Top Banner
Johnson Space Center May 18, 2010
34

Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Jan 01, 2016

Download

Documents

Beverly Bridges
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Johnson Space Center May 18, 2010

Page 2: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Single-walled Carbon Nanotube(SWCNT)

Carbon Nanostructures

C60

(Buckminsterfullerene)

Page 3: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

taken from http://www.photon.t.u-tokyo.ac.jp/~maruyama/wrapping.files/frame.html

Rolling up graphene to make a SWCNT

Page 4: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

armchair ( = 30°)

zigzag ( = 0°)

intermediate (0 30°)

zigzag

Many SWCNT structures exist( different diameters and angles )

Page 5: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Typical diameter: 0.6 – 3 nm

Typical lengths: 100 – 10,000 nm large aspect ratios

Density: 1.4 g / cm3

Tensile strength: 60 GPa 50 x higher than steel

Persistence length: 50 m very rigid

Surface area: > 1000 m2 / g (every atom on surface)

Electrical transport: metallic or semiconducting

Optical spectra: intense -* bands, direct band-gap semiconductors

SWCNT Properties

Page 6: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Even pure single-walled samples contain:

• many diameters

• many chiral angles

• many lengths (no effect on electronic structure)

• bundles of tubes bound by van der Waals forces

Nanotubes are produced ascomplex mixtures

Page 7: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

van Hovesingularities

Electronic states of a semiconducting SWCNT

E11 E22 E33

Page 8: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Constructing nanotubes from a graphene sheet

Roll-up vector

Roll-up angle

Nan

otu

be

axis

Page 9: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

E11

emissionE22

absorption

Spectrofluorimetry of semiconducting SWCNTs

hole

e-

Page 10: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)
Page 11: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Spectral transitions mapped to structures

Page 12: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

ApplicationApplication

SWCNT Composites

Page 13: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

• Add small amounts of SWCNTs to polymers to make composites with improved mechanical strength, thermal conductivity, and/or electrical conductivity

• SWCNTs can retain their near-IR fluorescence in the composite. This allows in situ monitoring of:

dispersion (fluorescence microscopy) orientations (polarized fluor. microscopy)

axial strains (spectral shifts)

The Basic Idea

Page 14: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

polarization control, focusingexcitation lasers

near-IR imager InGaAs 2-D array

(82,000 pixels)

inverted microscope

sample

near-IR spectrographwith InGaAs 1-D array

Apparatus for near-IR fluorescence microscopy

Tsyboulski, et al. Nano Lett. 5, 975 (2005)

Images Spectra

Page 15: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Fluorescence from a Single Nanotube

(7,5)

160 m field

Page 16: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Em

issi

on I

nten

sity

Compress

Stretch

Shift in band gap

Compress

Stretch

Axial deformation changes the nanotube’selectronic structure and causes spectral shifts

Page 17: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Extension Compression

Strain jig for microscope stage

SWCNTs in PMMA film fused to PMMA barStrain gauge mounted on sample film

Page 18: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

to strain reader

resistive strain gauge

PMMAbeam

spin coatednanotube/PMMA filmmicrometer

for pushing swing arm

swing arm2 cm

built by Pavel Nikolaev and Sivaram Arepalli

PMMAbeam

stationary pins

moving pins

side view

4-point bending jig for applying controlled strain

Page 19: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Polarization reveals nanotube orientation

Page 20: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

(8,7)

Wavenumbers (cm-1)

7600 7800 8000 8200

Nor

m. e

mis

sion

inte

nsity

0.0

0.2

0.4

0.6

0.8

1.0

1.2 0.8%0.0%-0.8% strain

Single SWCNT spectra

(8,7) nanotube

Page 21: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

• are linear with strain

• reverse sign for mod 1 and mod 2 species

• depend on projection of strain along nanotube axis

• depend on nanotube roll-up angle

Theory predicts that shifts in SWCNT emission peaks

Page 22: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Peak position shifts linearly as host is strained

Page 23: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Spectral shifts agree with simple theory

Page 24: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Spectral shift is linear until …

it splits into 2 peaks!

Page 25: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Part of one nanotube slipping

Page 26: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Strain data for a single SWCNT in Epon 862 epoxy

(10,2) nanotube in PFO

Page 27: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

0.6% strain

Wavelength (nm)

900 1000 1100 1200 1300

Nor

mal

ized

Em

issi

on I

nten

sity

-0.2

0.0

0.2

0.4

0.6

0.8

1.0 End 1MiddleEnd 2

2 m

0.6%strain

1% strain

0%strain

Spectral shifts vary within a single nanotube

in PMMA

Page 28: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Strain (%)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

E11

(cm

-1)

-1000

-800

-600

-400

-200

0 End 1MiddleEnd 2

Middle shows linear behavior

Ends slip

Ends slip while the middle adheres

Page 29: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Copyright © 2007 Applied NanoFluorescence, LLC

Quantitatively deduce nanotube strain from spectral shifts

Measure the limits beyond which nanotube loses adhesion to surrounding polymer host

For long nanotubes, observe slipping of ends while center remains adherent

Method should provide important insights into interfacial load transfer at the molecular level

Single-SWCNT strain studies

Page 30: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Goals

• Further refine methods for monitoring nanotube dispersion, orientation, and load transfer from host

• Use near-IR fluorescence spectroscopy to study load transfer in single nanotubes and variations within and among tubes

• Develop a remote spectroscopic monitoring system to measure strain in structural components made from SWCNT composites

Page 31: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

interrogationlaser

near-IR imager InGaAs 2-D array

(82,000 pixels)

Non-invasive sensing of structural strain

near-IR collection optics & spectrometer

composite with sorted SWCNTs

Page 32: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Den

sity

(g/

mL)

1 .0 6

1 .0 7

1 .0 8

1 .0 9

1 .1 0

1 .1 1

7 ,3

6 ,5

8 ,3

7 ,5

7 ,6

U n s o rte d H iP c o

a b c d6 ,4

W a v e le n g th (n m )9 0 0 1 0 0 0 1 1 0 0 1 2 0 0

Nor

mal

ized

em

issi

on in

tens

ity

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

7 ,36 ,58 ,3 7 ,5 7 ,66 ,4 9 ,1

6 ,4

6 ,5

8 ,3

7 ,57 ,6

N a n o tu b e d ia m e te r (n m )0 .7 0 .8 0 .9 1 .0

Refractive index

1 .3 5 2

1 .3 5 6

1 .3 6 0

1 .3 6 4

1 .3 6 8

7 ,3

8 ,7

e

1 0 ,2

W a v e le n g th (n m )1 0 0 0 1 2 0 0 1 4 0 0

Absorbance (a.u.)

9 ,28 ,4

D e p th in c e n trifu g e tu b e (m m )

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0

Refractive index

1 .3 4

1 .3 6

1 .3 8

1 .4 0

1 .4 2

P o s t N o n lin e a r D G U

P o s t L in e a r D G U

Den

sity

(g/

mL)

1 .0 0

1 .0 5

1 .1 0

1 .1 5

1 .2 0

1 .2 5

1 .3 0

fN a n o tu b e e n a n tio m e rs

(n,m) sorting of SWCNTs by nonlinear density gradient ultracentrifugation

Page 33: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

Separated fractions contain robust near-IR fluorophores with distinct emission peaks

Ghosh, Bachilo, and Weisman, Nature Nanotechnology, published online May 9, 2010

Page 34: Johnson Space Center May 18, 2010. Single-walled Carbon Nanotube (SWCNT) Carbon Nanostructures C 60 (Buckminsterfullerene)

References

O’Connell et al., Science 297, 593 (2002)Bachilo et al., Science 298, 2361 (2002)Bachilo and Weisman, Nano Letters 3, 1235 (2003)Tsyboulski et al., Nano Letters 5, 975 (2005)Leeuw et al. Nano Letters 8, 826 (2008)Ghosh et al., Nature Nanotechnology, web-posted May 9, 2010