Top Banner
Shin-ichi ORIMO, Yuko NAKAMORI Institute for Materials Research (IMR) Tohoku University Advanced Hydrogen Storage Functions of Destabilized and Mixed Complex Hydrides June 19-22, 2005, Lucca, ITALY IPHE - Hydrogen Storage Technology Conference hydrogen.imr.tohoku Program No. H-14 Program No. H-14 www.hydrogen.imr.tohoku.ac.jp
26

June 19-22, 2005, Lucca, ITALY IPHE - Hydrogen Storage ...Advanced Hydrogen Storage Functions of Destabilized and Mixed Complex Hydrides June 19-22, 2005, Lucca, ITALY IPHE - Hydrogen

Oct 22, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Shin-ichi ORIMO, Yuko NAKAMORI

    Institute for Materials Research (IMR)Tohoku University

    Advanced Hydrogen Storage Functions of

    Destabilized and MixedComplex Hydrides

    June 19-22, 2005, Lucca, ITALYIPHE - Hydrogen Storage Technology Conference

    hydrogen.imr.tohokuProgram No. H-14Program No. H-14

    www.hydrogen.imr.tohoku.ac.jp

  • Research project

    “Development for Safe Utilizationand Infrastructure of Hydrogen”

    S. Towata www.tytlabs.co.jp

    collaborated with

    supported by

    focused on

    www.nedo.go.jp/index.html

    communicated withE. Akiba, AIST-TsukubaH. Fujii, Hiroshima Univ.C.M. Jensen, Univ. HawaiiT. Kiyobayashi, AIST-KansaiD.K. Ross, Univ. SalfordG. Sandrock, Sunatech.S. Suda, Kogakuin/MERITH.T. Takeshita, Kansai Univ.J.C.F. Wang, K.J. Gross, SNLR. Zidan, SRNLA. Züttel, Univ. Fribourg

    1. Destabilization of LiBH4 and LiNH22. Combination of amide and hydride3. Prevention of NH3-contamination4. Provision of new reaction pathway

  • Trinary collaboration

    First-Principles Calculationand Simulation

    In-situ Characterization

    Theory MaterialSynthesis

    Analysis

    K. Miwa, N. Ohba Y. Nakamori, M. Aoki

    SR and Neutron Diffractions

    T. Noritake, G. Kitahara, A. Ninomiya, K. Ohyama

    Ultrasoft-pseudopotential

    based onDFT (GGA)

    Solid-gas reaction, MillingEvaporation

  • Metallurgical material synthesis

    hydrogen booster(without electricity)

    reaction cell

    purified-Ar glove box

    reserver

    boosterH2

    0-15 MPa 0-90 MPa

    200MPa ~pu

    rific

    atio

    n

    H2

    0-15 MPa 0-90 MPa

    200MPa ~pu

    rific

    atio

    n

    vac.~ 90 MPa

    samples

    -

    H2

    0-15 MPa 0-90 MPa

    200MPa ~pu

    rific

    atio

    n

    H2

    0-15 MPa 0-90 MPa

    200MPa ~

    vac.~ 90 MPavac.~ 90 MPa

    samples

    試料容器

    加熱部~100 mm

    250 30

    20

    386

    ネジ

    75

    ~100

    5~10

    昇圧装置(~90 MPa)

    圧力計減圧弁(~1 MPa)

    M5ネジ

    冷却水

    冷却水

    38

    ハーウッド1/8インチネジ

    スペ-サ

    スペ-サ

    試料容器

    加熱部~100 mm

    250 30

    20

    386

    386

    ネジネジ

    75

    ~100

    5~10

    昇圧装置(~90 MPa)

    圧力計減圧弁(~1 MPa)

    M5ネジ

    冷却水

    冷却水

    38

    ハーウッド1/8インチネジ

    スペ-サ

    スペ-サスペ-サ

    TMP

    purif

    icat

    ion

    2) evaporation

    3) milling

    1) reactive synthesis (or sintering)

    hydrogen booster(without electricity)

    reaction cell

    purified-Ar glove box

    reserver

    boosterH2

    0-15 MPa 0-90 MPa

    200MPa ~pu

    rific

    atio

    n

    H2

    0-15 MPa 0-90 MPa

    200MPa ~pu

    rific

    atio

    n

    vac.~ 90 MPavac.~ 90 MPa

    samples

    -

    H2

    0-15 MPa 0-90 MPa

    200MPa ~pu

    rific

    atio

    n

    H2

    0-15 MPa 0-90 MPa

    200MPa ~

    vac.~ 90 MPavac.~ 90 MPa

    samples

    試料容器

    加熱部~100 mm

    250 30

    20

    386

    ネジ

    75

    ~100

    5~10

    昇圧装置(~90 MPa)

    圧力計減圧弁(~1 MPa)

    M5ネジ

    冷却水

    冷却水

    38

    ハーウッド1/8インチネジ

    スペ-サ

    スペ-サ

    試料容器

    加熱部~100 mm

    250 30

    20

    386

    386

    ネジネジ

    75

    ~100

    5~10

    昇圧装置(~90 MPa)

    圧力計減圧弁(~1 MPa)

    M5ネジ

    冷却水

    冷却水

    38

    ハーウッド1/8インチネジ

    スペ-サ

    スペ-サスペ-サ

    TMP

    purif

    icat

    ion

    2) evaporation

    3) milling

    1) reactive synthesis (or sintering)

  • 1. Destabilization of LiBH4 and LiNH2

    2. Combination of amide and hydride

    3. Prevention of NH3-contamination

    4. Provision of new reaction pathway

    cation with larger electronegativity

    lower Td / faster reaction with “NH3”

    “tunable” composition / starting material

    intermediate phase formed by dehydriding

    4 GuidelinesTheory MaterialSynthesis

    Analysis

  • Dehydriding reaction

    dehydriding temp. > 473-550 KIEA target temp. < 353 K

    ~ 10 mass% H2

    LiNH2 + 2 LiH ⇔ Li2NH + LiH + H2 ⇔ Li3N + 2 H2P. Chen Z. Xiong, J. Luo, J. Lin, K.L. Tan, Nature 420 (2002) 302

    45~60 (78*)kJ/molH2

    116 (124*)kJ/molH2

    LiBH4 ⇔ LiH + B + 3/2 H2

    A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, Ph. Mauron and Ch. Emmenegger,J. Alloys Compd. 356-357 (2003) 515

    69 (74 *)kJ/molH2

    *obtained fromcalculation

  • SR-XRD & MEM(Spring-8, JAPAN)

    0.0 0.75 1.5 e/Å3

    1Å

    N

    N N

    Li

    LiLi

    H H

    Li Li

    N

    HH

    [110]-

    0.0 0.75 1.5 e/Å30.0 0.75 1.5 e/Å3

    1Å1Å

    N

    N N

    Li

    LiLi

    H H

    Li Li

    N

    HH

    [110]-

    [110]-

    T. Noritake, H. Nozaki, M. Aoki, S. Towata,G. Kitahara, Y. Nakamori, S. Orimo,J. Alloys Compd. 393 (2005) 264.

    K. Miwa, N. Ohba, S. Towata,Y. Nakamori, S. Orimo, Phys. Rev. B 71 (2005) 195109

    First-Principles Calculation

    LiNH2a = 0.5037 nmc = 1.0278 nm

    Tetra., I4 (No. 82)

    LiN

    H

    LiN

    H

    Atomic and electronic structures

    V.H. Jacobs, R. Juza,Z. Anorg. Allg. Chem.391 (1972) 271

    (110)

    0.01 e/Å3

    ~1.0 e/Å3

    a

    c

    a

  • Charge transfer

    Li+cation

    [NH2]-(covalent)

    complexanion

    S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba,T. Noritake, S. Towata, Appl. Phys. A (Rapid Commun.)79 (2004) 1765

    ionic radius

    electro-negativityvalence

    1+ 0.068 nm 1.0Li

    Mcation

    Mg 2+ 0.066 nm 1.2

    cation substitution…

    by the other element withlarger

    electronegativitiyProposed in E-MRS 2003, Strasbourg, June 10-13, 2003

    Y. Nakamori, S. Orimo,Mater. Eng. Sci. B 108 (2004) 51

    Y. Nakamori, S. Orimo,J. Alloys Comp. 370 (2004) 271

    K. Miwa, N. Ohba, S. Towata, Y. Nakamori, S. Orimo, Phys. Rev. B 71 (2005) 195109

    Li

    N

    H

    Total

    Li

    N

    H

    Total

    LiNH2

  • Li

    N

    Mg

    × ××

    (1) (2)(4)(3)

    (5)× L

    MgN

    6

    Mg

    3 N2 (M

    g)×

    (Li)

    Li 3N

    (Li)

    L

    ~923K

    453K

    1088

    K

    933K

    453K

    861K

    (Mg)

    Li

    N

    Mg

    × ××

    (1) (2)(4)(3)

    (5)× L

    MgN

    6

    Mg

    3 N2 (M

    g)×

    (Li)

    Li 3N

    (Li)

    L

    ~923K

    453K

    1088

    K

    933K

    453K

    861K

    (Mg)

    Dehydriding temperatures

    targets of

    NEDO program

    600

    550

    500

    450

    400

    350

    300

    Des

    orp .

    Tem

    p. (K

    )

    1.00.80.60.40.20.0Mg Concentration, x

    Sta

    rting

    of H

    ydro

    gen

    600

    IEA program

    Initi

    al D

    ehyd

    ridin

    g Te

    mp.

    (K)

    Deh

    ydrid

    ing

    Rea

    ctio

    n (a

    .u.)

    600500400300Temperature (K)

    x = 0.3

    (Li1-xMgx)(NH2)y

    0.1 MPa argon, 10 K・min.-1

    x = 0.1

    x = 0

    Deh

    ydrid

    ing

    Rea

    ctio

    n (a

    .u.)

    600500400300Temperature (K)

    x = 0.3

    (Li1-xMgx)(NH2)y

    0.1 MPa argon, 10 K・min.-1

    x = 0.1

    x = 0

    Li1-xMgx833 K, 2 h, 0.3 MPa N2

    LiMgN +Li(Mg)3N + Mg3(Li)2

    623 K, 2 h, 35 MPa H2

    Li(Mg)NH2 +Li(Mg)H + Mg3(Li)2

    S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba,T. Noritake, S. Towata, Appl. Phys. A (Rapid Commun.)79 (2004) 1765-1767

    Ar 0.1 MPa10 K/min

  • S. Orimo, Y. Nakamori, G. Kitahara,K. Miwa, N. Ohba, S. Towata, A. Züttel,J. Alloys Compd., in press

    M = Li-10at%Mg

    Hyd

    roge

    n D

    esor

    ptio

    n (a

    .u.)

    800700600500 Temperature (K)

    M = Li

    Ar 0.1 MPa10 K/min

    M = Li-10at%MgM = Li-10at%Mg

    Hyd

    roge

    n D

    esor

    ptio

    n (a

    .u.)

    800700600500 Temperature (K)

    M = Li

    Ar 0.1 MPa10 K/min

    Deh

    ydrid

    ing

    Rea

    ctio

    n(a

    .u.)

    Li

    BH

    Li

    BH

    Li

    HB

    B

    H

    Total

    LiBH4

    Li

    Mg substitution in LiBH4

    K. Miwa, N. Ohba, S. Towata,Y. Nakamori, S. Orimo, Phys. Rev. B 69 (2004) 245120

    A. Züttel et al.,J. Alloys Compd.(to be submitted)

    LiBD4

    a = 0.718 nmb = 0.444 nmc = 0.680 nm, at 408 K

    Ortho., Pnma (No. 62)

    J-Ph. Soulié et al.,J. Alloys Compd.346 (2002) 200

    A. Züttel et al.,J. Alloys Compd. 356 (2003) 515

    a

    bc

    a

    bc

  • 1. Destabilization of LiBH4 and LiNH2

    2. Combination of amide and hydride

    3. Prevention of NH3-contamination

    4. Provision of new reaction pathway

    lower Td / faster reaction with “NH3”

    4 GuidelinesTheory MaterialSynthesis

    Analysis

  • Amide and hydride

    Hydriding Partial Dehyd. Dehyd.

    IdealHydrogen (mass%)

    LiNH2 + 2LiH Li3N + 2H2Ca2NH + CaH2 CaNH + 2H2 2.1

    Mg3N2 + 4Li3N + 12H2

    10.4

    4.2

    5.6

    9.1

    7.0

    5.6

    LiNH2 + NaH

    2LiNH2 + MgH2

    3Mg(NH2)2 + 12LiH

    3Mg(NH2)2 + 8LiH

    3Mg(NH2)2 + 6LiH

    Ref.

    Li2NH + LiH + H2Dafert et al.,Monatsh. Chem.(1910) , Chen et al., Nature (2002)

    LiNaNH + H2Ichikawa et al.,JPChem B (2004)

    Li2Mg(NH)2 + 2H2Luo, JALCOM (2004)Wang, DOE Report(2004)

    Mg3N2 + 4Li2NH + 8H2

    Leng et al.,JPChem B (2004)

    Mg3N2 + 4Li2NH + 4LiH + 8H2

    Nakamori et al.,Appl. Phys. A,J. Power Sources(2004)

    3Li2Mg(NH)2 + 6H2

    Luo et al., MH2004, Xiong et al.,Adv. Mater. (2004)

    dehydriding processdehydriding process

    and so on…

  • Dehydriding process

    P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, J. Phys. Chem. B 107 (2003) 10967

    “redox process”

    Y.H. Hu, E. Ruckenstein, J. Phys. Chem. A 107 (2003) 9737T. Ichikawa, N. Hanada, S. Isobe, H. Leng, H. Fujii, J. Phys. Chem. B 108 (2004) 7887

    “NH3 mediating process”

    H in LiNH2 : Hδ+in LiH : Hδ−

    → redox pair Hδ− + Hδ+ → H2Nδ− + Liδ+ → Li3N

    H in LiNH2 : Hδ+in LiH : Hδ−

    → redox pair Hδ− + Hδ+ → H2Nδ− + Liδ+ → Li3N

    M(NH2)2 → “NH3” + MNH→ “NH3” + M3N2

    MH + “NH3” → MNH2 + H2

    1st step

    2nd step

    M(NH2)2 → “NH3” + MNH→ “NH3” + M3N2

    MH + “NH3” → MNH2 + H2

    1st step

    2nd step

  • Point : MNH2 with lower decomp. temp. TdM(NH2)y → y/2 M2/yNH + y/2 NH3

    Td : Mg(NH2)2 < LiNH2 < NaNH2

    → Mg for M

    1st step (formation of “NH3”)

    -30

    -20

    -10

    0W

    eigh

    t Los

    s (%

    )

    800700600500400300Temperature (K)

    Mg(NH2)2

    LiNH2

    NaNH2

    -30

    -20

    -10

    0W

    eigh

    t Los

    s (%

    )

    800700600500400300Temperature (K)

    Mg(NH2)2

    LiNH2

    NaNH2

    Y. Nakamori et al.,Mater. Trans., in press

    He 0.1 MPa5 K/min

  • → Li for M

    Point : MH with faster reaction with “NH3”MHy + y NH3 → M(NH2)y + y H2

    ×

    ×

    ××

    ×× ×

    ○○

    ○○

    ○○

    ○ ○

    MgH2

    Mg(NH2)2

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    NaH

    NaNH2

    ××

    ×

    ×

    ×

    ×

    ○○○

    ○○ ○

    ○○○

    ○○

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    LiH

    LiNH2

    ×

    ×

    ×

    ○○○ ○

    ×

    ×

    ××

    ×× ×

    ○○

    ○○

    ○○

    ○ ○

    MgH2

    Mg(NH2)2

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    ×

    ×

    ××

    ×× ×

    ○○

    ○○

    ○○

    ○ ○

    MgH2

    Mg(NH2)2

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    NaH

    NaNH2

    ××

    ×

    ×

    ×

    ×

    ○○○

    ○○ ○

    ○○○

    ○○

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    NaH

    NaNH2

    ××

    ×

    ×

    ×

    ×

    ○○○

    ○○ ○

    ○○○

    ○○

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    LiH

    LiNH2

    ×

    ×

    ×

    ○○○ ○

    Inte

    nsity

    (a.u

    .)

    60504030202θ (degree)

    LiH

    LiNH2

    ×

    ×

    ×

    ○○○ ○

    2nd step (H2 emission)

    Y. Nakamori et al.,Mater. Trans., in press

    time (hour)temp. (K)

    12493LiH

    16861348573NaH12493LiH

    168613MgH2MgH2

    573

    MH

  • Optimized combination

    Mg(NH2)2 → “NH3” + MgNH→ “NH3” + Mg3N2

    LiH + “NH3” → LiNH2 + H2

    Mg

    NH2

    Y. Nakamori, G. Kitahara, S. Orimo, J. Power Sources 137 (2004) 309

    fasterreaction

    with “NH3”

    Lowerdecomposition

    temp.

    Li HMg(NH2)2 + x LiH

    ?composition ratio

  • 1. Destabilization of LiBH4 and LiNH2

    2. Combination of amide and hydride

    3. Prevention of NH3-contamination

    4. Provision of new reaction pathway

    “tunable” composition / starting material

    4 GuidelinesTheory MaterialSynthesis

    Analysis

  • yes

    noyes

    yes

    no

    noyes

    nono

    heating belowLi2NH phase

    adding catalyst

    heating slowly

    x < 4

    homogeneous dispersion

    x = 4

    yeskeeping from air

    NH3H2

    at any temp.

    NH3highly toxic for FC reaction

    Y. Nakamori, S. Orimo, submitted

    H2 / NH3 from Mg(NH2)2 + x LiH

  • Affected by composition and …

    -16

    -12

    -8

    -4

    0

    Wei

    ght L

    oss

    (mas

    s%)

    800700600500400Temperature (K)

    x = 4 (max. 9.1 mass%)

    x = 2 (max. 5.6 mass%)x = 8/3 (max. 6.9 mass%)

    TGHe 0.1 MPa5 K/min

    In

    tens

    ity (a

    .u.)

    ×50

    300 400 500 600 700 800Temperature (K)

    mass spectroscopyHe 0.1 MPa, 5 K/min

    H2

    NH3

    starting fromhydrides

    x = 4

    x = 2x = 8/3

    x = 4

    starting fromnitrides

    Y. Nakamori, G. Kitahara, A, Ninomiya, K. Aoki, T. Noritake, S. Towata, S. Orimo, Mater. Trans., in press

    MASSHe 0.1 MPa5 K/min

    Mg(NH2)2 + x LiH

    Inte

    nsity

    (a.u

    .)

    60504030202θ /degree

    x = 2

    x = 8/3

    x = 4

    2θ (degree)

    Inte

    nsity

    (a.u

    .)

    60504030202θ /degree

    x = 2

    x = 8/3

    x = 4

    2θ (degree)2θ (degree)

    XRD(aft. 513 K)

  • Mg(NH2)2 + 4 LiH

    amide + hydride

    3Mg(NH2)2 + 12LiH Mg3N2 + 4Li2NH + 4LiH + 8H2 Mg3N2 + 4Li3N + 12H2hydriding nitrides

    starting materials

    Y.H. Hu, E. Ruckenstein, J. Phys. Chem. A 107 (2003) 9737T. Ichikawa, N. Hanada, S. Isobe, H. Leng, H. Fujii, J. Phys. Chem. B 108 (2004) 7887S. Hino, T. Ichikawa, N. Ogita, M. Udagawa, H. Fujii, Chem. Commun., in pressY. Nakamori, G. Kitahara, A, Ninomiya, K. Aoki, T. Noritake, S. Towata, S. Orimo, Mater. Trans., in press

    affected by… composition,starting material (= elemental dispersion),atmosphere,heating rate,open/close system, …

    “NH3 mediating process”

    dehydriding

  • (1/3・Mg3N2 + 4/3・Li2NH + 4/3・LiH + 8/3・H2)

    1/3・Mg3N2 + 4/3・Li3N + 4・H2

    (Li2Mg(NH)2 +2・LiH + 2・H2)

    Mg(NH2)2 + 4・LiH

    (1/3・Mg3N2 + 4/3・Li2NH + 4/3・LiH + 8/3・H2)

    1/3・Mg3N2 + 4/3・Li3N + 4・H2

    (Li2Mg(NH)2 +2・LiH + 2・H2)

    Mg(NH2)2 + 4・LiH

    DehydridingPartial DehydridingHydriding DehydridingPartial DehydridingHydriding

    1/3・Mg3N2 + 4/3・Li2NH + 8/3・H2

    Mg(NH2)2 + 8/3・LiH

    1/3・Mg3N2 + 4/3・Li2NH + 8/3・H2

    Mg(NH2)2 + 8/3・LiH

    Li2Mg(NH)2 +2・H2

    Mg(NH2)2 + 2・LiH

    Li2Mg(NH)2 +2・H2

    Mg(NH2)2 + 2・LiH

    6.1 mass%6.1 mass%

    4.6 mass%4.6 mass%

    9.1 mass%9.1 mass%

    6.9 mass%6.9 mass%

    5.6 mass%5.6 mass%

    **

    x, depending on applications

    x = 4

    x = 8/3

    x = 2

    possibility of NH

    3 emission

    H2 concentration

    ~ 500 K 500 ~ 700 K 700~ Kdehydriding temperatures

    Nakamori et al.

    Leng et al.

    Luo et al.Chen et al.

    Nakamori, S. Orimo,submitted.

    (Intermediate phase)

  • 1. Destabilization of LiBH4 and LiNH2

    2. Combination of amide and hydride

    3. Prevention of NH3-contamination

    4. Provision of new reaction pathwayIntermediate phase formed by dehydriding

    4 GuidelinesTheory MaterialSynthesis

    Analysis

  • LiH⇔ Li + 1/2 H2

    LiNH2 → 1/2 Li2NH + 1/2 NH3 → 1/3 Li3N + 2/3 NH3

    13.8 mass%H2, 953 K

    NH3 emission, 600 K

    LiNH2 + 2 LiH ⇔ Li2NH + LiH + H2 ⇔ Li3N + 2 H2 5.5 mass%H2, 473 K 5.2 mass%H2, 700 K

    Mixing effect

    LiBH4 + LiNH2 : “Li-B-N(-H)” existsLiBH4 + LiAlH4 : “Li-B-Al(-H)” may not exist×

    Any intermediate phase after/during dehydriding?

  • Combination of LiBH4 + LiNH2 T

    herm

    al D

    esor

    p. (a

    .u.)

    800700600500400Temperature (K)

    2LiNH2 + LiBH4 LiBH4

    Inte

    nsity

    (a.u

    .)

    6040202θ (degree)

    Li3BN2

    The

    rmal

    Des

    orp.

    (a.u

    .)

    800700600500400Temperature (K)

    The

    rmal

    Des

    orp.

    (a.u

    .)

    800700600500400Temperature (K)

    2LiNH2 + LiBH4 LiBH4

    Inte

    nsity

    (a.u

    .)

    6040202θ (degree)

    Li3BN2

    Inte

    nsity

    (a.u

    .)

    6040202θ (degree)

    Li3BN2

    Y. Nakamori, A. Ninomiya, G. Kitahara, K. Aoki, T. Noritake, K. Miwa Y. Kojima,S. Orimo, J. Power Sources in press

    LiBH4 + 2LiNH2 → Li3BN2H8 →

    → Li3BN2Hx (x~0) → α-Li3BN2

    milling 650 K

    800 K

    M. Aoki, K. Miwa, T. Noritake, G. Kitahara,Y. Nakamori, S. Orimo, S. Towata,Appl. Phys.A 80 (2005) 1409

    0-2-4-6-8-10-12Hydrogen desorption (wt%)

    Hyd

    roge

    n pr

    essu

    re (M

    Pa)

    LiBH4 (430℃)

    LiBH4 + 2LiNH2(250℃)

    10-1

    10-2

    10-3

    101

    100

    ~8 (11.9*) mass%H2(23*) kJ/molH2

    LiBH4+2LiNH2 (523 K)

    LiBH4(703 K)

    10.6 (13.8*) mass%H269 (74*) kJ/molH2

  • 1. Destabilization of LiBH4 and LiNH2

    2. Combination of amide and hydride

    3. Prevention of NH3-contamination

    4. Provision of new reaction pathway

    cation with larger electronegativity

    lower Td / faster reaction with “NH3”

    “tunable” composition / starting material

    intermediate phase formed by dehydriding

    4 GuidelinesTheory MaterialSynthesis

    Analysis

  • Theory Material Synthesis

    Analysis

    Recent publications

    K. Miwa et al., “First principles study onlithium borohydride LiBH4”,Phys. Rev. B 69 (2004) 245120

    K. Miwa et al., “First-principles study onlithium amide for hydrogen storage”, Phys. Rev. B 71 (2005) 195109

    T. Noritake et al., “Crystal structure and chargedensity analysis of Li2NH by synchrotron X-raydiffraction”, J. Alloys Compd. 393 (2005) 264

    Y. Nakamori, S. Orimo, “Destabilization of Li-based complex hydrides”, J. Alloys Compd. 370 (2004) 271

    S. Orimo et al., “Material properties ofMBH4 (M = Li, Na, and K)”,Mater. Sci. Eng. B 108 (2004) 51

    K. Ohoyama et al., “Revised crystal structuremodel of Li2NH by neutron powder diffraction”,J. Phys. Soc. Jan. 74 (2005) 483

    S. Orimo et al., “Destabilization and enhanced dehydriding reaction of LiNH2 – an electronic structure viewpoint”,Appl. Phys. A (Rapid Commun.) 79 (2004) 1765

    S. Orimo et al., “Dehydriding and rehydriding reactions of LiBH4”, J. Alloys Compd. in press

    Y. Nakamori, et al., “Guidelines for developing amide based hydrogen storage materials”, Mater. Trans., in press

    Y. Nakamori, et al., “Synthesis and dehydriding studies of Mg-N-H systems”, J. Power Sources 138 (2004) 309

    Y. Nakamori et al., “Reversible hydrogen storage functions for the mixtures of Li3N and Mg3N2”, Appl. Phys. A 80 (2005) 1

    M. Aoki et al., “Destabilization of LiBH4 by mixing with LiNH2”,Appl. Phys. A 80 (2005) 1409.

    Y. Nakamori et al., “Dehydriding reaction of mixed complex hydrides”, J. Power Sources, in press

    Theory MaterialSynthesis

    Analysis