­‐the-­‐science-­‐of-­‐complexity-­‐in-­‐aid-­‐policy-­‐and-­‐practice-­‐presentation  )    

Page 14: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Complex  Systems  Graphics/Figures                         14  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

   

   

Figure  6:    Complex  Systems,  Topics  and  Tools  

“In  the  figure  [above],  the  left  side  lists  some  biological  complex  systems,  and  the  right  side  list  some  example  systems  from  ICT  (information  and  communication  technology)  that  need  new  approaches  to  handling  complexity.  The  topics  in  the  centre  are  examples  of  subjects  that  help  connect  the  biological  inspiration  on  the  left  with  the  challenges  on  the  right.”  (http://www.complexity.ecs.soton.ac.uk/index.php?page=q3)

Page 15: Key Constructs and Figures - DST Innovation Lab...Working(Definitions(for(Key(Constructs( ( 3!Dynamical!Systems!Innovation!Lab,!July!8=12,!2013(( Collapse%of% Multi’ dimensionality%

Complex  Systems  Graphics/Figures                         15  

Dynamical  Systems  Innovation  Lab,  July  8-­‐12,  2013    

   

Figure  7:    Obesity  Systems  Map  (http://www.shiftn.com/obesity/Full-­‐Map.html  )    

“The  Obesity  Systems  Map  has  been  developed  by  shiftN  in  the  context  of  the  Foresight  ‘Tackling  Obesities-­‐Future  Choices’  Project  (2006).”    (http://www.shiftn.com/news/detail/interactive_functionality_obesity_systems_map_restored  )