Top Banner
\"Rf) aarvee associates IJ\JI architects engineers & consultants pvt. ltd. An ISO :2008 Certified CCmpi:HlY Letter No. AAjHWjSUTPLj14-15j065 Date: opt May, 2014. To, Chief Project Manager Mjs Shreenathji-Udaipur Tollway Pvt. Ltd. Village Nagedia, NH-8 Km. 237 Tehsil Nathdwara Dist. Rajsamand; Rajasthan State. Sub: Indepe'ndent Engineer Services for Four Laning of Gomati Chauraha - Udaipur Section of NH-8 (from Km 177.000 to Km 260.100) in the State of Rajasthan under NHDP Phase IV on Design, Build, Finance, Operate and· Transfer (Toll) Basis - Designs and Drawings of POT cum PTFE Bearings for PSC· Box Girder Superstructure for Elevated Flyover -II at Km 220+179 to 221+029 - Reg. Ref: Concessionaire Letter No. SUTPLjUDR-NH-8jIEj14j1721, dated 07.04.2014. Dear Sir, This has reference to your submission of Designs and Drawings' of POT cum PTFE bearings for PSC Box girder superstructure for the Elevated Flyover-I! at Km 220+179 to Km 221 +029 of the Project highway, vide your letter cited above. Your submission has been reviewed and the Designs and Drawings of POT cum PTFE bearings for PSC Box girder superstructure are found to be in compliance with the Specifications and Standards of Concession Agreement. Accordingly, we hereby communicate our consent to the above Designs and Drawings for theflyover at km 221+029. With best regards, for Aarvee Associates Architects Engineers & Consultants Pvt. Ltd. Authorized Signatory Encl: As stated above Designs and Drawings for bearings of Elevated Flyover - II. Copy: (1) The Project Director, NHAI - PIU, Udaipur. (2) The Team Leader, Aarvee ASSOciates, Architects Engineers & Consultants Pvt. Ltd., Udaipur. ResldencYJ Srinagar Colony Main Rd., Hyderabad 500 082, India. Tel: +91-40-23737633; Fax: +91-40-23736277; email: [email protected] web: www.a.;lrvee.com
43

K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

May 27, 2018

Download

Documents

trinhnguyet
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

Rf) aarvee associates IJJI architects engineers ampconsultants pvt ltd

An ISO 900~ 2008 Certified CCmpiHlY

Letter No AAjHWjSUTPLj14-15j065 Date opt May 2014

To Chief Project Manager Mjs Shreenathji-Udaipur Tollway Pvt Ltd Village Nagedia NH-8 Km 237 Tehsil Nathdwara Dist Rajsamand Rajasthan State

Sub Independent Engineer Services for Four Laning of Gomati Chauraha - Udaipur Section of NH-8 (from Km 177000 to Km 260100) in the State of Rajasthan under NHDP Phase IV on Design Build Finance Operate andmiddot Transfer (Toll) Basis shyDesigns and Drawings of POT cum PTFE Bearings for PSCmiddot Box Girder Superstructure for Elevated Flyover -II at Km 220+179 to 221+029 shyReg

Ref Concessionaire Letter No SUTPLjUDR-NH-8jIEj14j1721 dated 07042014

Dear Sir

This has reference to your submission of Designs and Drawings of POT cum PTFE bearings for PSC Box girder superstructure for the Elevated Flyover-I at Km 220+179 to Km 221 +029 of the Project highway vide your letter cited above

Your submission has been reviewed and the Designs and Drawings of POT cum PTFE bearings for PSC Box girder superstructure are found to be in compliance with the Specifications and Standards of Concession Agreement

Accordingly we hereby communicate our consent to the above Designs and Drawings for theflyover at km 221+029

With best regards for Aarvee Associates Architects Engineers amp Consultants Pvt Ltd

K~ Authorized Signatory

Encl As stated above Designs and Drawings for bearings of Elevated Flyover - II

Copy (1) The Project Director NHAI - PIU Udaipur (2) The Team Leader Aarvee ASSOciates Architects Engineers ampConsultants Pvt Ltd Udaipur

ResldencYJ Srinagar Colony Main Rd Hyderabad 500 082 India Tel +91-40-23737633 Fax +91-40-23736277 email aarveeaarveeneti web wwwalrveecom

I

tIS III PLAN

(SHOWING HALF TOP PLATE amp HAlF POT)

sect Ii

o

j

DETAIlD

FIXED POT BEARING DETAILS

TeCHNICAL DATA

C c+0091 ROTAn0t4 o0091

i~ ~

rc~o--Ei

AlImTWtwsn

~ =~~~

STD WASHER Bf0130LTX Ig

ANCHOlt SlEEVESECTION X-X

NOiES ~QNJm-~A1JlllUl1~~il~

~~ 1 -E AAOPOTI~1I1A~otJlE~lIgtOItJS$tEa~~0F Ulcent~~~eonmkkvt~~ rJ~ ~~(~fl ~

Urr1~~lftLi~~~Af$llt~=c~~--shylIIt7ltE11lt~~ampLCampD$lUI1$tliU~~~PIJTpoundCIEIO

1Or1Q-XS

l t fr1ClfOItozISllscoxnrqIr

~~ i~Cltta -rgt~ JSlO~~zI1ff~Irraquohcrt1lftJEt -~

+

- c~~~=~~~~5~~

~~r$~~~

$ ~-IIJCIOI4IIt~~~

~~~

OEiAAiOF_~~PiT~-~F

CllWIl~lIlMl7l ~~-~ScentIrwr -~~ tt~iRI-~_=-gt~ ~kItiI~-=se-_ot~

1gtJC~~~~ ~ == iibamp

QIIIIo ~f~I __middot~___

~ DETAIlE

~ ~ w~~

SEC110NAl ELEVA110N 8-8 OF TOP PLATE

t1i~ IJi

22lJMMHOUOFOR M20 ANCHOR BOLT

PLAN OF TOP PLATE

A

6 LUGS FOR ANCHOR BOLTS EQUIDISTANT AT 114135740 PCD

22lJMM HOUOFOR

M20 ANCHOR BOLT

PLAN 01 POT

~ TRANSVERSE MOVEMENT baM

+oom c PtOfATP)fI -000111

~

I Z l1

~

I ~

t

l~~ PLAN

( SHOWING HAlF POT HALF PISTON ~~ amp HALF TOP FATS) Q

SECTIONAL ELEVAilON A 61 POT

A

PLAN OF POT

SWa4S00 3mmiHXSsPLATE

e4Ierqzalaquo~mt=~~ SECilONAL ELEVAilON Boll OF TOP PlATE

1II1l1HIlEF~

~

FREE SLIDING POT I PTFE BEARING DETAILS

t~

H16 ANCHOR IOLT

r---+t--~ IJJ~I~ I I LV I ~ I I I ~ I I In I I

-t W --t---t-r ~ I I I 1 I I ill

sspy3SSO I ~B

5SOJClC

PlAN OF TOP PlATE

~

ANCHOR StEEVE

~ ~~S~l

~~av~ f--oo 3760 E

SECTIONAl ELEVAilON cc OF PISTON

f 1 C C

+

~~fF~~-~A~~

~ f7raquo~~a7c~~~~-O

=

~CFJlIII~~~__~

eIo~_~lt2

OnfAWC~j-wrl11l ~~_~ioC-bull

~~1S yen~~-~~_SlE_ I ~_ -- shy

~~~~~~-shy~~~t-l=llitt~~middoti~laquoi ~ o-sroll1_~

1 ~

~ ~

I i i

ll ui

~i

QO1 t ROTAllOH oomt -----

PAN ( SHOWiNG HALF POT HAlF PISTON

ampHALFTOfPlATE)

~

LONG GUIDED SLIDING POT PTFE BEARING DETAILS

TECHNICAL OATA

--j --shy I --I I - I~_WLI~=I)=~I=I=~~~ mgtE~ IlOITQillolOTtltli lr2TC1111lllLutrfl raquoOHIt 1=~It1 11

SECTIONAL ELEVATION AA OF POT

PLAN OF POT

SECTIONAL ELEVATION B-B OF TOP PLATE

ml1l1HltltlfllR

tlf~ ~~

PAN OF TOP PLATE

II

ANCHO~ SlHVE

~~

~ OETA1LmiddotE

4Smrn THIlt FTFEShfIoM

~-~ I----o=m

SECTIONAL ELEVATION cc OF PSTO

1 c

I LB- II C3 $Qbullbull41Qll I PLAN OF PISTON

Igt~--

1IT-~ ~~00$lIlt

JOJqtNlllMSt$~~_~~clt~

~1G_SmlO~2SllOH~~t~~(N

=

A

middotcmiddot

i ffi ~ w

ffi g ~

i

ooo~ c ROTAnOf oOO91 c ----

TRAfFIC ~ DIIEC1tON PLAN

DETALD

TRANS GUIDED SLIDING POT I PTFE BEARING DETAILS

TECHNICAL DATA

-shy

TRAme ~ 01

~

SECTIONAL ELEVATION A-A OF POT

PLAN OF POT

SW 4120 ~SSPlATE

~fat0a~~~ I EC ltBOP

SECTIONAL ELEVATION BB OF TOP PLATE

I

f S

$4020

PLAN OF TOP PLATE

OTHER OETAlLS OF SEAR1NG

~~

~ ~

ANCHOR SLEEVE

E SECTlONAL ELEVATION cc OF PISTON

C

l-3600 cJSqd100

PlAlfOF PISTON

A~~~~11~~fF J~ t I (C

~IfE )t))

~ ltgt If-Ipo --- -J

111 _ ~ ~rr)~~j r j---~

C

oIIMl~IIOT1poundCigtllliliiiltlSQii~~~

cs7S5 ~~

~~l ~

~~

~~lt$~~~~~~-shy~lIOOl17mTIiJOU~IQ~snlEO~~ ~

~~~Y5~~rcar

~XZ~~~ST~

~IO3e1Qit~~GltJItIEI~~~

~-~-

l1WIC RESTIESS l FVTCTO ~n~~~

-i~e~ 111ltmiddotmiddot~ncll7a~oa~

-~ - ~~~-~gt ~c~~~_==---shy~t~J~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN OF 308 TON CAPACITY FREE SLIDING POT I PTFE BEARINGmiddot TYPE FR

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGIIIEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHAmiddot UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTURE - 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type FR 1308 TON FREE REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete -M45) b) Superstructure (Top) fCk 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (Cl 926211) Seismic (CI926214)

a) Bottom oj) 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fCK x 2)x125

b) Top Ot 2250 Nmm2 (025 xfetl x2) 2813 Nmm2 (025 X fOK x 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214) a) Bottom 0bo 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 0tc 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton 1SEISMIC CASE

d) Vmin-ses 202086 KN 20600 Ton J (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmlnwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant HB 000 KN Since HB lt 10 of V max

HB 30215 KN (CI 92614) 7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heqt 000 KN 000 Ton

Resultant HEQ 000 KN Since HEQ lt 10 ofVmax-ses HEQ 22759 KN (CI 92614)

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal HWI 000 KN 000 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 000 KN Since Hw lt 10 of V max-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation 9 00091 radians b) Resultant rotation due to permanent action and long term effects 6p 000600 c) Resultant rotation due to variable action 6v 000305 iiwlIS EllgiJleor~

Considered 9p =60 of 6 amp ev =40 of e ~lt ~ltf ~~ Since D51 Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151) - - ~ )1

k1 = 19710 ~~ (-~7 ~-I~l ~ roBOOO 4 V S

-cI) 1 (~~~)

Page 1 of 9 t k ~~~04 ~~derilbo~

~~~~ ~

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

ainu +- 46 mm 11 ) Transverse Movament

elran +- 3 mm

BEARING PARAMETERS F 308 TON FREE 12 nos I) POT

Effective diameter of bottom plate (05+ 2 XA2 X 2) A 488 mm

Diameter of Pot at Bottom A1 488 mm Thickness of Pot at Base A2 27 mm Depth of Pot As 40 mm

Total Thickness of Pot AH1 67 mm Outer Diameter of Pot A7 454 mm Inner Diameter of Pot D5 380 mm

Horizontal Lever Arm (A + Nt + w2) Au 58 mm Pot Thickness PIO 37 mm

II) ELASTOMERIC PAD

Diameter of Elastomeric Pad D5 380 mm Thickness of Elastomeric Pad Nt 28 mm

III) PISTON f CENTRE PLATE Diameter of Centre Plate C3 410 mm

Piston Diameter Dp 376 mm

Overall Thicknes of Centre Plate C2 33 mm Contact width of Piston w 6 mm Clearance between Pot top ampPiston bottom edge hn 9 mm

IV) PTFE

Diameter L 360 mm

Thickness 45 mm V) SS Plate

Length SSPL 460 mm Width SSPW 385 mm

Thickness SSPt 3mm

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x 85X 2) 472 mm Ble

Length BL 560 mm

Width Bw 480 mm Thickness B2 25mm

Distance of line of Harz force from top B5 28 mm VII) ANCHOR BOLT

Diameter of Bolt Db 16 mm Total Number of Bolts N 8 nos

Grade of Bolt Gr 46 VIII) LUGS

Length LI 70 mm Width LI 70 mm Thickness L 15 mm

Total Number of Lugs 8 nos

IX) ANCHOR SLEEVES Diameter of Sleeve D 32 mm Sleeve length for Bottom 4 nos Lb 100 mm Sleeve length for Top 4 nos L 100 mm

~ltS Engili~gtgt TOTAL HEIGHT OF BEARING

118m ~(iN 4centJ -0 ~ ltfj

( gt [E ~ I

~ I~ 1~ b

iL Page 2 of 9 ~

6- ~~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Ihlckness Ratio (CL 926236) DrNI 1357 lt1= 15

2) Strain in Elastomer (CI 926234)

1100 = 05 x D6 x9 Nt

00614 lt1= 015

3) Average Compressive Stress under Normal condjtion (CI 926232) Onoo = Vmax X 1 000

1tI4 X D52

2664 lt 35 Nmm2 4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232)

anao~sos = Vmax-ses x 1000

1tI4xol

= 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo--wln Vmax-win X 1000

1tI4xD

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CL 926233)

Oneomiddotmln = Vmin~win X 1000

1tI4xDl

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CL 926152)

Mebulld D53 X[(k1 x9p) +(k2 x 9)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRd(n) = 02 x (05 2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CL 926152) MRd(S) 02 x (D52) x Heo x 1000

865E+06 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRAN8) (CL 926152) MRd(w) = 02 x (D52) x Hw x 1000

895E+06 N-mm 11) Total induce Moment under Normal condition

MTltJ(n) Me-d + MRdn)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-d(s) Med+ MR-d(S)

222E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MT-dW) Me_d+ MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CL 926232) (jneo(edge) Ooao + MT-den)

1tI32 X 0 53

3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (jneo-S(edge) =Oneo-$eo + MTltJ(S)

1tI32 x 0 53

= 2418 lt 40 Nmm2

Page 30f9

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Elastomeric pad at Edges under Seismic Condllion (TRANS) (CI 926232)

onooW(odgo) 0neo-wln + Mrd(w) 3rr32 xD5

2493 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615) Un Vmax X 1000

rd4 X A2

1615 lt 2250 Nmm2 2 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 92615)

Oampee Vmaxses x 1000 rd4 XA2

1217 lt 2813 Nmm2 3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 92615)

Vmax-win X 1000 rd4 XA2

1259 lt 2813 Nmm2 4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition

crn~f = He X 1000 x As rd32xA3

154 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under SeismicCondition (LONG)

0ses-f HEQ X 1000 xAs rd32xA3

116 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

0wln-f Hw x 1000 xAs rd32 xA3

= 120 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

Onwe MTcJ(n)

rd32 x A3

= 219 Nmm2 8 Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

0ses Mr-dIS)

rd32 x A3

194 Nmm2 9 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Owln-e Mr-d(w)

rd32 xA3

= 197 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

On-If On_f + On_e

= 373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212)

Oses-If = 0ses-f + Oses_e

lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

0wln-If = Owln_f + Owln

lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

On + On-If = 09689 lt= 1

0b abc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) + Oses~tf = 05996 lt= 1

~~--x (jb 125 X (jbc

Page 4 of9

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexl1ral Stress under Seismic Condition (TRANS) (CI 926213)

(Jwln + (Jwlntr 06181 ltI 1 125 x (Jb 125 X ObC

16) Hoop Stress in Pot under Normal CQndition (CI 92631171) ON (Jnna XDu x Nt) + (HI3 x 1000)

2P1Il xAo 19784 lt 2040 Nmm2

17) Hoop Stress in Pot under Seismic Condition (LONG) (CI 92631171) Os (Unoos(ts x D6 X Nt) + (HEQ x 1000)

2PtIxAo 14902 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (TRANS) (CI 92631171) Ow (Jnoawln X D6 x NI) + (Hw x 1000)

2Ptll X Ao 15416 lt 2040 Nfmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition Fluid Pressure tYm1 = (Jneox Nt

Pill

= 2016 Nfmm2 Horizontal Pressure tvm2 = 15 xHs x1000

Ds X PIll

3223 Total Shear Stress

= 5240 lt 153 Nfmm2 (CI 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure (Jbt1 = 6 x (Jnea X Nt 2

2 x P1h2

4577 Nmm2 Horizontal Force (Jbt2 15 x 6 x HB X 1000 X (Nt + w2)

2Ds x Plh

Total Bending Stress

20782 lt 2244 Nfmm2 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc (Jbt2 + 3 Xtym2)112

= 22677 lt 3060 Nmm2 (CL 9263 1174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure tYm1 (Jneoses X Nt

PtIJ

1519 Nfmm2 Horizontal Pressure tvm2 15 X Heo x 1000

Ds X Pill 2428 Nfmm2

Total Shear Stress tvm tvm1+ tvm2

3947 lt 1530 Nmm2 (CI 92631172) 23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure 0bt1 == 6 x Oneltrses X Nt ~ 2xPtImiddot

3448 Nfmm2 Horizontal Force (Jbt2 15 x 6 x HEo X 1000 x (Nt + w2)

Ds x Pth2

12206 Nfmm2 Total Bending Stress (Jbt (Jbt1 + (Jbt2

15654 lt 2244 Nfmm2 24) Equivalent Combined Stress

2(Jeqc = (Obt2 + 3 xtvm ) 112

= 17081 lt 3060 Nfmm2

Page 50f9

16205

(CI 92

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 2: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

I

tIS III PLAN

(SHOWING HALF TOP PLATE amp HAlF POT)

sect Ii

o

j

DETAIlD

FIXED POT BEARING DETAILS

TeCHNICAL DATA

C c+0091 ROTAn0t4 o0091

i~ ~

rc~o--Ei

AlImTWtwsn

~ =~~~

STD WASHER Bf0130LTX Ig

ANCHOlt SlEEVESECTION X-X

NOiES ~QNJm-~A1JlllUl1~~il~

~~ 1 -E AAOPOTI~1I1A~otJlE~lIgtOItJS$tEa~~0F Ulcent~~~eonmkkvt~~ rJ~ ~~(~fl ~

Urr1~~lftLi~~~Af$llt~=c~~--shylIIt7ltE11lt~~ampLCampD$lUI1$tliU~~~PIJTpoundCIEIO

1Or1Q-XS

l t fr1ClfOItozISllscoxnrqIr

~~ i~Cltta -rgt~ JSlO~~zI1ff~Irraquohcrt1lftJEt -~

+

- c~~~=~~~~5~~

~~r$~~~

$ ~-IIJCIOI4IIt~~~

~~~

OEiAAiOF_~~PiT~-~F

CllWIl~lIlMl7l ~~-~ScentIrwr -~~ tt~iRI-~_=-gt~ ~kItiI~-=se-_ot~

1gtJC~~~~ ~ == iibamp

QIIIIo ~f~I __middot~___

~ DETAIlE

~ ~ w~~

SEC110NAl ELEVA110N 8-8 OF TOP PLATE

t1i~ IJi

22lJMMHOUOFOR M20 ANCHOR BOLT

PLAN OF TOP PLATE

A

6 LUGS FOR ANCHOR BOLTS EQUIDISTANT AT 114135740 PCD

22lJMM HOUOFOR

M20 ANCHOR BOLT

PLAN 01 POT

~ TRANSVERSE MOVEMENT baM

+oom c PtOfATP)fI -000111

~

I Z l1

~

I ~

t

l~~ PLAN

( SHOWING HAlF POT HALF PISTON ~~ amp HALF TOP FATS) Q

SECTIONAL ELEVAilON A 61 POT

A

PLAN OF POT

SWa4S00 3mmiHXSsPLATE

e4Ierqzalaquo~mt=~~ SECilONAL ELEVAilON Boll OF TOP PlATE

1II1l1HIlEF~

~

FREE SLIDING POT I PTFE BEARING DETAILS

t~

H16 ANCHOR IOLT

r---+t--~ IJJ~I~ I I LV I ~ I I I ~ I I In I I

-t W --t---t-r ~ I I I 1 I I ill

sspy3SSO I ~B

5SOJClC

PlAN OF TOP PlATE

~

ANCHOR StEEVE

~ ~~S~l

~~av~ f--oo 3760 E

SECTIONAl ELEVAilON cc OF PISTON

f 1 C C

+

~~fF~~-~A~~

~ f7raquo~~a7c~~~~-O

=

~CFJlIII~~~__~

eIo~_~lt2

OnfAWC~j-wrl11l ~~_~ioC-bull

~~1S yen~~-~~_SlE_ I ~_ -- shy

~~~~~~-shy~~~t-l=llitt~~middoti~laquoi ~ o-sroll1_~

1 ~

~ ~

I i i

ll ui

~i

QO1 t ROTAllOH oomt -----

PAN ( SHOWiNG HALF POT HAlF PISTON

ampHALFTOfPlATE)

~

LONG GUIDED SLIDING POT PTFE BEARING DETAILS

TECHNICAL OATA

--j --shy I --I I - I~_WLI~=I)=~I=I=~~~ mgtE~ IlOITQillolOTtltli lr2TC1111lllLutrfl raquoOHIt 1=~It1 11

SECTIONAL ELEVATION AA OF POT

PLAN OF POT

SECTIONAL ELEVATION B-B OF TOP PLATE

ml1l1HltltlfllR

tlf~ ~~

PAN OF TOP PLATE

II

ANCHO~ SlHVE

~~

~ OETA1LmiddotE

4Smrn THIlt FTFEShfIoM

~-~ I----o=m

SECTIONAL ELEVATION cc OF PSTO

1 c

I LB- II C3 $Qbullbull41Qll I PLAN OF PISTON

Igt~--

1IT-~ ~~00$lIlt

JOJqtNlllMSt$~~_~~clt~

~1G_SmlO~2SllOH~~t~~(N

=

A

middotcmiddot

i ffi ~ w

ffi g ~

i

ooo~ c ROTAnOf oOO91 c ----

TRAfFIC ~ DIIEC1tON PLAN

DETALD

TRANS GUIDED SLIDING POT I PTFE BEARING DETAILS

TECHNICAL DATA

-shy

TRAme ~ 01

~

SECTIONAL ELEVATION A-A OF POT

PLAN OF POT

SW 4120 ~SSPlATE

~fat0a~~~ I EC ltBOP

SECTIONAL ELEVATION BB OF TOP PLATE

I

f S

$4020

PLAN OF TOP PLATE

OTHER OETAlLS OF SEAR1NG

~~

~ ~

ANCHOR SLEEVE

E SECTlONAL ELEVATION cc OF PISTON

C

l-3600 cJSqd100

PlAlfOF PISTON

A~~~~11~~fF J~ t I (C

~IfE )t))

~ ltgt If-Ipo --- -J

111 _ ~ ~rr)~~j r j---~

C

oIIMl~IIOT1poundCigtllliliiiltlSQii~~~

cs7S5 ~~

~~l ~

~~

~~lt$~~~~~~-shy~lIOOl17mTIiJOU~IQ~snlEO~~ ~

~~~Y5~~rcar

~XZ~~~ST~

~IO3e1Qit~~GltJItIEI~~~

~-~-

l1WIC RESTIESS l FVTCTO ~n~~~

-i~e~ 111ltmiddotmiddot~ncll7a~oa~

-~ - ~~~-~gt ~c~~~_==---shy~t~J~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN OF 308 TON CAPACITY FREE SLIDING POT I PTFE BEARINGmiddot TYPE FR

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGIIIEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHAmiddot UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTURE - 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type FR 1308 TON FREE REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete -M45) b) Superstructure (Top) fCk 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (Cl 926211) Seismic (CI926214)

a) Bottom oj) 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fCK x 2)x125

b) Top Ot 2250 Nmm2 (025 xfetl x2) 2813 Nmm2 (025 X fOK x 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214) a) Bottom 0bo 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 0tc 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton 1SEISMIC CASE

d) Vmin-ses 202086 KN 20600 Ton J (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmlnwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant HB 000 KN Since HB lt 10 of V max

HB 30215 KN (CI 92614) 7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heqt 000 KN 000 Ton

Resultant HEQ 000 KN Since HEQ lt 10 ofVmax-ses HEQ 22759 KN (CI 92614)

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal HWI 000 KN 000 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 000 KN Since Hw lt 10 of V max-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation 9 00091 radians b) Resultant rotation due to permanent action and long term effects 6p 000600 c) Resultant rotation due to variable action 6v 000305 iiwlIS EllgiJleor~

Considered 9p =60 of 6 amp ev =40 of e ~lt ~ltf ~~ Since D51 Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151) - - ~ )1

k1 = 19710 ~~ (-~7 ~-I~l ~ roBOOO 4 V S

-cI) 1 (~~~)

Page 1 of 9 t k ~~~04 ~~derilbo~

~~~~ ~

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

ainu +- 46 mm 11 ) Transverse Movament

elran +- 3 mm

BEARING PARAMETERS F 308 TON FREE 12 nos I) POT

Effective diameter of bottom plate (05+ 2 XA2 X 2) A 488 mm

Diameter of Pot at Bottom A1 488 mm Thickness of Pot at Base A2 27 mm Depth of Pot As 40 mm

Total Thickness of Pot AH1 67 mm Outer Diameter of Pot A7 454 mm Inner Diameter of Pot D5 380 mm

Horizontal Lever Arm (A + Nt + w2) Au 58 mm Pot Thickness PIO 37 mm

II) ELASTOMERIC PAD

Diameter of Elastomeric Pad D5 380 mm Thickness of Elastomeric Pad Nt 28 mm

III) PISTON f CENTRE PLATE Diameter of Centre Plate C3 410 mm

Piston Diameter Dp 376 mm

Overall Thicknes of Centre Plate C2 33 mm Contact width of Piston w 6 mm Clearance between Pot top ampPiston bottom edge hn 9 mm

IV) PTFE

Diameter L 360 mm

Thickness 45 mm V) SS Plate

Length SSPL 460 mm Width SSPW 385 mm

Thickness SSPt 3mm

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x 85X 2) 472 mm Ble

Length BL 560 mm

Width Bw 480 mm Thickness B2 25mm

Distance of line of Harz force from top B5 28 mm VII) ANCHOR BOLT

Diameter of Bolt Db 16 mm Total Number of Bolts N 8 nos

Grade of Bolt Gr 46 VIII) LUGS

Length LI 70 mm Width LI 70 mm Thickness L 15 mm

Total Number of Lugs 8 nos

IX) ANCHOR SLEEVES Diameter of Sleeve D 32 mm Sleeve length for Bottom 4 nos Lb 100 mm Sleeve length for Top 4 nos L 100 mm

~ltS Engili~gtgt TOTAL HEIGHT OF BEARING

118m ~(iN 4centJ -0 ~ ltfj

( gt [E ~ I

~ I~ 1~ b

iL Page 2 of 9 ~

6- ~~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Ihlckness Ratio (CL 926236) DrNI 1357 lt1= 15

2) Strain in Elastomer (CI 926234)

1100 = 05 x D6 x9 Nt

00614 lt1= 015

3) Average Compressive Stress under Normal condjtion (CI 926232) Onoo = Vmax X 1 000

1tI4 X D52

2664 lt 35 Nmm2 4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232)

anao~sos = Vmax-ses x 1000

1tI4xol

= 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo--wln Vmax-win X 1000

1tI4xD

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CL 926233)

Oneomiddotmln = Vmin~win X 1000

1tI4xDl

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CL 926152)

Mebulld D53 X[(k1 x9p) +(k2 x 9)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRd(n) = 02 x (05 2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CL 926152) MRd(S) 02 x (D52) x Heo x 1000

865E+06 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRAN8) (CL 926152) MRd(w) = 02 x (D52) x Hw x 1000

895E+06 N-mm 11) Total induce Moment under Normal condition

MTltJ(n) Me-d + MRdn)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-d(s) Med+ MR-d(S)

222E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MT-dW) Me_d+ MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CL 926232) (jneo(edge) Ooao + MT-den)

1tI32 X 0 53

3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (jneo-S(edge) =Oneo-$eo + MTltJ(S)

1tI32 x 0 53

= 2418 lt 40 Nmm2

Page 30f9

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Elastomeric pad at Edges under Seismic Condllion (TRANS) (CI 926232)

onooW(odgo) 0neo-wln + Mrd(w) 3rr32 xD5

2493 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615) Un Vmax X 1000

rd4 X A2

1615 lt 2250 Nmm2 2 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 92615)

Oampee Vmaxses x 1000 rd4 XA2

1217 lt 2813 Nmm2 3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 92615)

Vmax-win X 1000 rd4 XA2

1259 lt 2813 Nmm2 4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition

crn~f = He X 1000 x As rd32xA3

154 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under SeismicCondition (LONG)

0ses-f HEQ X 1000 xAs rd32xA3

116 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

0wln-f Hw x 1000 xAs rd32 xA3

= 120 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

Onwe MTcJ(n)

rd32 x A3

= 219 Nmm2 8 Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

0ses Mr-dIS)

rd32 x A3

194 Nmm2 9 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Owln-e Mr-d(w)

rd32 xA3

= 197 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

On-If On_f + On_e

= 373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212)

Oses-If = 0ses-f + Oses_e

lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

0wln-If = Owln_f + Owln

lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

On + On-If = 09689 lt= 1

0b abc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) + Oses~tf = 05996 lt= 1

~~--x (jb 125 X (jbc

Page 4 of9

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexl1ral Stress under Seismic Condition (TRANS) (CI 926213)

(Jwln + (Jwlntr 06181 ltI 1 125 x (Jb 125 X ObC

16) Hoop Stress in Pot under Normal CQndition (CI 92631171) ON (Jnna XDu x Nt) + (HI3 x 1000)

2P1Il xAo 19784 lt 2040 Nmm2

17) Hoop Stress in Pot under Seismic Condition (LONG) (CI 92631171) Os (Unoos(ts x D6 X Nt) + (HEQ x 1000)

2PtIxAo 14902 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (TRANS) (CI 92631171) Ow (Jnoawln X D6 x NI) + (Hw x 1000)

2Ptll X Ao 15416 lt 2040 Nfmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition Fluid Pressure tYm1 = (Jneox Nt

Pill

= 2016 Nfmm2 Horizontal Pressure tvm2 = 15 xHs x1000

Ds X PIll

3223 Total Shear Stress

= 5240 lt 153 Nfmm2 (CI 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure (Jbt1 = 6 x (Jnea X Nt 2

2 x P1h2

4577 Nmm2 Horizontal Force (Jbt2 15 x 6 x HB X 1000 X (Nt + w2)

2Ds x Plh

Total Bending Stress

20782 lt 2244 Nfmm2 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc (Jbt2 + 3 Xtym2)112

= 22677 lt 3060 Nmm2 (CL 9263 1174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure tYm1 (Jneoses X Nt

PtIJ

1519 Nfmm2 Horizontal Pressure tvm2 15 X Heo x 1000

Ds X Pill 2428 Nfmm2

Total Shear Stress tvm tvm1+ tvm2

3947 lt 1530 Nmm2 (CI 92631172) 23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure 0bt1 == 6 x Oneltrses X Nt ~ 2xPtImiddot

3448 Nfmm2 Horizontal Force (Jbt2 15 x 6 x HEo X 1000 x (Nt + w2)

Ds x Pth2

12206 Nfmm2 Total Bending Stress (Jbt (Jbt1 + (Jbt2

15654 lt 2244 Nfmm2 24) Equivalent Combined Stress

2(Jeqc = (Obt2 + 3 xtvm ) 112

= 17081 lt 3060 Nfmm2

Page 50f9

16205

(CI 92

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 3: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

~ TRANSVERSE MOVEMENT baM

+oom c PtOfATP)fI -000111

~

I Z l1

~

I ~

t

l~~ PLAN

( SHOWING HAlF POT HALF PISTON ~~ amp HALF TOP FATS) Q

SECTIONAL ELEVAilON A 61 POT

A

PLAN OF POT

SWa4S00 3mmiHXSsPLATE

e4Ierqzalaquo~mt=~~ SECilONAL ELEVAilON Boll OF TOP PlATE

1II1l1HIlEF~

~

FREE SLIDING POT I PTFE BEARING DETAILS

t~

H16 ANCHOR IOLT

r---+t--~ IJJ~I~ I I LV I ~ I I I ~ I I In I I

-t W --t---t-r ~ I I I 1 I I ill

sspy3SSO I ~B

5SOJClC

PlAN OF TOP PlATE

~

ANCHOR StEEVE

~ ~~S~l

~~av~ f--oo 3760 E

SECTIONAl ELEVAilON cc OF PISTON

f 1 C C

+

~~fF~~-~A~~

~ f7raquo~~a7c~~~~-O

=

~CFJlIII~~~__~

eIo~_~lt2

OnfAWC~j-wrl11l ~~_~ioC-bull

~~1S yen~~-~~_SlE_ I ~_ -- shy

~~~~~~-shy~~~t-l=llitt~~middoti~laquoi ~ o-sroll1_~

1 ~

~ ~

I i i

ll ui

~i

QO1 t ROTAllOH oomt -----

PAN ( SHOWiNG HALF POT HAlF PISTON

ampHALFTOfPlATE)

~

LONG GUIDED SLIDING POT PTFE BEARING DETAILS

TECHNICAL OATA

--j --shy I --I I - I~_WLI~=I)=~I=I=~~~ mgtE~ IlOITQillolOTtltli lr2TC1111lllLutrfl raquoOHIt 1=~It1 11

SECTIONAL ELEVATION AA OF POT

PLAN OF POT

SECTIONAL ELEVATION B-B OF TOP PLATE

ml1l1HltltlfllR

tlf~ ~~

PAN OF TOP PLATE

II

ANCHO~ SlHVE

~~

~ OETA1LmiddotE

4Smrn THIlt FTFEShfIoM

~-~ I----o=m

SECTIONAL ELEVATION cc OF PSTO

1 c

I LB- II C3 $Qbullbull41Qll I PLAN OF PISTON

Igt~--

1IT-~ ~~00$lIlt

JOJqtNlllMSt$~~_~~clt~

~1G_SmlO~2SllOH~~t~~(N

=

A

middotcmiddot

i ffi ~ w

ffi g ~

i

ooo~ c ROTAnOf oOO91 c ----

TRAfFIC ~ DIIEC1tON PLAN

DETALD

TRANS GUIDED SLIDING POT I PTFE BEARING DETAILS

TECHNICAL DATA

-shy

TRAme ~ 01

~

SECTIONAL ELEVATION A-A OF POT

PLAN OF POT

SW 4120 ~SSPlATE

~fat0a~~~ I EC ltBOP

SECTIONAL ELEVATION BB OF TOP PLATE

I

f S

$4020

PLAN OF TOP PLATE

OTHER OETAlLS OF SEAR1NG

~~

~ ~

ANCHOR SLEEVE

E SECTlONAL ELEVATION cc OF PISTON

C

l-3600 cJSqd100

PlAlfOF PISTON

A~~~~11~~fF J~ t I (C

~IfE )t))

~ ltgt If-Ipo --- -J

111 _ ~ ~rr)~~j r j---~

C

oIIMl~IIOT1poundCigtllliliiiltlSQii~~~

cs7S5 ~~

~~l ~

~~

~~lt$~~~~~~-shy~lIOOl17mTIiJOU~IQ~snlEO~~ ~

~~~Y5~~rcar

~XZ~~~ST~

~IO3e1Qit~~GltJItIEI~~~

~-~-

l1WIC RESTIESS l FVTCTO ~n~~~

-i~e~ 111ltmiddotmiddot~ncll7a~oa~

-~ - ~~~-~gt ~c~~~_==---shy~t~J~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN OF 308 TON CAPACITY FREE SLIDING POT I PTFE BEARINGmiddot TYPE FR

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGIIIEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHAmiddot UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTURE - 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type FR 1308 TON FREE REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete -M45) b) Superstructure (Top) fCk 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (Cl 926211) Seismic (CI926214)

a) Bottom oj) 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fCK x 2)x125

b) Top Ot 2250 Nmm2 (025 xfetl x2) 2813 Nmm2 (025 X fOK x 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214) a) Bottom 0bo 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 0tc 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton 1SEISMIC CASE

d) Vmin-ses 202086 KN 20600 Ton J (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmlnwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant HB 000 KN Since HB lt 10 of V max

HB 30215 KN (CI 92614) 7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heqt 000 KN 000 Ton

Resultant HEQ 000 KN Since HEQ lt 10 ofVmax-ses HEQ 22759 KN (CI 92614)

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal HWI 000 KN 000 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 000 KN Since Hw lt 10 of V max-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation 9 00091 radians b) Resultant rotation due to permanent action and long term effects 6p 000600 c) Resultant rotation due to variable action 6v 000305 iiwlIS EllgiJleor~

Considered 9p =60 of 6 amp ev =40 of e ~lt ~ltf ~~ Since D51 Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151) - - ~ )1

k1 = 19710 ~~ (-~7 ~-I~l ~ roBOOO 4 V S

-cI) 1 (~~~)

Page 1 of 9 t k ~~~04 ~~derilbo~

~~~~ ~

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

ainu +- 46 mm 11 ) Transverse Movament

elran +- 3 mm

BEARING PARAMETERS F 308 TON FREE 12 nos I) POT

Effective diameter of bottom plate (05+ 2 XA2 X 2) A 488 mm

Diameter of Pot at Bottom A1 488 mm Thickness of Pot at Base A2 27 mm Depth of Pot As 40 mm

Total Thickness of Pot AH1 67 mm Outer Diameter of Pot A7 454 mm Inner Diameter of Pot D5 380 mm

Horizontal Lever Arm (A + Nt + w2) Au 58 mm Pot Thickness PIO 37 mm

II) ELASTOMERIC PAD

Diameter of Elastomeric Pad D5 380 mm Thickness of Elastomeric Pad Nt 28 mm

III) PISTON f CENTRE PLATE Diameter of Centre Plate C3 410 mm

Piston Diameter Dp 376 mm

Overall Thicknes of Centre Plate C2 33 mm Contact width of Piston w 6 mm Clearance between Pot top ampPiston bottom edge hn 9 mm

IV) PTFE

Diameter L 360 mm

Thickness 45 mm V) SS Plate

Length SSPL 460 mm Width SSPW 385 mm

Thickness SSPt 3mm

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x 85X 2) 472 mm Ble

Length BL 560 mm

Width Bw 480 mm Thickness B2 25mm

Distance of line of Harz force from top B5 28 mm VII) ANCHOR BOLT

Diameter of Bolt Db 16 mm Total Number of Bolts N 8 nos

Grade of Bolt Gr 46 VIII) LUGS

Length LI 70 mm Width LI 70 mm Thickness L 15 mm

Total Number of Lugs 8 nos

IX) ANCHOR SLEEVES Diameter of Sleeve D 32 mm Sleeve length for Bottom 4 nos Lb 100 mm Sleeve length for Top 4 nos L 100 mm

~ltS Engili~gtgt TOTAL HEIGHT OF BEARING

118m ~(iN 4centJ -0 ~ ltfj

( gt [E ~ I

~ I~ 1~ b

iL Page 2 of 9 ~

6- ~~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Ihlckness Ratio (CL 926236) DrNI 1357 lt1= 15

2) Strain in Elastomer (CI 926234)

1100 = 05 x D6 x9 Nt

00614 lt1= 015

3) Average Compressive Stress under Normal condjtion (CI 926232) Onoo = Vmax X 1 000

1tI4 X D52

2664 lt 35 Nmm2 4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232)

anao~sos = Vmax-ses x 1000

1tI4xol

= 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo--wln Vmax-win X 1000

1tI4xD

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CL 926233)

Oneomiddotmln = Vmin~win X 1000

1tI4xDl

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CL 926152)

Mebulld D53 X[(k1 x9p) +(k2 x 9)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRd(n) = 02 x (05 2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CL 926152) MRd(S) 02 x (D52) x Heo x 1000

865E+06 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRAN8) (CL 926152) MRd(w) = 02 x (D52) x Hw x 1000

895E+06 N-mm 11) Total induce Moment under Normal condition

MTltJ(n) Me-d + MRdn)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-d(s) Med+ MR-d(S)

222E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MT-dW) Me_d+ MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CL 926232) (jneo(edge) Ooao + MT-den)

1tI32 X 0 53

3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (jneo-S(edge) =Oneo-$eo + MTltJ(S)

1tI32 x 0 53

= 2418 lt 40 Nmm2

Page 30f9

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Elastomeric pad at Edges under Seismic Condllion (TRANS) (CI 926232)

onooW(odgo) 0neo-wln + Mrd(w) 3rr32 xD5

2493 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615) Un Vmax X 1000

rd4 X A2

1615 lt 2250 Nmm2 2 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 92615)

Oampee Vmaxses x 1000 rd4 XA2

1217 lt 2813 Nmm2 3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 92615)

Vmax-win X 1000 rd4 XA2

1259 lt 2813 Nmm2 4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition

crn~f = He X 1000 x As rd32xA3

154 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under SeismicCondition (LONG)

0ses-f HEQ X 1000 xAs rd32xA3

116 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

0wln-f Hw x 1000 xAs rd32 xA3

= 120 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

Onwe MTcJ(n)

rd32 x A3

= 219 Nmm2 8 Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

0ses Mr-dIS)

rd32 x A3

194 Nmm2 9 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Owln-e Mr-d(w)

rd32 xA3

= 197 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

On-If On_f + On_e

= 373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212)

Oses-If = 0ses-f + Oses_e

lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

0wln-If = Owln_f + Owln

lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

On + On-If = 09689 lt= 1

0b abc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) + Oses~tf = 05996 lt= 1

~~--x (jb 125 X (jbc

Page 4 of9

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexl1ral Stress under Seismic Condition (TRANS) (CI 926213)

(Jwln + (Jwlntr 06181 ltI 1 125 x (Jb 125 X ObC

16) Hoop Stress in Pot under Normal CQndition (CI 92631171) ON (Jnna XDu x Nt) + (HI3 x 1000)

2P1Il xAo 19784 lt 2040 Nmm2

17) Hoop Stress in Pot under Seismic Condition (LONG) (CI 92631171) Os (Unoos(ts x D6 X Nt) + (HEQ x 1000)

2PtIxAo 14902 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (TRANS) (CI 92631171) Ow (Jnoawln X D6 x NI) + (Hw x 1000)

2Ptll X Ao 15416 lt 2040 Nfmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition Fluid Pressure tYm1 = (Jneox Nt

Pill

= 2016 Nfmm2 Horizontal Pressure tvm2 = 15 xHs x1000

Ds X PIll

3223 Total Shear Stress

= 5240 lt 153 Nfmm2 (CI 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure (Jbt1 = 6 x (Jnea X Nt 2

2 x P1h2

4577 Nmm2 Horizontal Force (Jbt2 15 x 6 x HB X 1000 X (Nt + w2)

2Ds x Plh

Total Bending Stress

20782 lt 2244 Nfmm2 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc (Jbt2 + 3 Xtym2)112

= 22677 lt 3060 Nmm2 (CL 9263 1174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure tYm1 (Jneoses X Nt

PtIJ

1519 Nfmm2 Horizontal Pressure tvm2 15 X Heo x 1000

Ds X Pill 2428 Nfmm2

Total Shear Stress tvm tvm1+ tvm2

3947 lt 1530 Nmm2 (CI 92631172) 23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure 0bt1 == 6 x Oneltrses X Nt ~ 2xPtImiddot

3448 Nfmm2 Horizontal Force (Jbt2 15 x 6 x HEo X 1000 x (Nt + w2)

Ds x Pth2

12206 Nfmm2 Total Bending Stress (Jbt (Jbt1 + (Jbt2

15654 lt 2244 Nfmm2 24) Equivalent Combined Stress

2(Jeqc = (Obt2 + 3 xtvm ) 112

= 17081 lt 3060 Nfmm2

Page 50f9

16205

(CI 92

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 4: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

1 ~

~ ~

I i i

ll ui

~i

QO1 t ROTAllOH oomt -----

PAN ( SHOWiNG HALF POT HAlF PISTON

ampHALFTOfPlATE)

~

LONG GUIDED SLIDING POT PTFE BEARING DETAILS

TECHNICAL OATA

--j --shy I --I I - I~_WLI~=I)=~I=I=~~~ mgtE~ IlOITQillolOTtltli lr2TC1111lllLutrfl raquoOHIt 1=~It1 11

SECTIONAL ELEVATION AA OF POT

PLAN OF POT

SECTIONAL ELEVATION B-B OF TOP PLATE

ml1l1HltltlfllR

tlf~ ~~

PAN OF TOP PLATE

II

ANCHO~ SlHVE

~~

~ OETA1LmiddotE

4Smrn THIlt FTFEShfIoM

~-~ I----o=m

SECTIONAL ELEVATION cc OF PSTO

1 c

I LB- II C3 $Qbullbull41Qll I PLAN OF PISTON

Igt~--

1IT-~ ~~00$lIlt

JOJqtNlllMSt$~~_~~clt~

~1G_SmlO~2SllOH~~t~~(N

=

A

middotcmiddot

i ffi ~ w

ffi g ~

i

ooo~ c ROTAnOf oOO91 c ----

TRAfFIC ~ DIIEC1tON PLAN

DETALD

TRANS GUIDED SLIDING POT I PTFE BEARING DETAILS

TECHNICAL DATA

-shy

TRAme ~ 01

~

SECTIONAL ELEVATION A-A OF POT

PLAN OF POT

SW 4120 ~SSPlATE

~fat0a~~~ I EC ltBOP

SECTIONAL ELEVATION BB OF TOP PLATE

I

f S

$4020

PLAN OF TOP PLATE

OTHER OETAlLS OF SEAR1NG

~~

~ ~

ANCHOR SLEEVE

E SECTlONAL ELEVATION cc OF PISTON

C

l-3600 cJSqd100

PlAlfOF PISTON

A~~~~11~~fF J~ t I (C

~IfE )t))

~ ltgt If-Ipo --- -J

111 _ ~ ~rr)~~j r j---~

C

oIIMl~IIOT1poundCigtllliliiiltlSQii~~~

cs7S5 ~~

~~l ~

~~

~~lt$~~~~~~-shy~lIOOl17mTIiJOU~IQ~snlEO~~ ~

~~~Y5~~rcar

~XZ~~~ST~

~IO3e1Qit~~GltJItIEI~~~

~-~-

l1WIC RESTIESS l FVTCTO ~n~~~

-i~e~ 111ltmiddotmiddot~ncll7a~oa~

-~ - ~~~-~gt ~c~~~_==---shy~t~J~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN OF 308 TON CAPACITY FREE SLIDING POT I PTFE BEARINGmiddot TYPE FR

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGIIIEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHAmiddot UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTURE - 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type FR 1308 TON FREE REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete -M45) b) Superstructure (Top) fCk 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (Cl 926211) Seismic (CI926214)

a) Bottom oj) 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fCK x 2)x125

b) Top Ot 2250 Nmm2 (025 xfetl x2) 2813 Nmm2 (025 X fOK x 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214) a) Bottom 0bo 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 0tc 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton 1SEISMIC CASE

d) Vmin-ses 202086 KN 20600 Ton J (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmlnwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant HB 000 KN Since HB lt 10 of V max

HB 30215 KN (CI 92614) 7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heqt 000 KN 000 Ton

Resultant HEQ 000 KN Since HEQ lt 10 ofVmax-ses HEQ 22759 KN (CI 92614)

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal HWI 000 KN 000 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 000 KN Since Hw lt 10 of V max-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation 9 00091 radians b) Resultant rotation due to permanent action and long term effects 6p 000600 c) Resultant rotation due to variable action 6v 000305 iiwlIS EllgiJleor~

Considered 9p =60 of 6 amp ev =40 of e ~lt ~ltf ~~ Since D51 Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151) - - ~ )1

k1 = 19710 ~~ (-~7 ~-I~l ~ roBOOO 4 V S

-cI) 1 (~~~)

Page 1 of 9 t k ~~~04 ~~derilbo~

~~~~ ~

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

ainu +- 46 mm 11 ) Transverse Movament

elran +- 3 mm

BEARING PARAMETERS F 308 TON FREE 12 nos I) POT

Effective diameter of bottom plate (05+ 2 XA2 X 2) A 488 mm

Diameter of Pot at Bottom A1 488 mm Thickness of Pot at Base A2 27 mm Depth of Pot As 40 mm

Total Thickness of Pot AH1 67 mm Outer Diameter of Pot A7 454 mm Inner Diameter of Pot D5 380 mm

Horizontal Lever Arm (A + Nt + w2) Au 58 mm Pot Thickness PIO 37 mm

II) ELASTOMERIC PAD

Diameter of Elastomeric Pad D5 380 mm Thickness of Elastomeric Pad Nt 28 mm

III) PISTON f CENTRE PLATE Diameter of Centre Plate C3 410 mm

Piston Diameter Dp 376 mm

Overall Thicknes of Centre Plate C2 33 mm Contact width of Piston w 6 mm Clearance between Pot top ampPiston bottom edge hn 9 mm

IV) PTFE

Diameter L 360 mm

Thickness 45 mm V) SS Plate

Length SSPL 460 mm Width SSPW 385 mm

Thickness SSPt 3mm

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x 85X 2) 472 mm Ble

Length BL 560 mm

Width Bw 480 mm Thickness B2 25mm

Distance of line of Harz force from top B5 28 mm VII) ANCHOR BOLT

Diameter of Bolt Db 16 mm Total Number of Bolts N 8 nos

Grade of Bolt Gr 46 VIII) LUGS

Length LI 70 mm Width LI 70 mm Thickness L 15 mm

Total Number of Lugs 8 nos

IX) ANCHOR SLEEVES Diameter of Sleeve D 32 mm Sleeve length for Bottom 4 nos Lb 100 mm Sleeve length for Top 4 nos L 100 mm

~ltS Engili~gtgt TOTAL HEIGHT OF BEARING

118m ~(iN 4centJ -0 ~ ltfj

( gt [E ~ I

~ I~ 1~ b

iL Page 2 of 9 ~

6- ~~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Ihlckness Ratio (CL 926236) DrNI 1357 lt1= 15

2) Strain in Elastomer (CI 926234)

1100 = 05 x D6 x9 Nt

00614 lt1= 015

3) Average Compressive Stress under Normal condjtion (CI 926232) Onoo = Vmax X 1 000

1tI4 X D52

2664 lt 35 Nmm2 4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232)

anao~sos = Vmax-ses x 1000

1tI4xol

= 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo--wln Vmax-win X 1000

1tI4xD

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CL 926233)

Oneomiddotmln = Vmin~win X 1000

1tI4xDl

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CL 926152)

Mebulld D53 X[(k1 x9p) +(k2 x 9)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRd(n) = 02 x (05 2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CL 926152) MRd(S) 02 x (D52) x Heo x 1000

865E+06 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRAN8) (CL 926152) MRd(w) = 02 x (D52) x Hw x 1000

895E+06 N-mm 11) Total induce Moment under Normal condition

MTltJ(n) Me-d + MRdn)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-d(s) Med+ MR-d(S)

222E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MT-dW) Me_d+ MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CL 926232) (jneo(edge) Ooao + MT-den)

1tI32 X 0 53

3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (jneo-S(edge) =Oneo-$eo + MTltJ(S)

1tI32 x 0 53

= 2418 lt 40 Nmm2

Page 30f9

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Elastomeric pad at Edges under Seismic Condllion (TRANS) (CI 926232)

onooW(odgo) 0neo-wln + Mrd(w) 3rr32 xD5

2493 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615) Un Vmax X 1000

rd4 X A2

1615 lt 2250 Nmm2 2 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 92615)

Oampee Vmaxses x 1000 rd4 XA2

1217 lt 2813 Nmm2 3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 92615)

Vmax-win X 1000 rd4 XA2

1259 lt 2813 Nmm2 4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition

crn~f = He X 1000 x As rd32xA3

154 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under SeismicCondition (LONG)

0ses-f HEQ X 1000 xAs rd32xA3

116 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

0wln-f Hw x 1000 xAs rd32 xA3

= 120 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

Onwe MTcJ(n)

rd32 x A3

= 219 Nmm2 8 Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

0ses Mr-dIS)

rd32 x A3

194 Nmm2 9 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Owln-e Mr-d(w)

rd32 xA3

= 197 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

On-If On_f + On_e

= 373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212)

Oses-If = 0ses-f + Oses_e

lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

0wln-If = Owln_f + Owln

lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

On + On-If = 09689 lt= 1

0b abc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) + Oses~tf = 05996 lt= 1

~~--x (jb 125 X (jbc

Page 4 of9

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexl1ral Stress under Seismic Condition (TRANS) (CI 926213)

(Jwln + (Jwlntr 06181 ltI 1 125 x (Jb 125 X ObC

16) Hoop Stress in Pot under Normal CQndition (CI 92631171) ON (Jnna XDu x Nt) + (HI3 x 1000)

2P1Il xAo 19784 lt 2040 Nmm2

17) Hoop Stress in Pot under Seismic Condition (LONG) (CI 92631171) Os (Unoos(ts x D6 X Nt) + (HEQ x 1000)

2PtIxAo 14902 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (TRANS) (CI 92631171) Ow (Jnoawln X D6 x NI) + (Hw x 1000)

2Ptll X Ao 15416 lt 2040 Nfmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition Fluid Pressure tYm1 = (Jneox Nt

Pill

= 2016 Nfmm2 Horizontal Pressure tvm2 = 15 xHs x1000

Ds X PIll

3223 Total Shear Stress

= 5240 lt 153 Nfmm2 (CI 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure (Jbt1 = 6 x (Jnea X Nt 2

2 x P1h2

4577 Nmm2 Horizontal Force (Jbt2 15 x 6 x HB X 1000 X (Nt + w2)

2Ds x Plh

Total Bending Stress

20782 lt 2244 Nfmm2 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc (Jbt2 + 3 Xtym2)112

= 22677 lt 3060 Nmm2 (CL 9263 1174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure tYm1 (Jneoses X Nt

PtIJ

1519 Nfmm2 Horizontal Pressure tvm2 15 X Heo x 1000

Ds X Pill 2428 Nfmm2

Total Shear Stress tvm tvm1+ tvm2

3947 lt 1530 Nmm2 (CI 92631172) 23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure 0bt1 == 6 x Oneltrses X Nt ~ 2xPtImiddot

3448 Nfmm2 Horizontal Force (Jbt2 15 x 6 x HEo X 1000 x (Nt + w2)

Ds x Pth2

12206 Nfmm2 Total Bending Stress (Jbt (Jbt1 + (Jbt2

15654 lt 2244 Nfmm2 24) Equivalent Combined Stress

2(Jeqc = (Obt2 + 3 xtvm ) 112

= 17081 lt 3060 Nfmm2

Page 50f9

16205

(CI 92

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 5: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

i ffi ~ w

ffi g ~

i

ooo~ c ROTAnOf oOO91 c ----

TRAfFIC ~ DIIEC1tON PLAN

DETALD

TRANS GUIDED SLIDING POT I PTFE BEARING DETAILS

TECHNICAL DATA

-shy

TRAme ~ 01

~

SECTIONAL ELEVATION A-A OF POT

PLAN OF POT

SW 4120 ~SSPlATE

~fat0a~~~ I EC ltBOP

SECTIONAL ELEVATION BB OF TOP PLATE

I

f S

$4020

PLAN OF TOP PLATE

OTHER OETAlLS OF SEAR1NG

~~

~ ~

ANCHOR SLEEVE

E SECTlONAL ELEVATION cc OF PISTON

C

l-3600 cJSqd100

PlAlfOF PISTON

A~~~~11~~fF J~ t I (C

~IfE )t))

~ ltgt If-Ipo --- -J

111 _ ~ ~rr)~~j r j---~

C

oIIMl~IIOT1poundCigtllliliiiltlSQii~~~

cs7S5 ~~

~~l ~

~~

~~lt$~~~~~~-shy~lIOOl17mTIiJOU~IQ~snlEO~~ ~

~~~Y5~~rcar

~XZ~~~ST~

~IO3e1Qit~~GltJItIEI~~~

~-~-

l1WIC RESTIESS l FVTCTO ~n~~~

-i~e~ 111ltmiddotmiddot~ncll7a~oa~

-~ - ~~~-~gt ~c~~~_==---shy~t~J~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN OF 308 TON CAPACITY FREE SLIDING POT I PTFE BEARINGmiddot TYPE FR

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGIIIEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHAmiddot UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTURE - 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type FR 1308 TON FREE REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete -M45) b) Superstructure (Top) fCk 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (Cl 926211) Seismic (CI926214)

a) Bottom oj) 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fCK x 2)x125

b) Top Ot 2250 Nmm2 (025 xfetl x2) 2813 Nmm2 (025 X fOK x 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214) a) Bottom 0bo 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 0tc 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton 1SEISMIC CASE

d) Vmin-ses 202086 KN 20600 Ton J (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmlnwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant HB 000 KN Since HB lt 10 of V max

HB 30215 KN (CI 92614) 7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heqt 000 KN 000 Ton

Resultant HEQ 000 KN Since HEQ lt 10 ofVmax-ses HEQ 22759 KN (CI 92614)

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal HWI 000 KN 000 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 000 KN Since Hw lt 10 of V max-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation 9 00091 radians b) Resultant rotation due to permanent action and long term effects 6p 000600 c) Resultant rotation due to variable action 6v 000305 iiwlIS EllgiJleor~

Considered 9p =60 of 6 amp ev =40 of e ~lt ~ltf ~~ Since D51 Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151) - - ~ )1

k1 = 19710 ~~ (-~7 ~-I~l ~ roBOOO 4 V S

-cI) 1 (~~~)

Page 1 of 9 t k ~~~04 ~~derilbo~

~~~~ ~

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

ainu +- 46 mm 11 ) Transverse Movament

elran +- 3 mm

BEARING PARAMETERS F 308 TON FREE 12 nos I) POT

Effective diameter of bottom plate (05+ 2 XA2 X 2) A 488 mm

Diameter of Pot at Bottom A1 488 mm Thickness of Pot at Base A2 27 mm Depth of Pot As 40 mm

Total Thickness of Pot AH1 67 mm Outer Diameter of Pot A7 454 mm Inner Diameter of Pot D5 380 mm

Horizontal Lever Arm (A + Nt + w2) Au 58 mm Pot Thickness PIO 37 mm

II) ELASTOMERIC PAD

Diameter of Elastomeric Pad D5 380 mm Thickness of Elastomeric Pad Nt 28 mm

III) PISTON f CENTRE PLATE Diameter of Centre Plate C3 410 mm

Piston Diameter Dp 376 mm

Overall Thicknes of Centre Plate C2 33 mm Contact width of Piston w 6 mm Clearance between Pot top ampPiston bottom edge hn 9 mm

IV) PTFE

Diameter L 360 mm

Thickness 45 mm V) SS Plate

Length SSPL 460 mm Width SSPW 385 mm

Thickness SSPt 3mm

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x 85X 2) 472 mm Ble

Length BL 560 mm

Width Bw 480 mm Thickness B2 25mm

Distance of line of Harz force from top B5 28 mm VII) ANCHOR BOLT

Diameter of Bolt Db 16 mm Total Number of Bolts N 8 nos

Grade of Bolt Gr 46 VIII) LUGS

Length LI 70 mm Width LI 70 mm Thickness L 15 mm

Total Number of Lugs 8 nos

IX) ANCHOR SLEEVES Diameter of Sleeve D 32 mm Sleeve length for Bottom 4 nos Lb 100 mm Sleeve length for Top 4 nos L 100 mm

~ltS Engili~gtgt TOTAL HEIGHT OF BEARING

118m ~(iN 4centJ -0 ~ ltfj

( gt [E ~ I

~ I~ 1~ b

iL Page 2 of 9 ~

6- ~~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Ihlckness Ratio (CL 926236) DrNI 1357 lt1= 15

2) Strain in Elastomer (CI 926234)

1100 = 05 x D6 x9 Nt

00614 lt1= 015

3) Average Compressive Stress under Normal condjtion (CI 926232) Onoo = Vmax X 1 000

1tI4 X D52

2664 lt 35 Nmm2 4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232)

anao~sos = Vmax-ses x 1000

1tI4xol

= 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo--wln Vmax-win X 1000

1tI4xD

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CL 926233)

Oneomiddotmln = Vmin~win X 1000

1tI4xDl

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CL 926152)

Mebulld D53 X[(k1 x9p) +(k2 x 9)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRd(n) = 02 x (05 2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CL 926152) MRd(S) 02 x (D52) x Heo x 1000

865E+06 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRAN8) (CL 926152) MRd(w) = 02 x (D52) x Hw x 1000

895E+06 N-mm 11) Total induce Moment under Normal condition

MTltJ(n) Me-d + MRdn)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-d(s) Med+ MR-d(S)

222E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MT-dW) Me_d+ MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CL 926232) (jneo(edge) Ooao + MT-den)

1tI32 X 0 53

3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (jneo-S(edge) =Oneo-$eo + MTltJ(S)

1tI32 x 0 53

= 2418 lt 40 Nmm2

Page 30f9

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Elastomeric pad at Edges under Seismic Condllion (TRANS) (CI 926232)

onooW(odgo) 0neo-wln + Mrd(w) 3rr32 xD5

2493 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615) Un Vmax X 1000

rd4 X A2

1615 lt 2250 Nmm2 2 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 92615)

Oampee Vmaxses x 1000 rd4 XA2

1217 lt 2813 Nmm2 3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 92615)

Vmax-win X 1000 rd4 XA2

1259 lt 2813 Nmm2 4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition

crn~f = He X 1000 x As rd32xA3

154 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under SeismicCondition (LONG)

0ses-f HEQ X 1000 xAs rd32xA3

116 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

0wln-f Hw x 1000 xAs rd32 xA3

= 120 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

Onwe MTcJ(n)

rd32 x A3

= 219 Nmm2 8 Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

0ses Mr-dIS)

rd32 x A3

194 Nmm2 9 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Owln-e Mr-d(w)

rd32 xA3

= 197 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

On-If On_f + On_e

= 373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212)

Oses-If = 0ses-f + Oses_e

lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

0wln-If = Owln_f + Owln

lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

On + On-If = 09689 lt= 1

0b abc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) + Oses~tf = 05996 lt= 1

~~--x (jb 125 X (jbc

Page 4 of9

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexl1ral Stress under Seismic Condition (TRANS) (CI 926213)

(Jwln + (Jwlntr 06181 ltI 1 125 x (Jb 125 X ObC

16) Hoop Stress in Pot under Normal CQndition (CI 92631171) ON (Jnna XDu x Nt) + (HI3 x 1000)

2P1Il xAo 19784 lt 2040 Nmm2

17) Hoop Stress in Pot under Seismic Condition (LONG) (CI 92631171) Os (Unoos(ts x D6 X Nt) + (HEQ x 1000)

2PtIxAo 14902 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (TRANS) (CI 92631171) Ow (Jnoawln X D6 x NI) + (Hw x 1000)

2Ptll X Ao 15416 lt 2040 Nfmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition Fluid Pressure tYm1 = (Jneox Nt

Pill

= 2016 Nfmm2 Horizontal Pressure tvm2 = 15 xHs x1000

Ds X PIll

3223 Total Shear Stress

= 5240 lt 153 Nfmm2 (CI 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure (Jbt1 = 6 x (Jnea X Nt 2

2 x P1h2

4577 Nmm2 Horizontal Force (Jbt2 15 x 6 x HB X 1000 X (Nt + w2)

2Ds x Plh

Total Bending Stress

20782 lt 2244 Nfmm2 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc (Jbt2 + 3 Xtym2)112

= 22677 lt 3060 Nmm2 (CL 9263 1174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure tYm1 (Jneoses X Nt

PtIJ

1519 Nfmm2 Horizontal Pressure tvm2 15 X Heo x 1000

Ds X Pill 2428 Nfmm2

Total Shear Stress tvm tvm1+ tvm2

3947 lt 1530 Nmm2 (CI 92631172) 23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure 0bt1 == 6 x Oneltrses X Nt ~ 2xPtImiddot

3448 Nfmm2 Horizontal Force (Jbt2 15 x 6 x HEo X 1000 x (Nt + w2)

Ds x Pth2

12206 Nfmm2 Total Bending Stress (Jbt (Jbt1 + (Jbt2

15654 lt 2244 Nfmm2 24) Equivalent Combined Stress

2(Jeqc = (Obt2 + 3 xtvm ) 112

= 17081 lt 3060 Nfmm2

Page 50f9

16205

(CI 92

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 6: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD DESIGN OF 308 TON CAPACITY FREE SLIDING POT I PTFE BEARINGmiddot TYPE FR

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGIIIEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHAmiddot UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTURE - 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type FR 1308 TON FREE REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete -M45) b) Superstructure (Top) fCk 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (Cl 926211) Seismic (CI926214)

a) Bottom oj) 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fCK x 2)x125

b) Top Ot 2250 Nmm2 (025 xfetl x2) 2813 Nmm2 (025 X fOK x 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214) a) Bottom 0bo 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 0tc 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton 1SEISMIC CASE

d) Vmin-ses 202086 KN 20600 Ton J (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmlnwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant HB 000 KN Since HB lt 10 of V max

HB 30215 KN (CI 92614) 7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heqt 000 KN 000 Ton

Resultant HEQ 000 KN Since HEQ lt 10 ofVmax-ses HEQ 22759 KN (CI 92614)

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal HWI 000 KN 000 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 000 KN Since Hw lt 10 of V max-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation 9 00091 radians b) Resultant rotation due to permanent action and long term effects 6p 000600 c) Resultant rotation due to variable action 6v 000305 iiwlIS EllgiJleor~

Considered 9p =60 of 6 amp ev =40 of e ~lt ~ltf ~~ Since D51 Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151) - - ~ )1

k1 = 19710 ~~ (-~7 ~-I~l ~ roBOOO 4 V S

-cI) 1 (~~~)

Page 1 of 9 t k ~~~04 ~~derilbo~

~~~~ ~

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

ainu +- 46 mm 11 ) Transverse Movament

elran +- 3 mm

BEARING PARAMETERS F 308 TON FREE 12 nos I) POT

Effective diameter of bottom plate (05+ 2 XA2 X 2) A 488 mm

Diameter of Pot at Bottom A1 488 mm Thickness of Pot at Base A2 27 mm Depth of Pot As 40 mm

Total Thickness of Pot AH1 67 mm Outer Diameter of Pot A7 454 mm Inner Diameter of Pot D5 380 mm

Horizontal Lever Arm (A + Nt + w2) Au 58 mm Pot Thickness PIO 37 mm

II) ELASTOMERIC PAD

Diameter of Elastomeric Pad D5 380 mm Thickness of Elastomeric Pad Nt 28 mm

III) PISTON f CENTRE PLATE Diameter of Centre Plate C3 410 mm

Piston Diameter Dp 376 mm

Overall Thicknes of Centre Plate C2 33 mm Contact width of Piston w 6 mm Clearance between Pot top ampPiston bottom edge hn 9 mm

IV) PTFE

Diameter L 360 mm

Thickness 45 mm V) SS Plate

Length SSPL 460 mm Width SSPW 385 mm

Thickness SSPt 3mm

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x 85X 2) 472 mm Ble

Length BL 560 mm

Width Bw 480 mm Thickness B2 25mm

Distance of line of Harz force from top B5 28 mm VII) ANCHOR BOLT

Diameter of Bolt Db 16 mm Total Number of Bolts N 8 nos

Grade of Bolt Gr 46 VIII) LUGS

Length LI 70 mm Width LI 70 mm Thickness L 15 mm

Total Number of Lugs 8 nos

IX) ANCHOR SLEEVES Diameter of Sleeve D 32 mm Sleeve length for Bottom 4 nos Lb 100 mm Sleeve length for Top 4 nos L 100 mm

~ltS Engili~gtgt TOTAL HEIGHT OF BEARING

118m ~(iN 4centJ -0 ~ ltfj

( gt [E ~ I

~ I~ 1~ b

iL Page 2 of 9 ~

6- ~~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Ihlckness Ratio (CL 926236) DrNI 1357 lt1= 15

2) Strain in Elastomer (CI 926234)

1100 = 05 x D6 x9 Nt

00614 lt1= 015

3) Average Compressive Stress under Normal condjtion (CI 926232) Onoo = Vmax X 1 000

1tI4 X D52

2664 lt 35 Nmm2 4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232)

anao~sos = Vmax-ses x 1000

1tI4xol

= 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo--wln Vmax-win X 1000

1tI4xD

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CL 926233)

Oneomiddotmln = Vmin~win X 1000

1tI4xDl

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CL 926152)

Mebulld D53 X[(k1 x9p) +(k2 x 9)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRd(n) = 02 x (05 2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CL 926152) MRd(S) 02 x (D52) x Heo x 1000

865E+06 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRAN8) (CL 926152) MRd(w) = 02 x (D52) x Hw x 1000

895E+06 N-mm 11) Total induce Moment under Normal condition

MTltJ(n) Me-d + MRdn)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-d(s) Med+ MR-d(S)

222E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MT-dW) Me_d+ MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CL 926232) (jneo(edge) Ooao + MT-den)

1tI32 X 0 53

3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (jneo-S(edge) =Oneo-$eo + MTltJ(S)

1tI32 x 0 53

= 2418 lt 40 Nmm2

Page 30f9

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Elastomeric pad at Edges under Seismic Condllion (TRANS) (CI 926232)

onooW(odgo) 0neo-wln + Mrd(w) 3rr32 xD5

2493 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615) Un Vmax X 1000

rd4 X A2

1615 lt 2250 Nmm2 2 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 92615)

Oampee Vmaxses x 1000 rd4 XA2

1217 lt 2813 Nmm2 3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 92615)

Vmax-win X 1000 rd4 XA2

1259 lt 2813 Nmm2 4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition

crn~f = He X 1000 x As rd32xA3

154 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under SeismicCondition (LONG)

0ses-f HEQ X 1000 xAs rd32xA3

116 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

0wln-f Hw x 1000 xAs rd32 xA3

= 120 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

Onwe MTcJ(n)

rd32 x A3

= 219 Nmm2 8 Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

0ses Mr-dIS)

rd32 x A3

194 Nmm2 9 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Owln-e Mr-d(w)

rd32 xA3

= 197 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

On-If On_f + On_e

= 373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212)

Oses-If = 0ses-f + Oses_e

lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

0wln-If = Owln_f + Owln

lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

On + On-If = 09689 lt= 1

0b abc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) + Oses~tf = 05996 lt= 1

~~--x (jb 125 X (jbc

Page 4 of9

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexl1ral Stress under Seismic Condition (TRANS) (CI 926213)

(Jwln + (Jwlntr 06181 ltI 1 125 x (Jb 125 X ObC

16) Hoop Stress in Pot under Normal CQndition (CI 92631171) ON (Jnna XDu x Nt) + (HI3 x 1000)

2P1Il xAo 19784 lt 2040 Nmm2

17) Hoop Stress in Pot under Seismic Condition (LONG) (CI 92631171) Os (Unoos(ts x D6 X Nt) + (HEQ x 1000)

2PtIxAo 14902 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (TRANS) (CI 92631171) Ow (Jnoawln X D6 x NI) + (Hw x 1000)

2Ptll X Ao 15416 lt 2040 Nfmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition Fluid Pressure tYm1 = (Jneox Nt

Pill

= 2016 Nfmm2 Horizontal Pressure tvm2 = 15 xHs x1000

Ds X PIll

3223 Total Shear Stress

= 5240 lt 153 Nfmm2 (CI 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure (Jbt1 = 6 x (Jnea X Nt 2

2 x P1h2

4577 Nmm2 Horizontal Force (Jbt2 15 x 6 x HB X 1000 X (Nt + w2)

2Ds x Plh

Total Bending Stress

20782 lt 2244 Nfmm2 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc (Jbt2 + 3 Xtym2)112

= 22677 lt 3060 Nmm2 (CL 9263 1174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure tYm1 (Jneoses X Nt

PtIJ

1519 Nfmm2 Horizontal Pressure tvm2 15 X Heo x 1000

Ds X Pill 2428 Nfmm2

Total Shear Stress tvm tvm1+ tvm2

3947 lt 1530 Nmm2 (CI 92631172) 23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure 0bt1 == 6 x Oneltrses X Nt ~ 2xPtImiddot

3448 Nfmm2 Horizontal Force (Jbt2 15 x 6 x HEo X 1000 x (Nt + w2)

Ds x Pth2

12206 Nfmm2 Total Bending Stress (Jbt (Jbt1 + (Jbt2

15654 lt 2244 Nfmm2 24) Equivalent Combined Stress

2(Jeqc = (Obt2 + 3 xtvm ) 112

= 17081 lt 3060 Nfmm2

Page 50f9

16205

(CI 92

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 7: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

ainu +- 46 mm 11 ) Transverse Movament

elran +- 3 mm

BEARING PARAMETERS F 308 TON FREE 12 nos I) POT

Effective diameter of bottom plate (05+ 2 XA2 X 2) A 488 mm

Diameter of Pot at Bottom A1 488 mm Thickness of Pot at Base A2 27 mm Depth of Pot As 40 mm

Total Thickness of Pot AH1 67 mm Outer Diameter of Pot A7 454 mm Inner Diameter of Pot D5 380 mm

Horizontal Lever Arm (A + Nt + w2) Au 58 mm Pot Thickness PIO 37 mm

II) ELASTOMERIC PAD

Diameter of Elastomeric Pad D5 380 mm Thickness of Elastomeric Pad Nt 28 mm

III) PISTON f CENTRE PLATE Diameter of Centre Plate C3 410 mm

Piston Diameter Dp 376 mm

Overall Thicknes of Centre Plate C2 33 mm Contact width of Piston w 6 mm Clearance between Pot top ampPiston bottom edge hn 9 mm

IV) PTFE

Diameter L 360 mm

Thickness 45 mm V) SS Plate

Length SSPL 460 mm Width SSPW 385 mm

Thickness SSPt 3mm

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x 85X 2) 472 mm Ble

Length BL 560 mm

Width Bw 480 mm Thickness B2 25mm

Distance of line of Harz force from top B5 28 mm VII) ANCHOR BOLT

Diameter of Bolt Db 16 mm Total Number of Bolts N 8 nos

Grade of Bolt Gr 46 VIII) LUGS

Length LI 70 mm Width LI 70 mm Thickness L 15 mm

Total Number of Lugs 8 nos

IX) ANCHOR SLEEVES Diameter of Sleeve D 32 mm Sleeve length for Bottom 4 nos Lb 100 mm Sleeve length for Top 4 nos L 100 mm

~ltS Engili~gtgt TOTAL HEIGHT OF BEARING

118m ~(iN 4centJ -0 ~ ltfj

( gt [E ~ I

~ I~ 1~ b

iL Page 2 of 9 ~

6- ~~

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Ihlckness Ratio (CL 926236) DrNI 1357 lt1= 15

2) Strain in Elastomer (CI 926234)

1100 = 05 x D6 x9 Nt

00614 lt1= 015

3) Average Compressive Stress under Normal condjtion (CI 926232) Onoo = Vmax X 1 000

1tI4 X D52

2664 lt 35 Nmm2 4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232)

anao~sos = Vmax-ses x 1000

1tI4xol

= 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo--wln Vmax-win X 1000

1tI4xD

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CL 926233)

Oneomiddotmln = Vmin~win X 1000

1tI4xDl

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CL 926152)

Mebulld D53 X[(k1 x9p) +(k2 x 9)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRd(n) = 02 x (05 2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CL 926152) MRd(S) 02 x (D52) x Heo x 1000

865E+06 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRAN8) (CL 926152) MRd(w) = 02 x (D52) x Hw x 1000

895E+06 N-mm 11) Total induce Moment under Normal condition

MTltJ(n) Me-d + MRdn)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-d(s) Med+ MR-d(S)

222E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MT-dW) Me_d+ MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CL 926232) (jneo(edge) Ooao + MT-den)

1tI32 X 0 53

3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (jneo-S(edge) =Oneo-$eo + MTltJ(S)

1tI32 x 0 53

= 2418 lt 40 Nmm2

Page 30f9

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Elastomeric pad at Edges under Seismic Condllion (TRANS) (CI 926232)

onooW(odgo) 0neo-wln + Mrd(w) 3rr32 xD5

2493 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615) Un Vmax X 1000

rd4 X A2

1615 lt 2250 Nmm2 2 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 92615)

Oampee Vmaxses x 1000 rd4 XA2

1217 lt 2813 Nmm2 3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 92615)

Vmax-win X 1000 rd4 XA2

1259 lt 2813 Nmm2 4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition

crn~f = He X 1000 x As rd32xA3

154 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under SeismicCondition (LONG)

0ses-f HEQ X 1000 xAs rd32xA3

116 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

0wln-f Hw x 1000 xAs rd32 xA3

= 120 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

Onwe MTcJ(n)

rd32 x A3

= 219 Nmm2 8 Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

0ses Mr-dIS)

rd32 x A3

194 Nmm2 9 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Owln-e Mr-d(w)

rd32 xA3

= 197 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

On-If On_f + On_e

= 373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212)

Oses-If = 0ses-f + Oses_e

lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

0wln-If = Owln_f + Owln

lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

On + On-If = 09689 lt= 1

0b abc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) + Oses~tf = 05996 lt= 1

~~--x (jb 125 X (jbc

Page 4 of9

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexl1ral Stress under Seismic Condition (TRANS) (CI 926213)

(Jwln + (Jwlntr 06181 ltI 1 125 x (Jb 125 X ObC

16) Hoop Stress in Pot under Normal CQndition (CI 92631171) ON (Jnna XDu x Nt) + (HI3 x 1000)

2P1Il xAo 19784 lt 2040 Nmm2

17) Hoop Stress in Pot under Seismic Condition (LONG) (CI 92631171) Os (Unoos(ts x D6 X Nt) + (HEQ x 1000)

2PtIxAo 14902 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (TRANS) (CI 92631171) Ow (Jnoawln X D6 x NI) + (Hw x 1000)

2Ptll X Ao 15416 lt 2040 Nfmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition Fluid Pressure tYm1 = (Jneox Nt

Pill

= 2016 Nfmm2 Horizontal Pressure tvm2 = 15 xHs x1000

Ds X PIll

3223 Total Shear Stress

= 5240 lt 153 Nfmm2 (CI 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure (Jbt1 = 6 x (Jnea X Nt 2

2 x P1h2

4577 Nmm2 Horizontal Force (Jbt2 15 x 6 x HB X 1000 X (Nt + w2)

2Ds x Plh

Total Bending Stress

20782 lt 2244 Nfmm2 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc (Jbt2 + 3 Xtym2)112

= 22677 lt 3060 Nmm2 (CL 9263 1174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure tYm1 (Jneoses X Nt

PtIJ

1519 Nfmm2 Horizontal Pressure tvm2 15 X Heo x 1000

Ds X Pill 2428 Nfmm2

Total Shear Stress tvm tvm1+ tvm2

3947 lt 1530 Nmm2 (CI 92631172) 23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure 0bt1 == 6 x Oneltrses X Nt ~ 2xPtImiddot

3448 Nfmm2 Horizontal Force (Jbt2 15 x 6 x HEo X 1000 x (Nt + w2)

Ds x Pth2

12206 Nfmm2 Total Bending Stress (Jbt (Jbt1 + (Jbt2

15654 lt 2244 Nfmm2 24) Equivalent Combined Stress

2(Jeqc = (Obt2 + 3 xtvm ) 112

= 17081 lt 3060 Nfmm2

Page 50f9

16205

(CI 92

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 8: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Ihlckness Ratio (CL 926236) DrNI 1357 lt1= 15

2) Strain in Elastomer (CI 926234)

1100 = 05 x D6 x9 Nt

00614 lt1= 015

3) Average Compressive Stress under Normal condjtion (CI 926232) Onoo = Vmax X 1 000

1tI4 X D52

2664 lt 35 Nmm2 4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232)

anao~sos = Vmax-ses x 1000

1tI4xol

= 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo--wln Vmax-win X 1000

1tI4xD

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CL 926233)

Oneomiddotmln = Vmin~win X 1000

1tI4xDl

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CL 926152)

Mebulld D53 X[(k1 x9p) +(k2 x 9)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRd(n) = 02 x (05 2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CL 926152) MRd(S) 02 x (D52) x Heo x 1000

865E+06 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRAN8) (CL 926152) MRd(w) = 02 x (D52) x Hw x 1000

895E+06 N-mm 11) Total induce Moment under Normal condition

MTltJ(n) Me-d + MRdn)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-d(s) Med+ MR-d(S)

222E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MT-dW) Me_d+ MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CL 926232) (jneo(edge) Ooao + MT-den)

1tI32 X 0 53

3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (jneo-S(edge) =Oneo-$eo + MTltJ(S)

1tI32 x 0 53

= 2418 lt 40 Nmm2

Page 30f9

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Elastomeric pad at Edges under Seismic Condllion (TRANS) (CI 926232)

onooW(odgo) 0neo-wln + Mrd(w) 3rr32 xD5

2493 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615) Un Vmax X 1000

rd4 X A2

1615 lt 2250 Nmm2 2 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 92615)

Oampee Vmaxses x 1000 rd4 XA2

1217 lt 2813 Nmm2 3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 92615)

Vmax-win X 1000 rd4 XA2

1259 lt 2813 Nmm2 4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition

crn~f = He X 1000 x As rd32xA3

154 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under SeismicCondition (LONG)

0ses-f HEQ X 1000 xAs rd32xA3

116 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

0wln-f Hw x 1000 xAs rd32 xA3

= 120 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

Onwe MTcJ(n)

rd32 x A3

= 219 Nmm2 8 Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

0ses Mr-dIS)

rd32 x A3

194 Nmm2 9 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Owln-e Mr-d(w)

rd32 xA3

= 197 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

On-If On_f + On_e

= 373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212)

Oses-If = 0ses-f + Oses_e

lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

0wln-If = Owln_f + Owln

lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

On + On-If = 09689 lt= 1

0b abc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) + Oses~tf = 05996 lt= 1

~~--x (jb 125 X (jbc

Page 4 of9

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexl1ral Stress under Seismic Condition (TRANS) (CI 926213)

(Jwln + (Jwlntr 06181 ltI 1 125 x (Jb 125 X ObC

16) Hoop Stress in Pot under Normal CQndition (CI 92631171) ON (Jnna XDu x Nt) + (HI3 x 1000)

2P1Il xAo 19784 lt 2040 Nmm2

17) Hoop Stress in Pot under Seismic Condition (LONG) (CI 92631171) Os (Unoos(ts x D6 X Nt) + (HEQ x 1000)

2PtIxAo 14902 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (TRANS) (CI 92631171) Ow (Jnoawln X D6 x NI) + (Hw x 1000)

2Ptll X Ao 15416 lt 2040 Nfmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition Fluid Pressure tYm1 = (Jneox Nt

Pill

= 2016 Nfmm2 Horizontal Pressure tvm2 = 15 xHs x1000

Ds X PIll

3223 Total Shear Stress

= 5240 lt 153 Nfmm2 (CI 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure (Jbt1 = 6 x (Jnea X Nt 2

2 x P1h2

4577 Nmm2 Horizontal Force (Jbt2 15 x 6 x HB X 1000 X (Nt + w2)

2Ds x Plh

Total Bending Stress

20782 lt 2244 Nfmm2 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc (Jbt2 + 3 Xtym2)112

= 22677 lt 3060 Nmm2 (CL 9263 1174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure tYm1 (Jneoses X Nt

PtIJ

1519 Nfmm2 Horizontal Pressure tvm2 15 X Heo x 1000

Ds X Pill 2428 Nfmm2

Total Shear Stress tvm tvm1+ tvm2

3947 lt 1530 Nmm2 (CI 92631172) 23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure 0bt1 == 6 x Oneltrses X Nt ~ 2xPtImiddot

3448 Nfmm2 Horizontal Force (Jbt2 15 x 6 x HEo X 1000 x (Nt + w2)

Ds x Pth2

12206 Nfmm2 Total Bending Stress (Jbt (Jbt1 + (Jbt2

15654 lt 2244 Nfmm2 24) Equivalent Combined Stress

2(Jeqc = (Obt2 + 3 xtvm ) 112

= 17081 lt 3060 Nfmm2

Page 50f9

16205

(CI 92

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 9: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Elastomeric pad at Edges under Seismic Condllion (TRANS) (CI 926232)

onooW(odgo) 0neo-wln + Mrd(w) 3rr32 xD5

2493 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615) Un Vmax X 1000

rd4 X A2

1615 lt 2250 Nmm2 2 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 92615)

Oampee Vmaxses x 1000 rd4 XA2

1217 lt 2813 Nmm2 3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 92615)

Vmax-win X 1000 rd4 XA2

1259 lt 2813 Nmm2 4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition

crn~f = He X 1000 x As rd32xA3

154 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under SeismicCondition (LONG)

0ses-f HEQ X 1000 xAs rd32xA3

116 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

0wln-f Hw x 1000 xAs rd32 xA3

= 120 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

Onwe MTcJ(n)

rd32 x A3

= 219 Nmm2 8 Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

0ses Mr-dIS)

rd32 x A3

194 Nmm2 9 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Owln-e Mr-d(w)

rd32 xA3

= 197 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

On-If On_f + On_e

= 373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212)

Oses-If = 0ses-f + Oses_e

lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

0wln-If = Owln_f + Owln

lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

On + On-If = 09689 lt= 1

0b abc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) + Oses~tf = 05996 lt= 1

~~--x (jb 125 X (jbc

Page 4 of9

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexl1ral Stress under Seismic Condition (TRANS) (CI 926213)

(Jwln + (Jwlntr 06181 ltI 1 125 x (Jb 125 X ObC

16) Hoop Stress in Pot under Normal CQndition (CI 92631171) ON (Jnna XDu x Nt) + (HI3 x 1000)

2P1Il xAo 19784 lt 2040 Nmm2

17) Hoop Stress in Pot under Seismic Condition (LONG) (CI 92631171) Os (Unoos(ts x D6 X Nt) + (HEQ x 1000)

2PtIxAo 14902 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (TRANS) (CI 92631171) Ow (Jnoawln X D6 x NI) + (Hw x 1000)

2Ptll X Ao 15416 lt 2040 Nfmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition Fluid Pressure tYm1 = (Jneox Nt

Pill

= 2016 Nfmm2 Horizontal Pressure tvm2 = 15 xHs x1000

Ds X PIll

3223 Total Shear Stress

= 5240 lt 153 Nfmm2 (CI 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure (Jbt1 = 6 x (Jnea X Nt 2

2 x P1h2

4577 Nmm2 Horizontal Force (Jbt2 15 x 6 x HB X 1000 X (Nt + w2)

2Ds x Plh

Total Bending Stress

20782 lt 2244 Nfmm2 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc (Jbt2 + 3 Xtym2)112

= 22677 lt 3060 Nmm2 (CL 9263 1174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure tYm1 (Jneoses X Nt

PtIJ

1519 Nfmm2 Horizontal Pressure tvm2 15 X Heo x 1000

Ds X Pill 2428 Nfmm2

Total Shear Stress tvm tvm1+ tvm2

3947 lt 1530 Nmm2 (CI 92631172) 23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure 0bt1 == 6 x Oneltrses X Nt ~ 2xPtImiddot

3448 Nfmm2 Horizontal Force (Jbt2 15 x 6 x HEo X 1000 x (Nt + w2)

Ds x Pth2

12206 Nfmm2 Total Bending Stress (Jbt (Jbt1 + (Jbt2

15654 lt 2244 Nfmm2 24) Equivalent Combined Stress

2(Jeqc = (Obt2 + 3 xtvm ) 112

= 17081 lt 3060 Nfmm2

Page 50f9

16205

(CI 92

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 10: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexl1ral Stress under Seismic Condition (TRANS) (CI 926213)

(Jwln + (Jwlntr 06181 ltI 1 125 x (Jb 125 X ObC

16) Hoop Stress in Pot under Normal CQndition (CI 92631171) ON (Jnna XDu x Nt) + (HI3 x 1000)

2P1Il xAo 19784 lt 2040 Nmm2

17) Hoop Stress in Pot under Seismic Condition (LONG) (CI 92631171) Os (Unoos(ts x D6 X Nt) + (HEQ x 1000)

2PtIxAo 14902 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (TRANS) (CI 92631171) Ow (Jnoawln X D6 x NI) + (Hw x 1000)

2Ptll X Ao 15416 lt 2040 Nfmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition Fluid Pressure tYm1 = (Jneox Nt

Pill

= 2016 Nfmm2 Horizontal Pressure tvm2 = 15 xHs x1000

Ds X PIll

3223 Total Shear Stress

= 5240 lt 153 Nfmm2 (CI 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure (Jbt1 = 6 x (Jnea X Nt 2

2 x P1h2

4577 Nmm2 Horizontal Force (Jbt2 15 x 6 x HB X 1000 X (Nt + w2)

2Ds x Plh

Total Bending Stress

20782 lt 2244 Nfmm2 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc (Jbt2 + 3 Xtym2)112

= 22677 lt 3060 Nmm2 (CL 9263 1174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure tYm1 (Jneoses X Nt

PtIJ

1519 Nfmm2 Horizontal Pressure tvm2 15 X Heo x 1000

Ds X Pill 2428 Nfmm2

Total Shear Stress tvm tvm1+ tvm2

3947 lt 1530 Nmm2 (CI 92631172) 23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG)

Fluid Pressure 0bt1 == 6 x Oneltrses X Nt ~ 2xPtImiddot

3448 Nfmm2 Horizontal Force (Jbt2 15 x 6 x HEo X 1000 x (Nt + w2)

Ds x Pth2

12206 Nfmm2 Total Bending Stress (Jbt (Jbt1 + (Jbt2

15654 lt 2244 Nfmm2 24) Equivalent Combined Stress

2(Jeqc = (Obt2 + 3 xtvm ) 112

= 17081 lt 3060 Nfmm2

Page 50f9

16205

(CI 92

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 11: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

N-mm ~ ltyens- --_--0

~

DYNAMIC PRESTRESS (I) PVT L TO 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 OncowJn X NI Pth

1571 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000 osxPu

2512 Total Shear Stress

lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRAN~)

Fluid Pressure (jb11 = 6 x (jneo-wln X Nt 2

2 xP1h2

3567 Nmm2

Horizontal Force Obt2 15 x 6 x Hw x 1000 x (Nt + w2)

12627 Nmm2

Total Bending Stress Obt Obt1 + Obt2 16194 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

= (Obt2 + 3 x t 2)112Oeqo vm

17670 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Oc(PTFE-N) = Vmax X 1000 x4xL2

2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) Oc(PTFEs = Vmax-sas x 1000

x4xL2

2236 lt 40 Nmm2

3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243) (jc(PTFE~W) Vmax-win X 1000

x4xL2

2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040 For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction 0030

By Linear interpolution For Normal condition l 00303 From (CI 926242 of IRC83(Part 111)-2002)

For Seismic Condition (LONG) l 00376 For Seismic Condition (TRANS l 00369

Hence design value considering PTFE unlubricated For Normal condition l 00606 For Seismic Condition (LONG) l 00753

For Seismic Condition (TRANS l 00737

Induced Horizontal force in Normal condition H = l x V max 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = l x V max-ses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = l x V max-win = 17361 kN

Moment due to frictional resistance (Normal) Mrd =02 X (De 12) x Hs x 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Mrd 02 x (05 2) x HEQ x 1000 651 E+06

Moment due to frictional resistance (Seismic-TRANS) Mrd 02 x (05 2) x Hw x 1000 660E+06

Moment due to resistance to rotation Mad 0e3 (k1 x Op + k2 x OV) 135E+07 N-mm

Page 6 of9

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 12: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd MId + MOd

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd MId Mod

200E+07 N-mm Total Induce Moment (Seslsmic-TRANS) MTd MId + Mod

201E+07 N-mm 5) Compressive Stress In PTFE at Edges under Normal condition (CI 926243)

Oo(PTFE~N) = Oc(PTPE N) + MTd

1t32xL3

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oo(PTFES) Oc(PTFEmiddotS) + MTd -1t-1-3-2-x-L3shy

2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oo(PTFgW) Oc(PTFEW) + MTd -1t-3-2-X-Lashy

2752 lt 45 Nmm2 8) Effective contact width of piston cylinder Interface (CI 9263131)

Since HB gt Hw HgQ We Hw X 1000 X 13

(D5 - 1) XOp

= 317 mm lt 6 mm (Provided) 9) Minimum Theoritlcal Depth of effective contact width of piston at design rotation

== At - Nt W9 - 9(05 2)

= 7~11 mm gt 5 mm (CI 9263 1 33) 10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation

hn - 9(C3 2)

== 7~14 mm gt 5mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(aft~n) = Vmax X 1000

1t4 X

1727 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

Oc(avt--8) = Vmax~$es x 1000

]114 X BI9 2

== 1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jcsvt-W) = Vmax~win X 1000

1t4 X Ble2

1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Of = He x 1000 x 85

]132 X Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jc(ses~f) HEa x 1000 X B5

]132 X Bla3

062 Nmm2 7) Flexural Stress due to active moment resultin from actin

ltJc(ses-f) = HEQ X 1000 X 8 5

1t32 x Ble3

= 064 Nmm2

Page 7 of9

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 13: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

(jc(n~o) = MT~dn) 3n32 x Bla

2~42 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

0C(SGS-c) = MTd(S) 3 n 132 X BI6

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnmiddotc) = MTd(W

n32 XBI

= 218 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

(5el(nf) (5c-f + Oe(nc)

324 lt 1485 Nmm2 12) Total Flexural stress under Seismic Condition (LONG) (CL 926212)

001($0$1) Oc(sesmiddotl) + Oc(sesmiddotc)

276 lt 1856 Nmm2

13) Total Flexural stress under SeismicCondition TRANS (CI 926212)

Ocl(win) Oc(win-f) + Oc(winc)

281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) Oc(avln) + = 09857 lt1= 1

01 Oic

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) Oc(avl~S) + Oot(ses~f) = 06114 lt= 1 125 x Ot 125 x Ote

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CL 926213) Oc(avtmiddotW) + Oct(winl-f) 06300 lt= 1 125 x Ot 125 x Ole

V) ANCHOR BOLTS (CL 926362)

Size of bolts Db = 16

Effective area of bolt Ab 157

Number of bolts n 4

Co-efficient of friction between steel amp concrete l 02

Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf 80

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin xJ1 + nxAbxtyf 1000

44853 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG) +

1000

45441 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

Vmin-win X l + n x Ab X tv

1000 47403 kN gt HEal == 23544

VI) ANCHOR SLEEVES (CI 926365)

32 mm

Sleeve length for Bottom

Diameter of Sleeve 100 mm

Sleeve length for Top 100 mm

Page 80f9

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 14: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAxtvl

DxL Peak stress under Normal Condition For Bottom Plate (fopk = 1176 lt 1485 Nmm2 For Top Plate (fcpk = 1176 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Boltom Plate (fopk = 1178 lt 1485 Nmm2 For Top Plale (fopk 1178 lt 1485 Nmm2 Peak stress under Seismic Condition (TRANS) For Bottom Plate (fcpk 1178 lt 1485 Nmm2 For Top Plate (fcpk 1178 lt 1485 Nmm2

VII) LUGS

Thickness of Lug LI 15 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 25447 mm2

Area of lug Al 105000 mm2

Effective area of lug As 79553 mm2

Horizontal force on each lug under Normal condition Hn He

n kN7554

Stress on lug due to horizontal force under Normal condition Sin H1nx 1000

A 9495 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His = HeaT

n kN5690

Stress on lug due to horizontal force under Seismic Condition (LONG) SIS = His X 1000

A = 7152 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) His = HeoL

n

= 5886 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis His x 1000

As

= 7399 lt 153 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction SSPL 460 mm Size of the SSPlate in Transverse Direction SSPw 385 mm

Longitudinal movement eurolng = plusmn 460 mm Transverse movement elran = plusmn 30 mm Diameter of PTFE L = 360 mm

Minimum size of the SSPlate required in Longltudinal Direction = L + (2 x eurolIng)

4520 mm ~ 460 mm

Minimum size of the SSPlate required in Transverse Direction L + (2 xetran) = 3660 mm ~ 385 mm

Page 9 of 9

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 15: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY FIXED POT BEARING TYPE F CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM 17700

TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type F 1308 TON FIX REVISION RO REFERANCE CODE IRC83 (Part III) - 2002

DESIGN PARAMETERS 1) Material In contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45)

b) Superstructure fck 45 Mpa (Grade of Concretemiddot M45) 2) Permissible Direct Bearing Stress

Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom Ot 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025 x fok x 2)x125

b) Top (it 2250 Nmm2 (025 x fCk x 2) 2813 Nmm2 (025 x fckx 2)x125 3) Permissible Compressive Flexural Stress

Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy = 340 Nmm2 (Min yield stress of steei) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy x 06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075)

5) Vertical Load a) Vmax 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical Load

c) Vmaxses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwln 235440 KN 24000 Ton SEISMIC CASE f) Vminwin 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 42591 KN He 42591 KN

7) Horizontal Force under Seismic Condition (Longitudinal) a Longitudinal Heql 42183 KN 4300 Ton b) Transverse Heqt 22720 KN 2316 Ton

Resultant HEQ 47912 KN HEQ 47912 KN

8) Horizontal Force under Seismic Condition (Transverse) a) Longitudinal Hwi 23466 KN 2392 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 38412 KN Hw 38412 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep 60 of e amp ev =40 of e Since D51 Nt 1357 As per table 3 of IRC83 (Part 111)-2002 CI 926151)

kj = 19710

k2 = 768860

Page 1 of 8

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 16: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (1) PVT LTD BEARING PARAMETERS F 308 TON FIXED )01 m~AR)NG 12 nos

I) POT

Effective diameter of bottom plate (D6 + 2 X A2 X 2) A 504 mm

Diameter of Pot at Bottom A1 504 mm

Thickness of Pot at Base A2 31 mm

Depth of Pot A6 42 mm

Total Thickness of Pot AH1 73 mm

Outer Diameter of Pot A7 470 mm

Inner Diameter of Pot Do 380 mm

Horizontal Lever Arm (A2+Nt+w2) Ao 63 mm

Pot Thickness Plh 45 mm

II) ELASTOMERIC PAD

Diameter of Elastomerio Pad DIl 380 mmt~

Thickness of Elaslomeric Pad Nt 28 mm

III) TOP PLATE

Effective Diameter (Dp + 2 x B2 X 2) B 500 mm

Diameter of Top Plate Ba 500 mm

Diameter of Piston Dp 376 mm=

Diameter of Top plate at bottom face Ca 420 mm

Thickness B2 31 mm

Overall thickness of Top Plate B6 54 mm

Distanoe of line of Horz force from top (B6-w2) B6 50 mm Contact width of Piston w 8 mm Clearance between PotTop amp Topplate bottom edge hI) 9 mm

IV) ANCHOR BOLT Diameter of Bolt Bf 20 mm Total Number of Bolts N 12 nos Grade of Bolt Gr 46

V) LUGS

Length LI = 70 mm

Width l 70 mm

Thickness Lt = 15 mm

Total Number of Lugs = 12 nos

VI) ANCHOR SLEEVES Diameter of Sleeve D 40 mm Sleeve length for Bottom 6 nos Lb 120 mm

Sleeve length for Top 6 nos Ls = 120 mm

~~~~TOTAL HEIGHT OF BEARING = 113 mm tli amp yen ltfc~t (~)(J f Y2

~ LJ ~ 1~~V )t -II ~~ ~I Page 2 of8 ~ ---- i~7

~~~~~--- lt~-

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 17: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD 1) Diameter to Thickness Ratio (CI 926236)

DoNt 1357 lt1= 15 2) Strain In Elastomer (CI926234)

tnoo = 05 x Dsx 0

= 00614 lt1= 015 3) Average Compressive Stress under normal condition (CI 926232)

Onso = Vmax X 1000

1tI4 X 0 52

2664 lt 35 Nmm2 04) Average Compressive Stress under Seismic Condition (Long) (CI 926232)

(jneO-S9S = Vmax~ses x 1000

1tI4 X 0 62

= 2007 lt 35 Nmm2 5) Average Compressive Stress under Seismic Condition (Trans) (CI 926232)

Oneo~win = Vmax~wln X 1000 1tI4xDi

2076 lt 35 Nmm2 6) Min Average Compressive Stress (CI 926233)

Oneomin = Vmin X 1000

1tI4xDl

1756 lt 5 Nmm2 7) Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926151)

3MObulld 05 X [(k1 X 9p) +(k2 X 9gt1 135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under normal condition (CI 926152) MRd(n) = 02 X (05 2) X Hs X 1000

162E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Long) (CI 926152)

MRd(S) 02 X (06 2) X HEQ X 1000 = 182E+07 N-mm

10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (Trans) (CI 926152) MRd(w) 02 X (06 2) X Hw X 1000

146E+07 N-mm 11) Total induce Moment under normal condition (CI 926153)

MT-ltI(n) Med+ MRd(n) = 297E+07 N-mm

12) Total induce Moment under Seismic Condition (Long) (CI 926153)

MTd(S) = Med+ MRd(S) 317E+07 N-mm

13) Total induce Moment under Seismic Condition (Trans) (CI 926153)

MT-ltI(w) M d + MRd(W) 281 E+07 N-mm

14) Compressive Stress in Neoprene at Edges under normal condition (CI 926232)

Oneo(edge) = 0000 + MT-dn)

1tI32 X 0 = 3215 lt 40 Nmm2

15) Compressive Stress in Neoprene at Edges under Seismic Condition (Long) (CI 926232)

Onoe-S(edge) Cineo-ses + MTNd(S) 31tI32 X 0 5

= 2596 lt 40 Nmm2

Page 3 of 8

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 18: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress In Neoprene at Edges under Seismic Condition (Trans) (CI 926232)

Onoo-W(odgo) (fnao-wln ofmiddot Mrd(w) nl32 x D3

2598 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due to vertical load under Normal condition (CI 92615)

VmaxX 1000

nl4x

1514 lt 2250 Nmm2 2) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Long) (CI 92615)

Vmaxbullbullbull X 1000 nl4 x A2

1141 lt 2813 Nmm2 3) Direct Bearing Stress In concrete due to vertical load under Seismic Condition (Trans) (CI 92615)

Gwln Vmax-win X 1 000

nl4 xA2

1180 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

(inf = Hs x 1000 X A5

nl32x

t 213 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

Gsabullbullf HEQ X 1000 X As

nl32 X A3

= 240 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Trans)

Gwln( = Hw x 1000 X As

nl32 X A3

= 193 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under normal condition

(inmiddote MT-d(n)

n32 x A3

235 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Gse-e MTltJ(s)

nl32 X A3

= 252 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Trans)

Gwlnbullbull MTd(w)

nl32 x A3

= 224 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Gn-If Gnmiddotf + On-e

448 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (CI 926212)

Osesmiddottf = Gsemiddot(+ Oesmiddote

= 492 lt 1856 Nmm2 12) Total Flexural stress under Seismic Condition (Trans) (CI 926212)

Gwinmiddotf = Gwin-f + OWin-e

416 lt 1856 Nmm2 13) Co-existing Direct amp Flexural Stress under Normal condition (CI 926213)

On + Ontf 097499 lt1= 1

Ob Gbc

Page 4 of8

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 19: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 14) Co-existing Direct amp Flexural Stress under Seismic Condition (Long) (CI 926213)

(Joes + (Jultl91f = 067092 lt1= 1

125 x (Jb 25 X Obo

15) Co-existing Direct amp Flexural Stress under Seismic Condition (Trans) (CI926213)

Owln + Owlntf 064379 lt1= 1 125 x Ob 125 X Obc

16) Hoop Stress In Pot under Normal condition (CI 92631171)

ON (Ooao X Do x Nt) + (HB X 1000)

2Plh xAo 18767 lt 2040 Nmm2

17) Hoop Streuros In Pot under seismic Condition (Long) (CI 92631171)

Os (Oneo~90s X 0 6 X Nt) + (HsQ x 1000)

2P1h xAo 18324 lt 2040 Nmm2

18) Hoop Stress in Pot under Seismic Condition (Trans) (CI 92631171)

Ow (Ooaowln X Do x Nt) + (Hw x 1000)

2Pth xAo 16005 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1mm radial slice under Normal condition

Fluid Pressure tvm1 = On60 X Nt Plh

1658 Nmm2 Horizontal Pressure tvm2 15 X HB x 1 000

Dsx Plh

3736 Nmm2

Total Shear Stress tvm = tvm1+ tvm2

= 53~94 lt 1530 Nmm2 (CL 92631172) 20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0011 6 x Oneo x Nt 2 22 X Plh

3094 Nmm2 Horizontal Force 0012 15 x6 x HB X 1000 X (NI + w2)

Ds x Plnz

15941 Total Bending Stress

lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc (0012 + 3 x tvm2)12

= 21204 lt 3060 Nmm2 (eL 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure tvm1 Oneo-ses X Nt

Plh

1249 Nmm2 Horizontal Pressure tvm2 15 X HEQ x 1000

Dsx Pin

= 4203 Nmm2 Total Shear Stress tvm tvm1+ tvm2

5452 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Long)

Fluid Pressure Oht1 = 6 x jneo-ses X N2 2 X Pth

2

= 2331 Nmm2

Page 50f8

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 20: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD Horizontal Force (Jigt12 15 x 6 x x 1000 X (NI + w2)

17932 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jb12

20263 lt 2244 Nmm2 (CI92631173) 24) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 x t vm 2)112

22355 lt 3060 Nmm2 (CI 92631174) 25) Shear stress at cylinder wall and base interface considering 1mm radial slice uoder Seismic Condition (Trans)

Fluid Pressure tvm1 (Jnan-wln X Nt

P1h 1292 Nmm2

Horizontal Pressure tvm2 15 x Hw x 1000

D5 x P1h 3369 Nmm2 Total Shear stress tvm t vm1+ tvm2 4661 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (Trans) Fluid Pressure (JbI1 6 x (Jnan-win X NI2

2 X Pth 2

2411 Nmm2

Horizontal Force (Jbt2 = 15 x 6 x Hw x 1000 x (Nt + wf2)

D5 X Pth2

14376 Nmm2

Total Bending Stress Obt = Obl1 + (Jbt2 16788 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress

Oeqc = (Ob12 + 3 x tvm2)112

= 18628 lt 3060 Nmm2 (CI 92631174)

III) TOP PLATE 1) Average Compressive Stress in concrete under Normal condition (CI 92615)

(jc(avt~n) Vmax X 1000

1tI4 x 82

= 1539 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (Long) (Cl 92615)

Oc(avt-S) Vmax-ses x 1000

1tI4x

1159 lt 2813 Nfmm2 3) Average Compressive Stress in concrete under Seismic Condition (Trans) (Cl 92615)

Oc(avt~W) = Vmax~win X 1 000

1tI4 X 82

1199 lt 2813 Nmm2 4) Flexural Stress due to active moment resulting from acting Horizontal Load under Normal Condition

001 = HB X 1000 X B5

1tI32 x 83

= 174 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal Load under Seismic Condition (Long)

(Je(ses-I) = HEQ X 1000 X 8 5 3

1tI32x8 ~ 195 Nmm2 ~

6) Flexural Stress due to active moment resultin from actin Horizontal Load under Seismic CoJiClitlamp) rans S if~

(Je(wln-f) Hw x 1000 X B5 - r~r w ~ 1tI32 x 83 i(tf - (~ I

156 Nmm2 ~~ I ~ Ii Page 6 of 8 ~~~__~ltj

~ JJ ~( lt~ lt lfyder~bD ~ ~-

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 21: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD T) Flexural Stress due to induced Moment resulting from reslslance to Rotation under Normal condition

Gc(n-c = MT~d(n)

1t132 X 83

= 256 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (Long)

Oc(ses-c) MT-d(s)

1t32 x 83

258 Nmmz

9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condljlon (Trans) Oc(wln-c) MTltJ(w)

nl32 x83

2~29 Nmm2 10) Total Flexural stress under Normal condition (CI 926212)

Oel(n-I) 00-1 +Oc(ne)

432 lt 1485 Nmm2 11) Total Flexural stress under Seismic Condition (Long) (ct 926212)

Oel(ses-I) = Oe(o-I)middot Oc(c)

= 454 lt 1856 Nmm2

12) Total Flexural stress under Seislic Condition eTrans) (CI 926212)

Ocl(win-I) Oc(win-I) +Oc(wln-c)

386 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213)

Oe(avln) + Oet(nl) = 0974811 lt1= 1

Ot Ote

14) Co-existlng Direct amp Compressive Flexural Stress under Seismic Condition (Long) (Cl 926213)

Oc(avls) + Oel(s9S-1) = 0656518 lt1= 1

125 x Ot 125 xOte

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (Trans) (CI 926213) Oc(avl-W) + Octwin-f) = 0634033 lt= 1 125 x 0[ 125 xOle

16) Effective contact width of piston cylinder interface (CI 9263131) Since HEQ lt HBbull Hw

We = HEQx 1000 X 13 (Os - 1) X Op

We 644 mm lt 8 mm (Provided)

17) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ae- N[-We- 6(Ds2)

= 584 mm gt 5 mm (CI 9263133) 18) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotatjon

hn - 6(Cs2)

710 mm gt 5mm (CI 9263134)

IV) ANCHOR BOLTS (CI 926362)

Size of bolts Bf = 20 mm Effective area of bolt Ab 245 mm2

Number of bolts n 6 Co-efficient of friction between steel ampconcrete Jl 02 Grade of Bolt = Gr 46 Permissible shear stress for Bolt Gr 46 tv = 80 Nlmm2

i) Total resistive force against the shifting of bearing under Normal condition = Vminx J1 + nXAb x 11

1000

51589 kN gt HB 42591 kN

Page 7 of8

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 22: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD ii) Total resistive force against the shifting of bearing under Seismic Condition (Long)

= Vmln~s(Js X 1 + 1000

52177 kN gt HEO 47912 kN iii) Total resistive force against the shifting of bearing under Seismic Condition (Trans)

= Vmln~wlnXfJ + nxAbxtvf 1000

54139 kN gt HEOL 38412 kN

V) ANCHOR SLEEVES (CI926365)

Diameter of Sleeve D 40 mm

Sleeve length for Bottom Lb = 120 mm

Sleeve length for Top L 120 mm

Peak stress Ocpk 3)(~)(Cvf

)(

Peak stress under Normal condition

For Bottom Plate Ocpllt 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Long)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (Trans)

For Bottom Plate Ocpk 1225 lt 1485 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2

VI) LUGS

Thickness of Lug LI 15 mm

Length of Lug LI 70 mm

Area of Bolt Hole Ab 38013 mm2

Area of Lugs AI 105000 mm2

Effective area of lug Ae 66987 mm2

Horizontal force on each lug under Normal condition

Hln Hs

n = 7099 kN

Stress on lug due to horizontal force under Normal condition

Sin HI X 1000

Ae 10597 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Long)

His HEO

n 7985 kN

Stress on lug due to horizontal force under Seismic Condition (Long) Sis Hls )( 1000

Ae 11921 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (Trans)

Htw = Hw n

6402 kN Stress on lug due to horizontal force under Seismic Condition (Trans)

Slw = H1w X 1000

Ae 9557 lt 153 Nmm2

Page 80f8

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 23: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY LONGITUDINAL GUIDED SLIDING POT I PTFE

BEARING TYPE L

CLIENT NHAI CONCESSIONAIRE SHRINATHJI- UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOB SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NH-8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type L I 308 TON LONG REFERANCE CODE IRC83 (Part III) - 2002 REVISION RO DESIGN PARAMETERS 1) Material In conlact with Bearing

a) Pedestal fck 45 Mpa (Grade of Concrete - M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concrete - M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom 01gt 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x 2)x125

b) Top 01 2250 Nmm2 (025 x fck x2) 2813 Nmml (025 x fck X 2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom Ob() 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

b) Top Oic 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1 030 where fy =340 Nmm2 (Min yield stress of steel) Permissible stress In Casl Sleel (CI 92622)

2040 Nmm2 (fy x06)

2244 Nmm2 (fy x 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) VmaK 302148 KN 30800 Ton 1NORMAL CASE

b) Vmin 199143 KN 20300 Ton J40 of Max Vertica I Load

c) VmaKses 227592 KN 23200 Ton SEISMIC CASE d) Vminses 202086 KN 20600 Ton (Longitudinal)

e) VrnaKwin 235440 KN 24000 Ton 1SEISMIC CASE

f) Vmin-win 211896 KN 21600 Ton J(Transverse) 6) Horizontal Force under Normal Condition

a) Longitudinal Hb 000 KN 000 Ton

b) Transverse Hbt 30117 KN 3070 Ton

Resultant He 30117 KN Since He lt 10 of VrnaK

He 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Heql 000 KN 000 Ton

b) Transverse Heql 22720 KN 2316 Ton

Resultant HEQ 22720 KN HEQ 22759 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 000 KN 000 Ton

b) Transverse Hwt 30411 KN 3100 Ton

Resultant Hw 30411 KN Hw 30411 KN

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b) Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action Ov 000305

Considered ep 60 of e amp ev =40 of e Since 0 5 1Nt 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 k2 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 24: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 46 mm 11 ) Transverse Movement

elron +- 0 mm

BEARING PARAMETERS L 308 TON LONG GUIDED

I) POT Effective diameter of bottom plate (D5 + 2 X A2 X 2) A

Diameter of Pot at Bottom A1

Thickness of Pot at Base A2

Depth of Pot Au = Total Thickness of Pot AH1 = Outer Diameter of Pot A7

Inner Diameter of Pot Ds = Horizontal Lever Arm (A2 + NI + w2) As = Pot Thickness Plh =

II) ELASTOMERIC PAD Diameter of Elastomeric Pad Db

Thickness of Elastomeric Pad NI = III) PISTON CENTRE PLATE

Size of Centre Plate (Square) C3

Piston Diameter Dp

Overall Thicknes of Centre Plate C2 = Contact width of Piston w

Clearance between Pot top amp Piston bottom edge hn = IV) PTFE

Diameter L = Thickness =

V) SS Plate Length SSPL

Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble

Length BL Bw Width

Thickness B2 = Distance of line of Horz force from top B5 =

VII) ANCHOR BOLT Diameter of Bolt Db =

Total Number of Bolts N

Grade of Bolt

VIII) LUGS Length LI Width LI = Thickness LI = Total Number of Lugs

IX) ANCHOR SLEEVES Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls =

X) SIDE GUIDE END CONSTRAINT Length EI

Width Eb

Thickness Et = TOTAL HEIGHT OF BEARING =

Page 20f 10

488 mm

488 mm 27 mm

40 mm 67 mm

454 mm 380 mm

58 mm

37 mm

380 mm 28 mm

410 mm 376 mm

33 mm 6 mm 9 mm

360 mm 45 mm

460 mm 380 mm

3 mm

472 mm

560 mm 472 mm

25 mm 28 mm

20 mm

8 nos Gr 46

70 mm 70 mm

15 mm

8 nos

40 mm 120 mm 120 mm

560 mm 23 mm 19 mm

118 mm

12 nos

E~~ -~t(F = _ i

() -- Ii

~d-b~j~f

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 25: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

OYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DoINt = 1357 lt1= 15

2) Strain in Elastomer (CI 926234) = 05x Oux 0

00614 lt1= 015 3) Average Compressive stress under Normal condition (CI 926232)

ansa Vmax X 1000

IlI4xol

= 2664 lt 35 Nmm2

4) Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Onoo-ses = Vmax-saa x 1000

IlI4xol

2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition (TRANS) (CI 926232) Oneo-win = VmaxwJn X 1000

IlI4xO

= 2076 lt 35 Nmm2

6) Min Average Compressive Stress (CI 926233)

Oneomiddotmln Vmlo-wln X 1000

1CI4xol

1756 gt 5

7) Moment due to resistance to rotation due to tilting stiffness of elastomerlc pad (CI 926152)

Med 0 53

X [(k1 x Op) +(k2 x 0)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI926152) MRd(n) = 02 x (Os2) x He x 1000

= 115E+07 N-mm 9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152)

MRd(S) 02 x (Os2) x HEQ x 1000

= 865E+06 N-mm 10) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (TRANS) (CI 926152)

MR-d(W) = 02 x (Os2) x Hw x 1000

116E+07 N-mm 11) Total induce Moment under Normal condition

Mr-d(n) = Me-d + MRd(n) 250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG Mrd(s) = Med+ MRd(S)

= 222E+07 N-mm 13) Total induce Moment under Seismic Condition (TRANS)

Mrd(w) = Me-d + MRd(W)

= 251 E+07 N-mm 14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232)

Oneo(edge) = 0000 + MTd(n) IlI32 x 0 5

3

= 3128 lt 40 Nmm2

15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG) (CI 926232) Oneo-S(edge) Oneomiddotses + Mrd(s)

1CI32 x 0 = 2418 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 26: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

unaoW(edge) = crnoo-wln-lshy

2541 lt 40 Nmm2

II) POT

1) Direct Bearing Stress in concrete due 10 verllcalload under Normal condition an = Vmax X 1000

(CI 92615)

nl4 X A2

2) = 1615 lt 2250 Nmm2

Direct Bearing Stress in concrete due 10 vertical load under Seismic Condition (LONG) (Jses = X 1000

(CL 92615)

1217 lt 2813 Nmm2

3) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CL 92615) (jwin = Vmax-wIn X 1000

rd4 X A2 = 1259 lt 2813 Nmm2

4) Flexural Stress due to active moment resulting from acting Horizonlalload load under Normal condition On~f HB X 1000 X As

rd32 x A3

= 154 Nmm2 5) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(Jses-f HeQ x 1000 X As

rd32 xA3

= 116 Nmm2

6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS) Owln-f = Hw x 1000 X As

x = 155 Nmm2

7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition On-e = Mrd(n)

rd32 x A3

219 Nmm2 8) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

=

= 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Uwin-6 = --~+-

= 10) Total Flexural stress under Normal condition (CI 926212)

(In-If

373 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Usesmiddot1f = Uses-f + Uses-e

= 310 lt 1856 Nmm2

12) Total Flexural stress under Seismic Condition (TRANS) (CL 926212) Uwin-tf Uwin- + (Jwinmiddote

374 lt 1856 Nmm2= 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

(In + Un-If = 09689 lt1= 1 (Jb Ubc

14) Comiddotexisting Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (Jses + Uses-If = 05996 lt1= 1

125 x (Jb 125 x(Jbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 27: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direc amp Compressive Flexural Stress under Seismlo CongiUoo (TRANS) (CI 926213)

(Jwln + (jwln-U 06492 lt1= 1

125 x (J 125 X(jbc 16) Hoop Stress In Pot und0r Normal condition (CI 92631171)

QN = laquo(Jnoo x 0 6 x Nt) -I- (HB x 1000)

2P1h xAo 19784 lt 2040 Nmm2

17) Hoop Stress In Eot UDder Seismic Condition (LONG) (CI92631171) Qs (jnoo-sos x D5 x Nt) + (Hea x 1000)

2Pth X Aa = 14902 lt 2040 Nmm2

18) Hoop Stress In pot uDder Seismic Condition (TRANS) (CI 92631171) Qw laquo(Jnoo-wln x 0 6 x Nt) + (Hw x 1000)

2Pth xAo = 17736 lt 2040 Nmm2

19) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition Fluid Pressure tvm1 (Jnao X Nt

Ptll

= 2016 Nmm2 Horizontal Pressure tVn12 = 15 X HB x 1000

0 5 X Plh

3223 Total Shear Stress

= 5240 lt 153 Nmm2 (CI 92631172) 20) Bending stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure 0ht1= 6 x (jnea X Nt 2

2 X P th2

4577 Nmm2 Horizontal Force (Jbl2 15 x 6 x HB X 1000 x (Nt + w2)

0 5 x P1h2

16205 Total Bending Stress

= 20782 (CI 92631173) 21) Equivalent Combined Stress

(Jeqc laquo(Jb + 3 xtvm2)112

226~77 lt 3060 Nmm2 (CI 92631174) 22) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LON GJ

Fluid Pressure tvm1 = Oneo-ses X Nt Pill

1519 Nmm2 Horizontal Pressure tvm2 15 X HEa x 1000

Osx Pth 2428 Nmm2

Total Shear Stress tvm = tvm1+ tvm2 3947 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG Fluid Pressure (JbI1 6 x (Jneo-sas X NI L

2 X P lhL

3448 Nmm2 Horizontal Force (Jbl2 15 x 6 x HEa x 1000 x (Nt +w2)

0 5 x PlhL

12206 Nmm2 Total Bending Stress (Jbl (Jb11 + (Jbt2

15654 lt 2244 Nmm2

24) Equivalent Combined Stress

(Jeqc laquo(Jbt2 + 3 x tvm2)112

17081 lt 3060 Nmm2

Page 5 of 10

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 28: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

OYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base Interface considering 1mm radilil slice under Seismic Condition (TRANS)

Fluid Pressure tvm1 = anoo-wln x Nt Plh

= 1571 Nmm2 Horizontal Pressure 1vm2 = 15 x Hw x 1000

05 X Plh

3244 Nmm2 Total Shear Stress 1vm tvm1+ tvm2

4815 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Ublt = 6 x Uneo-wln X Nt 2

2 x Pth2

= 3567 Nmm2 Horizontal Force ubl2 = 15 x6 x Hw x 1000 x (Nt + w2)

0 5 x Plh2

16310 Nmm2 Total Bending Stress Ubi = Ubl1 + Ubt2

19876 lt 2244 Nmm2 (CI92631173)

27) Equivalent Combined Stress = (Ub+ 3x tvm2)112ueqc

= 21555 lt 3060 Nmm2 (CI 92631174)

III) PISTON I CENTRE PLATE

1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

Uc(PTFEN) = Vmax X 1000

1t4xL2 = 2968 lt 40 Nmm2

2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243) OcPTFE-S) = Vmax-sas x 1000

1t4xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFE~W) = Vmax-win X 1000 1t4xL2

= 2313 lt 40 Nmm2 4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002

For Average pressure on confined PTFE is 20 Mpa co-efficent of friction 0040

For Average pressure on confined PTFE is lt 30 Mpa co-efficient of friction = 0030

By Linear interpolution For Normal condition ~ = 00303 From (GI 926242 of IRC83(Part 111)middot2002)

For Seismic Condition (LONG) Jl = 00376

For Seismic Condition (TRANS ~ = 00369

Hence design value considering PTFE un lubricated For Normal condition Jl 00606

For Seismic Condition (LONG) ~ 00753

For Seismic Condition (TRANS ~ 00737 Induced Horizontal force in Normal condition H 11 x Vmax 18320 kN

Induced Horizontal force in Seismic Condition (LOI H = I x Vmaxses 17133 kN

Induced Horizontal force in Seismic Condition (TRI H = I x V maxwin 17361 kN

Moment due to frictional resistance (Normal) MId 02 X (05 2) X HB X 1000 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) MId 02 x (05 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (05 2) x Hw x 1000 660E+06 N-mm

Moment due to resistance to rotation Med 0 53 (k1 x 9p + k2 x 9v)

135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 29: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd = Mrd + Mud

205E+07 N-mm Total Induce Moment (Sesismic-LONG) MTd =Mrd + Mod

200E+07 Nmiddotmm Total Induce Moment (Sesismic-TRANS) MTd Mrd + Mod

201E+07 N-mm 5) Compressive Stress in PTFE at Edges under Normal condition (CI 926243)

(Je(PTFE-N) Oc(PTFE~N) MTd

It 132 x La

3415 lt 45 Nmm2 6) Compressive Stress in PTFE at Edges under Seismic Condition (LONG) (CL 926243)

Oe(PTFES) 0c(PTFEmiddotSj oj MTd -It-13-2-X-L3shy

2673 lt 45 Nmm2 7) Compressive Stressn PTFE at Edges under Seismic Condition (TRANS) (CI 926243)

Oe(PTFE~W) = Oc(PTfEW) + MTd

-It-1-3-2-x-L13shy

2752 lt 45 Nmm2 8) Effectiye contact width of piston cylinder interface (CL 9263131)

Since Hw gt He HEQ

We Hwx 1000 X 13 (05 bull 1) X Op

409 mm lt 6 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation ~ - Nt - We - e(D52)

619 mm gt 5 mm (CI 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation hn-e(C3 2)

714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1) Average Compressive Stress in concrete under Normal condition (CI 92615) (jc(avt-n) = Vmax X 1000

lt4 XB = 1727 lt 2250 Nmm2

2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615) Oc(avt-8) = Vmex-ses x 1000

1t4 X Be2

1301 lt 2813 Nmm2 3) Average Compressive Stress in concrete under SeismiC Condition (TRANS) (CI 92615)

Oc(avt~W) = Vmax-win X 1000

1t4 X B 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition Oc-f = HB X 1000 X 85

1t32xB1a3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oc(seswf = HEQ X 1 000 X 85

It 132 X BiaS

= 062 Nmm2 7) Flexural Stress due to active moment resultin from actin

Oc(ses~f) = HEQ X 1000 X 85

It 132 X B03

= 082 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 30: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT L m 0) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

ltJe(ne) =

= 242 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

(jc(sosoc) = MTod(S) 3

1t 132 x 810

= 215 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wlnraquoc) = MT~d(W) 1t32 x B13

= 243 Nmm2 11 ) Total Flexural stress under Normal condition (CI 926212)

ltJol(n) = ltJo-I + Oe(ne)

= 324 lt 1485 Nmm2

12) Total Flexural stress under Seismic Condition (LONG) (CL 926212) Clct(ses-f) = Clo(ses-) + Cle(ses-c)

= 276 lt 105G Nmm2 13) Total Flexural stress under Seismic Condition (TRANS (CI 926212)

Oct(wln-I) Oe(wln-I) + Oe(wln-e)

325 lt 1856 Nmm2 14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 926213) ~=_+ O~ 09857 lt1= 1

Ot Ote

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) (CI 926213) ltJe(eylS) + Oel(ses-f) 06114 lt= 1 125 x ltJI 125 X ltJe

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 926213) ltJe(eyl-W) + ltJel(wlnl-) 06537 lt= 1 125 xltJ 125 xltJlc

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm

Effective area of bolt Ab = 245 mm 2

Number of bolts n = 4 Co-efficient of friction between steel amp concrete )l = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tv 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= Vmin XJ1 + nxAtx~vf

1000 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

= Vmin-ses X J1 + n x Ab x tvf 1000

48257 kN gt HEQT 22759 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-winXIl + nxAbxtvf 1000

50219 kN gt HEQl 30411

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve 40 mm

Sleeve length for Bottom = 120 mm

Sleeve length for Top 120 mm

Page 8 of 10

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 31: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xfvl

DxL Peak stress under Normal Condition For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (JCllk = 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk = 1225 lt 1485 Nmm2

Peak stress under Seismic Condition (TRANS) For Bottom Plate (Jcpk = 1225 lt 1485 Nmm2 For Top Plate (Jcpk == 1225 lt 1485 Nmm 2

VII) LUGS

Thickness of Lug L( 15 mm== Length of Lug L 70 mm Area of Bolt Hole Ab = 38013 mm2

Area of lug A = 105000 mm2

Effective area of lug A = 66987 mm2

Horizontal force on each lug under Normal condition = HBHn

n kN7554

Stress on lug due to horizontal force under Normal condition Sin = Hn X 1000

As 11276 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (LONG) His HEOT

n 5690 kN

Stress on lug due to horizontal force under Seismic Condition (LONG) Ss His X 1000

Ae = 8494 lt 153 Nmm2

Horizontal force on each lug under Seismic Condition (TRANS) Hs = HEOl

n = 7603 kN

Stress on lug due to horizontal force under Seismic Condition (TRANS) Sis = His X 1000

A = lt11350 153 Nmm2

VIII) GUIDE I END CONSTRAINTS Length EI = 56000 mm Width Eb 2300 mm Thickness Et = 1900 mm Horizontal lever arm h1 = 1100 mm

Under Normal condition Bending stress Sb = HB X1000 XhI

16 x EI x Eb2

= 6732 lt 2244 Nmm2 Shear stress Ts = HB x 1000

ElxEb 2346 lt 1530 Nmm2

Combined stress C$ = (Sb2 + (3 X T))12 7863 lt 3060 Nmm2

Page 90f10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 32: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic Condition (LONG Bending stress Sb HEOT X 1000 X h1

16xElxEb2

5071 lt 2244 Nmm2 Shear stress T HEOT X 1000

EI x Eb

= 1767 lt 1530 Nmm2

Combined stress C = (Sb2 + (3 X T))12

= 5923 lt 3060 Nmm2 Under Seismic QQndition (TRANS Bending stress Sb = HEOL X 1000 X h1

16 x EI x Eb2

6775 lt 2244 Nmm2 Shear stress Ts = HEOL X 1000

EI x Eb 2361 lt 1530 Nmm2

Combined stress Cs = (Sb2 + (3 X Ts2))12

= 7914 lt 3060 Nmm2

IX) CHECK ON SIZE OF SsPLATE

Size of the SSPlate In Longitudinal Direction SSPL 460 mm

Size of the SSPlate in Transverse Direction SSPw = 380 mm

Longitudinal movement elng plusmn 460 mm

Transverse movement elran = plusmn 00 mm

Diameter of PTFE L 360 mm

Minimum size of the SSPlate required in Longitudinal Direction = L + (2 x elng)

4520 mm lt 460 mm HENCE OK Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran)

= 3600 mm 380 mm HENCE OK

Page 10 of 10

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 33: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD

DESIGN OF 308 TON CAPACITY TRANSVERSE GUIDED SLIDING POT I PTFE

BEARINGmiddot TYPE T

CLIENT NHAI CONCESSIONAIRE SHRINATHJImiddot UDAIPUR TOLLWAYS PVT LTD EPC CONTRACTOR SADBHAV ENGINEERING LTD PROJECT FOUR LANING OF GOMTI CHAURAHA - UDAIPUR SECTION OF NHmiddot8 FROM KM

17700 TO KM 26010 IN THE STATE OF RAJASTHAN ON DBFOT BASIS BEARINGS FOR ELEVATED STRUCTUREmiddot 2

REFERANCE DRAWING DPIL I SUTPL I ELEVATED STRUCTURE I Type T 1308 TON TRANS REFERANCE CODE IRC83 (Part III) bull 2002 BEVISION RO

DESIGN PARAMETERS 1) Material in contact with Bearing

a) Pedestal fok 45 Mpa (Grade of Concretemiddot M45) b) Superstructure (Top) fck 45 Mpa (Grade of Concretemiddot M45)

2) Permissible Direct Bearing Stress Normal Case (CI 926211) Seismic (CI 926214)

a) Bottom crb 2250 Nmm2 (025 x fck x2) 2813 Nmm2 (025 x fck x2)x125

b) Top crl 2250 Nmm2 (025 x fck x 2) 2813 Nmm2 (025xfck x2)x125

3) Permissible Compressive Flexural Stress Normal Case (CI 926212) Seismic (CI 926214)

a) Bottom 1485 Nmm2 (033 x fck) 1856 Nmm2 (033 x fck )x125

b) Top 1485 Nmm2 (033 x fok) 1856 Nmm2 (033 x fck)x125

4) Grade of Cast Steel 340 -570W of IS 1030 where fy = 340 Nmm2 (Min yield stress of steel) Permissible stress in Cast Steel (CI 92622)

2040 Nmm2 (fy X 06)

2244 Nmm2 (fy X 066)

2550 Nmm2 (fy x 075) 5) Vertical Load

a) Vms 302148 KN 30800 Ton NORMAL CASE b) Vmin 199143 KN 20300 Ton 40 of Max Vertical load

c) Vmabullses 227592 KN 23200 Ton SEISMIC CASE d) Vmln-ses 202086 KN 20600 Ton (Longitudinal)

e) Vmaxwin 235440 KN 24000 Ton SEISMIC CASE f) Vmin-wln 211896 KN 21600 Ton (Transverse)

6) Horizontal Force under Normal Condition a) Longitudinal Hbl 30117 KN 3070 Ton

b) Transverse Hbl 000 KN 000 Ton

Resultant Hs 30117 KN Since HB lt 10 ofVmax Hs 30215 KN (CI 92614)

7) Horizontal Force under Seismic Condition (Longitudinal)

a) Longitudinal Hell 42183 KN 4300 Ton

b) Transverse Hell 000 KN 000 Ton

Resultant HEQ 42183 KN HEQ 42183 KN

8) Horizontal Force under Seismic Condition (Transverse)

a) Longitudinal Hwl 23466 KN 2392 Ton

b) Transverse Hwt 000 KN 000 Ton

Resultant Hw 23466 KN Since Hw lt 10 ofVmax-win Hw 23544 KN (CI 92614)

9) Rotation (Normal Seismic) a) Resultant Rotation e 00091 radians b Resultant rotation due to permanent action and long term effects ep 000600 c) Resultant rotation due to variable action ev 000305

Considered ep =60 of e amp Sv = 40 of e Since 0 5 (Nt = 1357 (As per table 3 of IRC83 (Part 111)-2002 CI 926151)

k1 = 19710 kz = 768860

Page 1 of 10

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 34: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 10) Longitudinal Movement

elng +- 0 mm 11) Transverse Movement

etrM +- 3 mm

BEARING PARAMETERS T 308 TON TRANS GUIDED

I) POT Effective diameter of bottom plate (05 + 2 X A2 x 2) A

Diameter of Pot at Bottom Al = Thickness of Pot at Base A2

Depth of Pot At = Total Thickness of Pot AH1 = Outer Diameter of Pot A7 = Inner Diameter of Pot 0 5 = Horizontal Lever Arm (A2 + Nt + w2) A5

Pot Thickness Pth = II) ELASTOMERIC PAD

Diameter of Elastomeric Pad 0 5 = Thickness of Elastomeric Pad Nt =

III) PISTON I CENTRE PLATE

Size of Centre Plate (qquare) C3 = Piston Diameter Dp = Overall Thicknes of Centre Plate C2

Contact width of Piston w Clearance between Pot top amp Piston bottom edge hn

IV) PTFE

Diameter L

Thickness

V) SS Plate

Length SSPL = Width SSPW = Thickness SSPt =

VI) TOP PLATE Effective Diameter of Top plate (L + 2 x B5 X 2) Ble = Length BL

Width Bw

Thickness B2

Distance of line of Horz force from top B5 VII) ANCHOR BOLT

Diameter of Bolt Db = Total Number of Bolts N = Grade of Bolt =

VIII) LUGS Length LI = Width LI

Thickness Lt = Total Number of Lugs =

IX) ANCHORSLEEVES

Diameter of Sleeve D

Sleeve length for Bottom 4 nos Lb = Sleeve length for Top 4 nos Ls

X) SIDE GUIDE I END CONSTRAINT

Length EI Width Eb Thickness Et

TOTAL HEIGHT OF BEARING

Page 2 of 10

488 mm

488 mm

27 mm

42 mm

69 mm

464 mm

380 mm 59 mm

42 mm

380 mm

28 mm

410 mm

376 mm

35 mm 8 mm

9 mm

360 mm

45 mm

380 mm

390 mm

3 mm

472 mm

490 mm

472 mm

25 mm

28 mm

20 mm

8 nos Gr 46

70 mm

70 mm

17 mm

8 nos

40 mm

120 mm

120 mm

490 mm

23 mm

19 mm

120 mm

12 nos

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 35: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD DESIGN CHECK

I) ELASTOMERIC PAD

1) Diameter to Thickness Ratio (CI 926236) DwN t 1357 lt1= 15

2) Strain in Elastomer (CI 926234) 05 X Dux e

Nt = 00614 lt1= 015

3) Average Compressive Stress under Normal condition (CI 926232) 0 000 = Vmax X 1000

rc4x Dl 2664 lt 35 Nmm2

4 Average Compressive Stress under Seismic Condition (LONG) (CI 926232) Oneo-sas = Vmaxeoo x 1 000

rc4x Dl 2007 lt 35 Nmm2

5) Average Compressive Stress under Seismic Condition ltTRANS) (CI 926232) Oooo-win = Vmaxwin X 1000

1CI4xDl

= 2076 lt 35 Nmm2 6 Min Average Compressive Stress (CI 926233)

Oneo-mln Vmlnwln X 1000

1CI4 x Dl 1756 gt 5 Nmm2

7 Moment due to resistance to rotation due to tilting stiffness of elastomeric pad (CI 926152)

Md = Ds3 X [(k1 x Op) +(k2 x Ov)]

135E+07 N-mm

8) Moment due to friction at the piston-cylinder contact surface under Normal condition (CI 926152) MRdn) 02 x (Ds2) x HB x 1000

= 115E+07 N-mm

9) Moment due to friction at the piston-cylinder contact surface under Seismic Condition (LONG) (CI 926152) MRd(S) 02 x (Ds2) x Hea x 1000

160E+07 N-mm

10) Moment due to friction at the piston-cvlinder contact surface under Seismic Condition ltTRANS) (CI 926152) MRdW) =02 x (Ds2) x Hw x 1000

= 895E+06 N-mm

11) Total induce Moment under Normal condition MTd(n) Med + MRd(n)

250E+07 N-mm

12) Total induce Moment under Seismic Condition (LONG) MT-dIS) Med + MRd(S)

= 295E+07 N-mm

13) Total induce Moment under Seismic Condition (TRANS) MTltJ(W) MObulld + MRd(W)

225E+07 N-mm

14) Compressive Stress in Elastomeric pad at Edges under Normal condition (CI 926232) ltJneo(edge) = (fneo + MTltJn)

rc32 X Ds

3128 lt 40 Nmm2 15) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (LONG)

OneomiddotS(edge) ltJneo-ses + MTd(S) rc32 x Ds3

2555 lt 40 Nmm2

Page 3 of 10

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 36: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 16) Compressive Stress in Elastomeric pad at Edges under Seismic Condition (TRANS) (CI 926232)

Oneo-W(odoo) OnBo-wln + MT-d(w)

nl32 x D53

2493 lt 40 Nmm2

II) POT

1 Direct Bearing Stress in concrete due to verlicalload under Normal condition (CI 9261 _5) On = Vmax X 1 000

nl4 X A2 1615 lt 2250 Nmm2

2) Direct Bearing Stress in concrete due to vertical load under Seismic Condition (LONG) (CI 9261 _5) Oses Vmaxses x 1000

nl4 XA2 1217 lt 2813 Nmm2

3 Direct Bearing Stress in concrete due to vertical load under Seismic Condition (TRANS) (CI 9261 5) Owin = Vmaxwin X 1000

nl4 x A2 1259 lt 2813 Nmm2

4 Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition On-f He x 1000 x As

nl32 X A3

156 Nmm2 5 Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

(jses~f = Heo x 1 000 X As 1ri32 X A3

= 218 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (TRANS)

Gwill-f Hw x 1000 X A5

nl32 XAS

122 Nmm2 7) Flexural Stress due to induced Moment resulting from resistance to Rotation under Normal condition

MT-d(n)

nl32 X A3

219 Nmm2 8 Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (LON G)

Gse = MT0(8)

1ri32 xA3

259 Nmm2 9) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

crwin~e = MT-d(w)

nl32 x A3

= 1~97 Nmm2 10 Total Flexural stress under Normal condition (CI 926212)

Gn-If Gn_+ Gil-a

= 375 lt 1485 Nmm2

11) Total Flexural stress under Seismic Condition (LONG) (CI 926212) Gses-If Gsesmiddot + Gses-e

477 lt 1856 Nmm2 12 Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

Gwn-If = Gwln- + GWln-e

= 319 lt 1856 Nmm2 13) Co-existing Direct amp Compressive Flexural Stress under Normal condition

Gn + Gn-If = 09707 ltI 1 Gb Gbc

14) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG) Gses + Gses-If 06896 lt1= 1

125 x Gb 125 X Gbc

Page 4 of 10

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 37: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 15) Co-existing Direct amp Compressive Flexural Stress under Seismlg Condition (TRANS) (CI 926213)

(wln Owln~H 06192 lt= 1 125 x 00 125 X Jbe

16) Hoop Stress in Pot under Normal condition (CI92631171) QN = (linGO X Do x NI) + (Ha x 1000)

2Plh xAo

= 16599 lt 2040 Nmm2 17) Hoop Stress In Pot under Seismic Condition (LONG) (CI 92631171)

Qs (crnatrnfs x D6 x N1) + (Hea x 1000) 2Plh XA6

18009 lt 2040 Nmm2 18) Hoop Stress In Pot under Seismic Condition (TRANS) (CI 92631171)

Qw (Jnoowln X 0 5 X NI) + (Hw x 1000)

2Pth X Ao

12934 lt 2040 Nmm2 19) Shear stress at cylinder wall and base Interface considering 1 mm radial slice under Normal condition

Fluid Pressure tYml = Jneox Nt

Plh

1776 Nmm2 Horizontal Pressure tYm2 15 X He x 1000

0 5 X Plh

= 2840 Nmm2 Total Shear Stress tym = tym1 + tYm2

4616 lt 153 Nmm2 (CI 92631172)

20) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Normal condition

Fluid Pressure Obl1 = 6middotx Ooeo X NI2

2 X Pth2

3552 Nmm2 Horizontal Force Obt2 = 15 x 6 x He x 1000 X (NI +w2)

o 2oX Plh

= 12982 Nmm2 Total Bending Stress Obl Obl1 + Obt2

= 16534 lt 2244 Nmm2 (CI 92631173) 21) Equivalent Combined Stress

Oeqc = (Oll + 3 x tym2)112

18365 lt 3060 Nmm2 (CI92631174) 22) Shear stress at cylinder wall and base interface considering 1mm radial slice under Seismic Condition (LONG)

Fluid Pressure tvm 1 = Oneo-sesx Nt Plh

= 1338 Nmm2 Horizontal Pressure tYm2 15 X HEQ x 1000

0 5 X PIIbull

3965 Total Shear Stress

= 5302 lt 1530 Nmm2 (CI 92631172)

23) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (LONG) Fluid Pressure Obt1 = 6 x OnolJ-ses X Nt e

2xPtt

= 2676 Nrrim2

Horizontal Force Obt2 = 15 x 6 x HEQ X 1000 x (Nt + w2) 0 5 x pttz

= 18124 Nmm2 Total Bending Stress Obl = Obll + Obt2

= 20799 lt 2244 Nmm2 24) Equivalent Combined Stress

2OeqC = (Ob12+ 3 x t_ )12m

22737 lt 3060 Nmm2

Page 5 of 10

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 38: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD 25) Shear stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure tvm 1 = ltrlloo-wln x N Pill

= 1384 Nmm2 Horizontal Pressure tVm2 = 15 x Hw x 1 000

D5 X Plh

= 2213 Nmm2 Total Shear Stress tvm - tvm1+ tvm2

= 3597 lt 1530 Nmm2 (CI 92631172)

26) Bending stress at cylinder wall and base interface considering 1 mm radial slice under Seismic Condition (TRANS)

Fluid Pressure Obt1 = 6 x anoo-win x Nt 2

2 xPlh 2

= 2768 Nmm2 Horizontal Force Obl2 = 15 x 6 x Hw x 1000 X (NI + w2)

2D5 x Plh

= 10116 Nmm2 Total Bending Stress Obl = Obl1 + Obl2

= 12884 lt 2244 Nmm2 (CI 92631173)

27) Equivalent Combined Stress Oeqc = (Ob12+ 3 x tvm2)112

= 14311 lt 3060 Nmm2 (CI 92631174)

III) PISTON 1CENTRE PLATE 1) Average Compressive Stress in PTFE under Normal condition (CI 926243)

= Vmaxx 1000 nl4xL2

= 2968 lt 40 Nmm2 2) Average Compressive Stress in PTFE under Seismic Condition (LONG) (CI 926243)

Oc(PTFE-S) = Vmax-ses x 1000

n 14 xL2

= 2236 lt 40 Nmm2 3) Average Compressive Stress in PTFE under Seismic Condition (TRANS) (CI 926243)

Oc(PTFEwW) = Vmax-win X 1000

nl4xL2 = 2313 lt 40 Nmm2

4) Max coefficient of friction for SS Plate on properly lubricated PTFE

As per Table 5 of IRC83(Part 111)-2002 For Average pressure on confined PTFE is 20 Mpa co-efficent of friction = 0040

For Average pressure on confined PTFE is ~ 30 Mpa co-efficient of friction = 0030 By Linear interpolution For Normal condition -L = 00303 From (CI 926242 of

IRCB3(Part 111)-2002)For Seismic Condition (LONG) -L = 00376 For Seismic Condition (TRANS -L = 00369

Hence design value considering PTFE unlubricated For Normal condition -L = 00606 For Seismic Condition (LONG) -L = 00753 For Seismic Condition (TRANS -L = 00737

Induced Horizontal force in Normal condition H = jl x V max = 18320 kN Induced Horizontal force in Seismic Condition (LOI H = jlx Vmax-ses = 17133 kN Induced Horizontal force in Seismic Condition (TRI H = jl X Vmax-win = 17361 kN

Moment due to frictional resistance (Normal) Md = 02 x (D52) x HBx 1000 = 696E+06 N-mm

Moment due to frictional resistance (Seismic-LONG) Md = 02 X (D5 I 2) X HEQ X 1000 = 651 E+06 N-mm

Moment due to frictional resistance (Seismic-TRANS) Md = 02 X (D5 I 2) x Hw x 1000 = 660E+06 N-mm

Moment due to resistance to rotation Med = D53 (k1 x ep + k2 x ev) = 135E+07 N-mm

Page 6 of 10

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 39: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD Total Induce Moment (Normal) MTd Mrd + Mod

205E+07

Tolallnduce Moment (Sesismic-LONG) MTd Mrd + Med 200E+07

Total Induce Moment (Seslsmic-TRANS) MTd = Md + Mod 201E+07

5) Compressive Stress In PTFE at Edges under Normal condition aoPTFE~N) = oc(PTFEN) + MTd

n 132 x L3 3415 lt 45 Nmm2

6) Compressive Stress In PTEE at Edges under Seismic Condition (LONG)

Oe(PTFES) = Oc(PTFES) + MTd -n-3-2-X-Lsshy

= 2673 lt 45 Nmm2 7) Compressive Stress in PTFE at Edges under Seismic Condition ltTRANS

Oe(PTFe-W) = Oc(PTFEmiddotW) + MTd -n-32-X-L3shy

= 2752 lt 45 Nmm2 B) Effective contact width of piston cylinder interface (CI 9263131)

Since HeQ gt He Hw

We HeQx 1000 X 13

(D5 - 1) XOp

N-mm

N-mm

N-mm (CL 926243)

(CI 926243)

(CI 926243)

= 567 mm lt 8 mm (Provided)

9) Minimum Theoritical Depth of effective contact width of piston at design rotation = Ao - Nt - We - BD52) = 661 mm gt 5 mm (CL 9263133)

10) Minimum Theoretical clearance between the pot top amp the Top plate bottom edge at design rotation = hn - O(C3 2

= 714 mm gt 5 mm (CI 9263134)

IV) TOP PLATE

1 Average Compressive Stress in concrete under Normal condition (CI 92615) 0c(avln) = Vmax X 1000

2nl4 X Bla

= 17 27 lt 2250 Nmm2 2) Average Compressive Stress in concrete under Seismic Condition (LONG) (CI 92615)

oc(svt-S) = Vmax~ses x 1000

nl4 x Bie2

= 1301 lt 2813 Nmm2 3 Average Compressive Stress in concrete under Seismic Condition (TRANS) (CI 92615)

(jc(avl-W) = Vmax-win X 1000

nl4 XBI = 1346 lt 2813 Nmm2

5) Flexural Stress due to active moment resulting from acting Horizontal load load under Normal condition (jc~f = He x 1000 x 8 5

n32 x Ble3

082 Nmm2 6) Flexural Stress due to active moment resulting from acting Horizontal load load under Seismic Condition (LONG)

Oe(sesf)

7

HeQ x 1000 X B5 3 n 32 X Bla

114 Nmm2

Oe(sesmiddot1)

n32 x Ble3

= 064 Nmm2

Page 7 of 10

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 40: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT L TO 8) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Normal condition

(jc(n-c) MT-d(n)

1t 132 x BI03

= 242 Nmm2 9) Flexural Stress due to Induced Moment resulting from resistance to Rotation under Seismic Condition (LONG)

OC(60S-C) MT-dS)

1t 132 X Ble3

= 286 Nmm2 10) Flexural Stress due to induced Moment resulting from resistance to Rotation under Seismic Condition (TRANS)

Oc(wln-c) = MT-d(W)

1t 132 X Ble3

= 218 Nmm2 11) Total Flexural stress under Normal condition (CI 926212)

(jet(o-f) = (je-f + (je(o-e)

= 324 lt 1485 Nmm2

12) I2rnlf1~xlriill stress InderSeismicQQnQillQnlLQl~gZJ (CI 926212) (jet(aea-f) = (je(soa-f) + (je(ses-e)

= 401 lt 1856 Nmm2

13) Total Flexural stress under Seismic Condition (TRANS) (CI 926212)

(jet(wio-f) = (je(win-f) + (je(win-e)

= 281 lt 1856 Nmm2

14) Co-existing Direct amp Compressive Flexural Stress under Normal condition (CI 9262_1_3) (je(avt-n) +(je~ = 09857 lt1= 1

15) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (LONG_) (CI 926213) Ocavt-S) + Oct(ses-f = 06782 lt= 1 125 x (jt 125 x (jle

16) Co-existing Direct amp Compressive Flexural Stress under Seismic Condition (TRANS) (CI 9262_13) Oc(avt-W) + Oct(winL-f) = 06300 lt= 1 125 x (jt 125 X (jte

V) ANCHOR BOLTS (CI 926362)

Size of bolts Db = 20 mm 2Effective area of bolt Ab = 245 mm

Number of bolts n = 4 Co-efficient of friction between steel amp concrete I = 02 Grade of Bolt Gr 46 Permissible shear stress for Bolt Gr 46 tvf = 80 Nmm2

i) Total resistive force against the shifting of bearing under Normal condition

= + 1000

= 47669 kN gt HB = 30215 kN

ii) Total resistive force against the shifting of bearing under Seismic Condition (LONG)

Vmin-ses X Jl + 1000

48257 kN gt HEQT = 42183 kN

iii) Total resistive force against the shifting of bearing under Seismic Condition (TRANS)

= Vmin-win X I + nxAbxtvf 1000

= 50219 kN gt HEQL = 23544

VI) ANCHOR SLEEVES (CI 926365)

Diameter of Sleeve D = 40 mm

Sleeve length for Bottom Lb 120 mm

Sleeve length for Top Ls 120 mm

Page 8 of 10

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 41: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

_f J

DYNAMIC PRESTRESS (I) PVT LTD Peak stress = 3xAb xtvt

DxL Peak stress under Normal Condition For Bottom Plate Ocpk 1225 lt 1435 Nmm2 For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak stress under Seismic Condition (LONG) For Bottom PiaIe Ocpk 1225 lt 1435 Nmm2

For Top Plate Ocpk 1225 lt 1485 Nmm2 Peak slress under Seismic Condition (TRANS) For Bottom Plale Ocpk 1225 lt 1485 Nmm2

For Top Plale Ocpk 1225 lt 1435 Nmm2

VII) LUGS

Thickness of lug Lt = 17 mm Length of Lug LI 70 mm Area of Bolt Hole Ab 38013 mm2

Area of lug AI 119000 mm2

Effective area of lug A 80987 mm2

Horizontal force on each lug under Normal condition Hln Ha

kN7554 Stress on lug due to horizontal force under Normal condition

Sin HI X 1000 A

9327 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (LONG)

His HEQT n

10546 kN Stress on lug due to horizontal force under Seismic Condition (LONG)

Sis His X 1 000 Ae

13022 lt 153 Nmm2 Horizontal force on each lug under Seismic Condition (TRANS)

HIS HEQl n

5886 kN Stress on lug due to horizontal force under Seismic Condition (TRANS)

Sis His X 1000

7268 lt 153 Nmm2

VIII) GUIDE f END CONSTRAINTS Length EI 49000 mm Width Eb 2300 mm Thickness 1900 mm Horizontal lever arm 1100 mm

Under Normal condition Bending stress Sb Ha x 1000 X hl

116 x EI x Eb2

7693 lt 2244 Nmm2 Shear stress Ts Hs x 1000

ElxEb 2681 lt 1530 Nmm2

Combined stress (Sb2 + (3 X Ts2raquo112Cs

8986 lt 3060 Nmm2

Page 9 of 10

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10

Page 42: K~ - nhai.org.innhai.org.in/spw/CorrespondenceIssues/HO Incoming_065_01.05.14.pdfproject four laning of gomti chauraha· udaipur section of nh-8 from km. 177.00 to km. 260.10 in the

DYNAMIC PRESTRESS (I) PVT LTD Under Seismic CQndiUon (LONG) Bending stress Sb HEQT X 1000 X h1

Shear stress Ts

=

16xElx

10741 HEQT X 1000

lt 2244 Nmm2

Combined stress Cs

Under Seismic Condition (TRANS) Bending stress Sb

Shear stress Ts

3743

(Sbz+ (3 X T))112

12546

HEQL X 1000 X h1

16xElxEb2

5995 HEQL X 1000

lt

lt

lt

1530

3060

2244

Nmm2

Nmm2

Nmm2

ElxEb

Combined stress C

2089

(S + (3 x T2))112

lt 1530 Nmm2

7002 lt 3060 Nmm2

IX) CHECK ON SIZE OF SSPLATE

Size of the SSPlate in Longitudinal Direction

Size of the SSPlate in Transverse Direction

Longitudinal movement

Transverse movement

Diameter of PTFE

SSPL

SSPw elng

elran

L

= plusmn plusmn

380

390

00

30

360

mm mm mm mm mm

Minimum size of the SSPlate required in Longitudinal Direction L + (2 x eln9 )

3600 mm lt 380 mm HENCE OK

Minimum size of the SSPlate required in Transverse Direction

= L + (2 x etran) = 3660 mm 390 mm HENCE OK

Page 10 of 10