Top Banner
Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Ru COMP 578 Data Warehousing & Data Mining
49

Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

Keith C.C. Chan

Department of Computing

The Hong Kong Polytechnic University

Ch 2 Discovering Association Rules

COMP 578Data Warehousing & Data Mining

Page 2: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

2

The AR Mining Problem

Given a database of transactions. Each transaction being a list of items. E.g. purchased by a customer in a visit.

Find all rules that correlate the presence of one set of items with that of another set of items E.g., 30% of people who buys diapers also

buys beer.

Page 3: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

3

Motivation & Applications (1)

If we can find such associations, we will be able to answer: ??? beer (What should the company do to boost beer sales?) Diapers ??? (What other products should the store stocks up?) Attached mailing in direct marketing.

Page 4: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

4

Originally for marketing to understand purchasing trends. What products or services customers tend to purchase at

the same time, or later on? Use market basket analysis to plan:

Coupon and discounting: Do not offer simultaneous discounts on beer and diapers if they

tend to be bought together. Discount one to pull in sales of the other.

Product placement. Place products that have a strong purchasing relationship close

together. Place such products far apart to increase traffic past other items.

Motivation & Applications (2)

Page 5: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

5

Measure of Interestingness

For a data mining algorithm to mine for interesting association rules, users have to define a measure of “interestingness”.

Two popular interestingness measures have been proposed: Support and Confidence Lift Ratio (Interest)

MineSet from SGI use the terms predictability and prevalence instead of support and confidence.

Page 6: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

6

Given rule X & Y => Z Support, S = P(X Y Z)

where A B indicates that a transaction contains both X and Y

(union of item sets X and Y)

[# of tuples containing both A & B / total # of tuples]

Confidence, C = P(Z | X Y ) P(Z | X Y ) is a conditional probability that a transaction having {XY} also contains Z

[# of tuples containing both X&Y&Z / # of tuples containing X&Y]

The Support and Confidence

Page 7: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

7

The Support and Confidence

Transaction ID Items Bought2000 A,B,C1000 A,C4000 A,D5000 B,E,F

Let minimum support 50%, and minimum confidence 50%, find out the S and C of :

1. A C

2. C A

Customerbuys diaper

Customerbuys both

Customerbuys beer

Answer:

A C (50%, 66.6%)

C A (50%, 100%)

Page 8: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

8

How Good is a Predictive Model? Response curves- How does the response rate of a targeted selection compare to a random selection?

Page 9: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

9

What is A Lift Ratio? (1)

Consider the rule: When people buy diapers they also buy beer 50 percent

of the time.

It states an explicit percentage (50% of the time). Consider this other rule:

People who purchase a VCR are three times more likely to also purchase a camcorder.

The rule used the comparative phrase “three times more likely”?

Page 10: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

10

The probability is compared to the baseline likelihood.

The baseline likelihood is the probability of the event occurring independently. E.g., if people normally buy beer 5% of the time,

then the first rule could have said “10 times more likely.”

The ratio in this kind of comparison is called lift. A key goal of an association rule mining exercise

is to find rules that have the desired lift.

What is A Lift Ratio? (2)

Page 11: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

11

Lift Ratio As Interestingness

X 1 1 1 1 0 0 0 0Y 1 1 0 0 0 0 0 0Z 0 1 1 1 1 1 1 1

Rule Support ConfidenceX=>Y 25% 50%X=>Z 37.50% 75%

An Example:

Support and Confidence of X=>Z dominates

X and Y, positively correlated,

X and Z, negatively related

Page 12: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

12

Lift Ratio As Interestingness It is a measure of dependent or correlated events

The lift of rule X => Y

Lift = 1 means X and Y are independent events

Lift < 1 means X and Y are negatively correlated

Lift > 1 means X and Y are positively correlated

(better than random)

)(

)|(, YP

XYPlift YX

)()(

)(

YPXP

YXPor

Apriori = P(Y)Confidence=P(Y|X)

Page 13: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

13

AR Mining with Lift Ratio (1)

To understand what lift ratio is, consider the following: 500,000 transactions

20,000 transactions contain diapers (4 percent) 30,000 transactions contain beer (6 percent) 10,000 transactions contain both diapers and beer (2

percent) Confidence measures how much a particular item is

dependent on another. When people buy diapers, they also buy beer 50% of

the time (10,000/20,000). The confidence for this rule is 50%.

Page 14: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

14

The inverse rule could be stated as: When people buy beer they also buy diapers 1/3 of

the time (Conf=33.33% = 10,000/30,000).

In the absence of any knowledge about what else was bought, the following can be computed:

People buy diapers 4 percent of the time. People buy beer 6 percent of the time.

4% and 6% are called the expected confidence (or baseline likelihood, or A Priori Probability) of buying diapers or beer.

AR Mining with Lift Ratio (2)

Page 15: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

15

Lift measures the difference between the confidence of a rule and the expected confidence.

Lift is one measure of the strength of an effect. If people who bought diapers also bought beer

8% of the time, then the effect is small if expected confidence is 6%.

If the confidence is 50%, and lift is more than 8 times (when measured as a ratio), then the interactions between diapers and beer is very strong.

AR Mining with Lift Ratio (3)

Page 16: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

16

Consider item sets with three items: 10,000 transactions contain wipes. 8,000 transactions contain wipes and diapers (80%). 220 transactions contain wipes and beer (2.2%). 200 transactions contain wipes, diapers and beer

(2%). The complete set of 12 rules is presented in a table

along with their confidence, support and lift.

AR Mining with Lift Ratio : An Example

Page 17: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

17

LHS RHS Exp Conf (%)

Conf (%)

Lift Ratio

Supp (%)

1 Diapers Beer 6.00 50.00 8.33 2.00 2 Beer Diapers 4.00 33.33 8.33 2.00 3 Diapers Wipes 2.00 40.00 20.00 1.60 4 Wipes Diapers 4.00 80.00 20.00 1.60 5 Wipes Beer 6.00 2.20 0.37 0.04 6 Beer Wipes 2.00 0.73 0.37 0.04 7 Diapers

& Wipes Beer 6.00 2.50 0.42 0.04

8 Diapers & Beer

Wipes 2.00 2.00 1.00 0.04

9 Beer & Wipes

Diapers 4.00 90.91 22.73 0.04

10 Diapers Wipes & Beer

0.044 1.00 22.73 0.04

11 Wipes Diapers & Beer

2.00 2.00 1.00 0.04

12 Beer Diapers & Wipes

1.60 0.67 0.42 0.04

AR Mining with Lift Ratio : An Example

Page 18: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

18

The greatest amount of lift, if measured as a ratio, is found in the 9th and 10th rules.

Both have a lift greater than 22, computed as 90.91/4 and 1/0.044.

For the 9th rule, the lift of 22 means: People who purchase wipes and beer are 22 times more

likely to also purchase diapers than people who do not. Note the negative lift (lift ratio less than 1) in the

5th, 6th, 7th and last rules. The latter two rules both have a lift ratio of

approximately 0.42.

AR Mining with Lift Ratio : An Example

Page 19: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

19

Negative lift on the 7th rule means that people who buy diapers and wipes are less likely to buy beer than one would expect.

Rules with very high or very low confidence model an anomaly. If a rule says, with a confidence of 1 (100%), that

whenever people bought pet food they also bought pet supplies.

Further investigation show that was for one day only. There was a special giveaway.

AR Mining with Lift Ratio : An Example

Page 20: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

20

Most rules have dairy on the right hand side. Milk or eggs are so commonly purchased, “dairy”

is quite likely to show up in many rules. Ability to exclude specific items is very useful. Interesting rules are:

Have a very high or very low lift. Do not involve items that appear on most transactions. Have support that exceeds a threshold.

Low support might simply be due to a statistical anomaly. Rules that are more general are frequently desirable. Sometimes interesting to differentiate between diapers sold in

boxes vs. diapers sold in bulk.

AR Mining with Lift Ratio : An Example

Page 21: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

21

Lift Ratio and Sample Size

Consider the association A => B. A lift ratio can be very large even if the

number of transactions having A and B together or separately are very small.

To take sample size into consideration, one can consider using the support and confidence as interestingness measures.

Page 22: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

22

Complexity of AR Mining Algorithms

An association algorithm is simply a counting algorithm.

Probabilities are computed by taking ratios among various counts.

If item hierarchies are in use, then some translation (or lookup) is needed.

One must carefully control the sizes of the item sets because of combinatorial explosion problem.

Page 23: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

23

Large grocery stores stock sell more than 100,000 different items.

There can be 5 billion possible item pairs, and 1.7 x 1014 sets of three items.

An item hierarchy can be used to reduce this number to a manageable size.

There is unlikely to be a specific relationship between Pampers in the 30-count box and Blue Ribbon in 12oz cans.

Complexity of AR Mining Algorithms

Page 24: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

24

If there is such a relationship, it is probably subsumed by the more general relationship between diapers and beer.

Using an item hierarchy reduces the number of combinations.

It also helps to find more general higher-level relationships such as those between any kind of diapers and any kind of beer.

Complexity of AR Mining Algorithms

Page 25: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

25

The combinatorial explosion problem: Even if you use an item hierarchy to group items together so

that the average group size is 50. Reducing 100,000 items to 2,000 item groups. With 2,000 item groups there are still almost 2 million paired

item sets. An algorithm might require up to 2 million counting registers. There are 1.3 billion three-item item sets! Many combinations will never occur. Some sort of dynamic memory or counter allocation and

addressing scheme will be needed.

Complexity of AR Mining Algorithms

Page 26: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

26

The Apriori Algorithm

For rule A C:support = support({A ^ C}) = 50%

confidence = support({A ^ C})/support({A}) = 66.6%

The Apriori principle:Any subset of a frequent itemset must be frequent

Transaction ID Items Bought2000 A,B,C1000 A,C4000 A,D5000 B,E,F

Frequent Itemset Support{A} 75%{B} 50%{C} 50%{A,C} 50%

Min. support 50%Min. confidence 50%

Page 27: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

27

Applying Apriori Algorithm

TID Items100 1 3 4200 2 3 5300 1 2 3 5400 2 5

Database D itemset sup.{1} 2{2} 3{3} 3{4} 1{5} 3

itemset sup.{1} 2{2} 3{3} 3{5} 3

Scan D

C1L1

itemset{1 2}{1 3}{1 5}{2 3}{2 5}{3 5}

itemset sup{1 2} 1{1 3} 2{1 5} 1{2 3} 2{2 5} 3{3 5} 2

itemset sup{1 3} 2{2 3} 2{2 5} 3{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset{2 3 5}

Scan D itemset sup{2 3 5} 2

ANIMATEDDEMO

Page 28: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

28

Improving Apriori’s Efficiency Hash-based itemset counting: A k-itemset whose corresponding hashing

bucket count is below the threshold cannot be frequent

Transaction reduction: A transaction that does not contain any frequent

k-itemset is useless in subsequent scans

Partitioning: Any itemset that is potentially frequent in DB must be

frequent in at least one of the partitions of DB

Sampling: mining on a subset of given data, lower support threshold + a

method to determine the completeness

Dynamic itemset counting: add new candidate itemsets only when all of

their subsets are estimated to be frequent.

Page 29: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

29

Is Apriori Fast Enough? The core of the Apriori algorithm:

Use frequent (k – 1)-itemsets to generate candidate frequent k-itemsets

Use database scan and pattern matching to collect counts for the candidate itemsets

The bottleneck of Apriori: candidate generation Huge candidate sets:

104 frequent 1-itemset will generate 107 candidate 2-itemsets To discover a frequent pattern of size 100, e.g., {a1, a2, …, a100},

one needs to generate 2100 1030 candidates.

Multiple scans of database: Needs (n +1 ) scans, n is the length of the longest pattern

Page 30: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

30

Multiple-Level ARs Items often form hierarchy. Items at the lower level are expected to have

lower support. Rules regarding itemsets at appropriate levels could be quite useful. Transaction database can be encoded based on

dimensions and levels It is smart to explore shared multi-level mining

(Han & Fu,VLDB’95).

Page 31: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

31

Mining Multi-Level Association A top_down, progressive deepening approach:

First find high-level strong rules: milk bread [20%, 60%].

Then find their lower-level “weaker” rules: 2% milk wheat bread [6%, 50%].

Variations at mining multiple-level association rules. Level-crossed association rules:

2% milk Wonder wheat bread Association rules with multiple, alternative hierarchies:

2% milk Wonder breadg

Page 32: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

32

Multi-level Association: Uniform Support vs. Reduced Support (1)

Uniform Support: the same minimum support for all levels + One minimum support threshold. No need to examine

itemsets containing any item whose ancestors do not have minimum support.

– Lower level items do not occur as frequently. If support threshold

too high miss low level associations. too low generate too many high level associations.

Page 33: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

33

Reduced Support: reduced minimum support at lower levels There are 4 search strategies:

Level-by-level independent Level-cross filtering by k-itemset Level-cross filtering by single item Controlled level-cross filtering by single item

Multi-level Association: Uniform Support vs. Reduced Support (2)

Page 34: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

34

Uniform SupportMulti-level mining with uniform support

Milk

[support = 10%]

2% Milk

[support = 6%]

Skim Milk

[support = 4%]

Level 1min_sup = 5%

Level 2min_sup = 5%

Page 35: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

35

Reduced SupportMulti-level mining with reduced support

2% Milk

[support = 6%]

Skim Milk

[support = 4%]

Level 1min_sup = 5%

Level 2min_sup = 3%

Back

Milk

[support = 10%]

Page 36: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

36

Multi-level Association:Redundancy Filtering

Some rules may be redundant due to “ancestor” relationships between items.

Example milk wheat bread, [support = 8%, confidence = 70%] 2% milk wheat bread, [support = 2%, confidence = 72%]

We say the first rule is an ancestor of the second rule.

A rule is redundant if its support is close to the “expected” value, based on the rule’s ancestor.

Page 37: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

37

Multi-Level Mining: Progressive Deepening A top-down, progressive deepening approach:

First mine high-level frequent items: milk (15%), bread (10%)

Then mine their lower-level “weaker” frequent itemsets: 2% milk (5%), wheat bread (4%)

Different min_support threshold across multi-levels lead to different algorithms: If adopting the same min_support across multi-levels

then toss t if any of t’s ancestors is infrequent.

If adopting reduced min_support at lower levelsthen examine only those descendents whose ancestor’s support is

frequent/non-negligible.

Page 38: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

38

AR Representation Scheme In words:

60% of people who buys diapers also buys beers and 0.5% buys both.

In first-order logic or PROLOG-like statement: buys(x, “diapers”) buys(x, “beers”) [0.5%, 60%]

Also representation as if-then rules. If diapers in Itemset THEN beers in Itemset [0.5%, 60%] If people buy diapers, they also buy beers 60% of the

time, 0.5% of the people buy both.

Page 39: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

39

Presentation of Association Rules (Tabular )

Page 40: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

40

Visualization of Association Rule Using Plane Graph

Page 41: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

41

Visualization of Association Rule Using Rule Graph

Page 42: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

42

Sequential Apriori Algorithm (1)

1. Sort Phase. This step implicitly converts the original transaction database into a database of sequences.

2. Litemset Phase. In this phase we find the set of all litemsets L. We are also simultaneously finding the set of all large 1-sequences.

3. Transformation Phase. We need to repeatedly determine which of a given set of large sequences are contained in a customer sequence. We transform each customer sequence into an alternative representation.

4. Sequence Phase. Use the set of litemsets to find the desired sequences. Algorithms for this phase below.

5. Maximal Phase. Find the maximal sequences among the set of large sequences. In some algorithms this phase is combined with the sequence phase to reduce the time wasted in counting non maximal sequences.

The problem of mining sequential patterns can be split into the following phases:

REFERENCE:Mining Sequential Patterns

Page 43: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

43

Sequential Apriori Algorithm (2)

There are two families of algorithms- count-all and count-some. The count-all algorithms count all the large sequences, including non-maximal sequences. The non-maximal sequences must then be pruned out (in the maximal phase).

AprioriAll is a count-all algorithm, based on the Apriori algorithm for finding large itemsets.

Apriori-Some is a count-some algorithm. The intuition behind these algorithms is that since we are only interested in maximal sequences, we can avoid counting sequences which are contained in a longer sequence if we first count longer sequences.

Page 44: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

44

AprioriAll Algorithm (1)

Step 1 Step 2

Step 3

Minimum support = 25%

Page 45: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

45

AprioriAll Algorithm (2)Step 4

L1 = large 1-sequences; // Result of litemset phase

for ( k = 2; Lk-1 0; k++) do

begin Ck = New Candidates generated from Lk-1 (see next slide)

foreach customer-sequence c in the database do     Increment the count of all candidates in Ck that are

contained in c. Lk = Candidates in Ck with minimum support.

end Answer = Maximal Sequences in k Lk ;

Page 46: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

46

The apriori-generate function takes as argument Lk-1, the set of all large

(k-1)-sequences. It works as follows. First join Lk-1 with Lk-1

insert into Ck

select p.litemset1 , ..., p.litemsetk-1 , q.litemsetk-1

from Lk-1 p, Lk-1 q

where p.litemset1 = q.litemset1 , . . .,

p.litemsetk-2 = q.litemsetk-2 ;

Next delete all sequences c Ck such that some (k-1)-subsequence of c is

not in Lk-1

Apriori Candidate Generation

AprioriAll Algorithm (3)

Page 47: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

47

REFERENCE:Sequential Hash Tree for fast accesshttp://www-users.cs.umn.edu/~mjoshi/hpdmtut/sld144.htm

Hash Tree used for fast search of candidate occurrences. Similar to association rule discovery, except for following differences.

• Every event-timestamp pair in the timeline is hashed at the root.

• Events eligible for hashing at the next level are determined by the maximum gap (xg), window size (ws), and span (ms) constraints.

Count Operation in Sequential Apriori

Page 48: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

48

Exercises:

1. What is the difference between the algorithms of Apriori and AprioriAll?

2. What happens if min. support and confidence are set too low / high?

3. Give a short example to show that items in a strong association rule may actually be negatively correlated.

Page 49: Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University Ch 2 Discovering Association Rules COMP 578 Data Warehousing & Data Mining.

49

END OF CHAPTER 2

BACK TO MAIN