Top Banner
John Doyle 道道 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, & BioE tech 1 # Ca Universal laws and architectures: Theory and lessons from brains, bugs, nets, grids, planes, docs, fire, bodies, fashion, earthquakes, turbulence, music, buildings, cities, art, running, throwing, Synesthesia, spacecraft, statistical mechanics
156

John Doyle 道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, & BioE

Jan 29, 2016

Download

Documents

virote

Universal laws and architectures: Theory and lessons from brains, bugs, nets , grids, planes, docs, fire, bodies, fashion , earthquakes, turbulence , music, buildings, cities , art, running, throwing , S y n e s t h e s i a , spacecraft, statistical mechanics. John Doyle 道陽 - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

John Doyle 道陽Jean-Lou Chameau Professor

Control and Dynamical Systems, EE, & BioE

tech1#Ca

Universal laws and architectures:Theory and lessons from

brains, bugs, nets, grids, planes, docs, fire, bodies, fashion,

earthquakes, turbulence, music, buildings, cities, art, running, throwing, Synesthesia, spacecraft, statistical mechanics

Page 2: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

accessibleaccountableaccurateadaptableadministrableaffordableauditableautonomyavailablecredibleprocess

capablecompatiblecomposable configurablecorrectnesscustomizabledebugabledegradabledeterminabledemonstrable

dependabledeployablediscoverable distributabledurableeffectiveefficientevolvableextensiblefail transparentfastfault-tolerantfidelityflexibleinspectableinstallableIntegrityinterchangeableinteroperable learnablemaintainable

manageablemobilemodifiablemodularnomadicoperableorthogonalityportableprecisionpredictableproducibleprovablerecoverablerelevantreliablerepeatablereproducibleresilientresponsivereusable robust

safety scalableseamlessself-sustainableserviceablesupportablesecurablesimplicitystablestandards

compliantsurvivablesustainabletailorabletestabletimelytraceableubiquitousunderstandableupgradableusable

Requirements on systems and architectures

Page 3: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

accessibleaccountableaccurateadaptableadministrableaffordableauditableautonomyavailablecredibleprocess

capablecompatiblecomposable configurablecorrectnesscustomizabledebugabledegradabledeterminabledemonstrable

dependabledeployablediscoverable distributabledurableeffectiveefficientevolvableextensiblefail transparentfastfault-tolerantfidelityflexibleinspectableinstallableIntegrityinterchangeableinteroperable learnablemaintainable

manageablemobilemodifiablemodularnomadicoperableorthogonalityportableprecisionpredictableproducibleprovablerecoverablerelevantreliablerepeatablereproducibleresilientresponsivereusable robust

safety scalableseamlessself-sustainableserviceablesupportablesecurablesimplicitystablestandards

compliantsurvivablesustainabletailorabletestabletimelytraceableubiquitousunderstandableupgradableusable

Requirements on systems and architectures

When concepts fail, words arise. Mephistopheles, Faust, Goethe

Mephistopheles. …Enter the templed hall of Certainty.Student. Yet in each word some concept there must be.Mephistopheles. Quite true!

But don't torment yourself too anxiously;For at the point where concepts fail,At the right time a word is thrust in there…

Page 4: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

When concepts fail, words arise. Mephistopheles, Faust, Goethe

• Concrete case studies• Theorems

Sorry, still too many words and slides.

Hopefully read later?

Page 5: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

When concepts fail, words arise. Mephistopheles, Faust, Goethe

• Concrete case studies• Theorems

“Laws and Architecture” • Few words more misused• Few concepts more confused

What’s the best/simplest fix?

Page 6: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Reality is a crutch for people who can’t do math. Anon, Berkeley, 70’s

• Concrete case studies• Theorems

and words

Page 7: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

• Brains• Nets/Grids (cyberphys)• Bugs (microbes, ants)• Medical physiology

• Lots of aerospace• Wildfire ecology• Earthquakes• Physics:

– turbulence, – stat mech (QM?)

• “Toy”: – Lego– clothing, fashion

• Buildings, cities• Synesthesia

Fundamentals!

Case Study

Page 8: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Focus today:• Neuroscience

+ People care+ Live demos

• Cell biology (esp. bacteria)+ Perfection Some people care

• Internet (of everything) (& Cyber-Phys)+ Understand the details- Flawed designs- Everything you’ve read is wrong (in science)*

• Medical physiology (esp. HRV)+ People care, somewhat familiar- Demos more difficult

* Mostly high impact “journals”

Page 9: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Focus today:• Neuroscience

+ People care+ Live demos

• Cell biology (esp. bacteria)+ Perfection Some people care

• Internet (of everything) (& Cyber-Phys)+ Understand the details- Flawed designs- Everything you’ve read is wrong (in science)*

• Medical physiology+ People care, somewhat familiar- Demos more difficult

* Mostly high impact “journals”

Page 10: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Glass 3.0

FaceWorld

Siri 3.0

What we want to build but can’t, yet.

Page 11: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

The zombie apocalypse is already here…

Page 12: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

accessibleaccountableaccurateadaptableadministrableaffordableauditableautonomyavailablecompatiblecomposable configurablecorrectnesscustomizabledebugabledegradabledeterminabledemonstrable

dependabledeployablediscoverable distributabledurableeffective

evolvableextensiblefail transparentfastfault-tolerantfidelityflexibleinspectableinstallableIntegrityinterchangeableinteroperable learnablemaintainable

manageablemobilemodifiablemodularnomadicoperableorthogonalityportableprecisionpredictableproducibleprovablerecoverablerelevantreliablerepeatablereproducibleresilientresponsivereusable

safety scalableseamlessself-sustainableserviceablesupportablesecurablesimplestablestandardssurvivable

tailorabletestabletimelytraceableubiquitousunderstandableupgradableusable

efficient

robust

sustainable

Sustainable robust + efficient

Page 13: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Priorities

• Functionality (behavior, semantics)• Robustness

– Uncertain environment and components– Fast (sense, decide, act)– Flexible (adaptable, evolvable)

• Efficiency– Energy– Other resources (make and maintain)

Page 14: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Simple, apparent, obvious

• Functionality • Robustness

– Uncertain environment and components– Fast (sense, decide, act)– Flexible (adaptable, evolvable)

• Efficiency

Hidden

Page 15: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Complexity Robustness

• Functionality (behavior, semantics)• Robustness

– Uncertain environment and components– Fast (sense, decide, act)– Flexible (adaptable, evolvable)

• Efficiency– Energy– Other resources (make and maintain)

Page 16: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

accessibleaccountableaccurateadaptableadministrableaffordableauditableautonomyavailablecompatiblecomposable configurablecorrectnesscustomizabledebugabledegradabledeterminabledemonstrable

dependabledeployablediscoverable distributabledurableeffective

evolvableextensiblefail transparentfastfault-tolerantfidelityflexibleinspectableinstallableIntegrityinterchangeableinteroperable learnablemaintainable

manageablemobilemodifiablemodularnomadicoperableorthogonalityportableprecisionpredictableproducibleprovablerecoverablerelevantreliablerepeatablereproducibleresilientresponsivereusable

safety scalableseamlessself-sustainableserviceablesupportablesecurablesimplestablestandardssurvivable

tailorabletestabletimelytraceableubiquitousunderstandableupgradableusable

efficient

robust

sustainable

Sustainable robust + efficient

Page 17: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

accessibleaccountableaccurateadaptableadministrableaffordableauditableautonomyavailablecompatiblecomposable configurablecorrectnesscustomizabledebugabledegradabledeterminabledemonstrable

dependabledeployablediscoverable distributabledurableeffective

evolvableextensiblefail

transparentfastfault-tolerantfidelityflexibleinspectableinstallableIntegrityinterchangeabl

einteroperable learnablemaintainable

manageablemobilemodifiablemodularnomadicoperableorthogonalit

yportableprecisionpredictableproducibleprovablerecoverablerelevantreliablerepeatablereproducibleresilientresponsivereusable

safety scalableseamlessself-sustainableserviceablesupportablesecurablesimplestablestandardssurvivable

tailorabletestabletimelytraceableubiquitousunderstandableupgradableusable

efficient

robust

sustainable

Simple dichotomous

tradeoff pairs

PCA Principal Concept Analysis

wasteful

fragile

efficient

robust

With function given

Page 18: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

wasteful

fragile

efficient

robust

Actual

Ideal

The main tradeoff

Page 19: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Efficiency/instability/layers/feedback

• Sustainable infrastructure? (e.g. smartgrids)• Money/finance/lobbyists/etc• Industrialization• Society/agriculture/weapons/etc• Bipedalism• Maternal care• Warm blood• Flight• Mitochondria• Oxygen• Translation (ribosomes)• Glycolysis (2011 Science)

• New efficiencies but also instability/fragility• New distributed/layered/complex/active control

Live demo?

Page 21: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

costly

fragile

efficient

robust

Tradeoffs

4x

>2x

Page 22: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

wasteful

fragile

efficient

robust Ideal

Impossible (law)

Actual

Universal laws

Page 23: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

wasteful

fragile

efficient

robust Ideal

Impossible (law)

Actual

The risk

Page 24: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

wasteful

fragile

efficient

robust Ideal

Impossible (law)

Architecture

Universal laws and architectures

Flexibly achieves what’s possible

Page 25: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

wasteful

fragile

efficient

robust Ideal

Impossible (law)

Architecture

Universal laws and architectures

Our heroes

Evolution Complexity

Page 26: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Efficiency/instability/layers/feedback

• Sustainable infrastructure? (e.g. smartgrids)• Money/finance/lobbyists/etc• Industrialization• Society/agriculture/weapons/etc• Bipedalism• Maternal care• Warm blood• Flight• Mitochondria• Oxygen• Translation (ribosomes)• Glycolysis (2011 Science)

• All create new efficiencies but also instabilities• Needs new distributed/layered/complex/active control

Major transitions

Page 27: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

“Nothing in biology makes sense except in the light of evolution.”

T Dobzhansky

“Nothing in evolution makes sense except in the light of biology.”

Tony Dean (U Minn) paraphrasingT Dobzhansky

Page 28: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

costly

fragile

efficient

robust

Tradeoffs

4x

>2x

Page 29: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

wastefulefficient

Materials and energy have many “universal conservation laws” that limit achievable efficiency.

Perfect efficiency would have zero waste.

Impossible (law)

Page 30: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

fragile

robust

Robustness also has “universal conservation laws” that are less familiar…

…though their consequence are surprisingly ubiquitous.

Impossible (law)

Page 31: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

• Brains• Nets/Grids (cyberphys)• Bugs (microbes, ants)• Medical physiology• Lots of aerospace• Wildfire ecology• Earthquakes• Physics:

– turbulence, – stat mech (QM?)

• “Toy”: – Lego– clothing, fashion

• Buildings, cities• Synesthesia

fragile

robust

Page 32: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

• Neuroscience+ People care

+Live demos!

1. experiments2. data3. theory4. universals

Page 33: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

costly

fragile

efficient

robust

Tradeoffs

4x

>2x

Simpler demo?

Page 35: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

“costly”

fragile

“efficient?”

robust easy

hard

harder

A convenient cartoon demo

Function=Movement

Page 36: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

“costly”

fragile

“efficient”

robust easy

hard

harder

up&short

cartoon demo

down or long

Page 37: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

longshort

Impossible

Length is positive(not “waste,” but a cartoon)

cartoon demo

Page 38: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

fragile

robust easy

hard

up&short down or long

Gravity is stabilizing

Gravity is destabilizing

Law #1 : MechanicsLaw #2 : Gravity

Universal laws?

Page 39: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Efficiency/instability/layers/feedback

• Sustainable infrastructure? (e.g. smartgrids)• Money/finance/lobbyists/etc• Industrialization• Society/agriculture/weapons/etc• Bipedalism• Maternal care• Warm blood• Flight• Mitochondria• Oxygen• Translation (ribosomes)• Glycolysis (2011 Science)

• New efficiencies but also instabilities• New distributed/layered/complex/active control

stabilizing

destabilizing

cartoon demo

Page 40: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Gravity is stabilizing

Gravity is destabilizing

Law #1 : MechanicsLaw #2 : Gravity

We think of mechanics and gravity as “obeying universal laws.”

But both “universal” and “law” are confused and overloaded, so unfortunate terminology.

Universal laws?

Page 41: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Gravity is stabilizing

Gravity is destabilizing

Law #1 : MechanicsLaw #2 : Gravity

We think of mechanics and gravity as “obeying universal laws.”

(Generally: constraints)

But the consequences (even of gravity) depend on other constraints.

Universal laws?

Page 42: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

fragile

robust

harder

up&short down or long

More unstable

Law #1 : MechanicsLaw #2 : GravityLaw #3 : ??Law #4 : ??

Page 43: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

fragile

robust

harder

up&short down or long

hardest!

Page 44: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

hard harder hardest!

Easy to prove using simple models.

What is sensed matters.

Why?

Why?!?

Page 45: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

fragile

robust

harder

up&short down or long

hardest!

Why?

Accident or necessity?Universal laws?

Page 46: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

(4) Universal laws +

vision

Act

delay

+ Neuroscience

Balancing an inverted pendulum

Mechanics+Gravity +Light +

expz p

T pz p

Some minimal math details

Page 47: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

easy

hard

Law #1 : MechanicsLaw #2 : Gravity

1d motion

Use “conservation laws”

2cos sin

cos sin 0

sinO

M m x ml u

x l g

y x l

Page 48: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

M

m

l

l lengthm massM massg gravityu control force

y

x

u

Standard inverted pendulum

2cos sin

cos sin 0

sinO

M m x ml u

x l g

y x l

Page 49: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

easy

hard

Law #1 : MechanicsLaw #2 : Gravity

0

O

M m x ml u

x l g

y x l

linearize

1d motion

2cos sin

cos sin 0

sinO

M m x ml u

x l g

y x l

Page 50: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

eye

l

n noisee error

Law #3 : Light (vision)

0

O

M m x ml u

x l g

y x l n

Page 51: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

hard harder

Easy to prove using simple models.

Why?vision

Act

delay

Law #3 : Light 0

O

M m x ml u

x l g

y x l n

Page 52: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

eye

l

N noiseE error

ET j

N

Frequency domain

?T

Page 53: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

eye vision

slow

Act

delay

Control

l

N noiseE error

ET j

N

Page 54: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

expT p

Universal laws,art, music, Lego

vision

Act

delay

Balancing an inverted pendulum

Mechanics+Gravity +Light +

1p

l

.3s

Page 55: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

22 2

2

2

1

( )

1

OO

O

x ls gu D s s Mls M m g

D s s

l l s gy x l u

D s

g m gp r r z

l M l l

0

O

M m x ml u

x l g

y x l n

Laplace transform

(One complex variable)

Page 56: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

2 20

1exp ln exp ln

sup

exp lnexp

pT T j d

p

T T j

Tp

T

Fragility two ways (~ Bode* and Zames):

* With key help from Freudenberg and Seron et al

Page 57: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

2 20

1exp ln exp ln

sup

pT T j d

p

T T j

exp ln

expT

pT

Amplification (noise to error)

Entropy rate

Energy (L2)

Page 58: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

exp ln

expT

pT

Entropy rate

Energy (L2)

exp pt

delay

Before you can

react

time

state

intuition

Page 59: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

10

100

Length, m.1 1.5.2

2

exp p1

pl

.3s

Shorter

Fragile

expT p

Page 60: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

10

100

Length, m.1 1.5.2

2

exp p

.3s

.2sSlo

wer

1p

l

expT p

Page 61: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

10

Length, m.1 1.5.2

2 loglog

0.2 0.4 0.6 0.8 12

4

6

8

10

linearF

ragile exp p

Fragile

Also exponential

in delay!

Page 62: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

exp p

M m gp

Ml

10

Length, m.1 1.5.2

2

0.2 0.4 0.6 0.8 12

4

6

8

10

linearF

ragile

exp p

M

m

l

l lengthm massM massg gravity

Idealized model

Page 63: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

exp p

M m gp

Ml

10

Length, m.1 1.5.2

2

0.2 0.4 0.6 0.8 12

4

6

8

10

linearF

ragile

exp p

M

m

l

l lengthm massM massg gravity

exp ln

expT

pT

Essential constraint (“law”):

Page 64: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

eye vision

Act

delay

Control

l noise

error

P

+

noise

error

C

ET j

N

Page 65: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

P

+

noise

error

C

ET j

N

sup sup Re( ) 0|T T j T s s

Max modulus

Proof?

1

exp

( ) ( ) exp

exp

Ms P s s

T M M p p p

T p

P

1

1

( ) ( )

P p T p

M p p

( ) ( ) ( ) ( ) 1

exp

T s M s s j

s s

Page 66: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

P

+

noise

error

C

ET j

N

sup sup Re( ) 0|T T j T s s

( ) ( ) ( ) ( ) 1

exp

T s M s s j

s s

Max modulus

Proof?

M “minimum phase” (stably invertible) “all pass”

Page 67: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

P

+

noise

error

C

ET j

N

sup sup Re( ) 0|T T j T s s

Max modulus

1

1

( ) ( )

P p T p

M p p

Proof?

( ) ( ) ( ) ( ) 1

exp

T s M s s j

s s

1

so 1

PCT

PCP p T p

Page 68: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

P

+

noise

error

C

ET j

N

sup sup Re( ) 0|T T j T s s

Max modulus

Proof?

1

exp

( ) ( ) exp

exp

Ms P s s

T M M p p p

T p

P

1

1

( ) ( )

P p T p

M p p

( ) ( ) ( ) ( ) 1

exp

T s M s s j

s s

Page 69: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

hard harder hardest!

Easy to prove using simple models.

What is sensed matters.

Why?

Page 70: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

hard harder hardest!

What is sensed matters.

Unstable poles Unstable zeros

0l l0l l

Page 71: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

exp ln

expT z p

pz pT

Fragility two ways (Bode* and Zames):

Unstable zeros

Page 72: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

P

+

noise

error

C

sup sup Re( ) 0|T T j T s s

Proof?

( ) ( ) ( ) ( ) 1

exp

T s M s s j

s zs s

s z

1

exp

( ) ( ) exp

exp

M

s zs P s s

s z

z pT M M p p p

z p

z pT p

z p

P

Page 73: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

P

+

noise

error

C

sup sup Re( ) 0|T T j T s s

Proof?

( ) ( ) ( ) ( ) 1

exp

T s M s s j

s zs s

s z

1so 1

& 0 0

PCT

PCP p T p

P z T z

Page 74: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

P

+

noise

error

C

sup sup Re( ) 0|T T j T s s

Proof?

1

exp

( ) ( ) exp

exp

M

s zs P s s

s z

z pT M M p p p

z p

z pT p

z p

P

( ) ( ) ( ) ( ) 1

exp

T s M s s j

s zs s

s z

Page 75: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

expexp

exl

pn z p

pz p

Tp

T

hardest!

0l l

0l l

Page 76: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

exp p

expz p

pz p

10

100

Length, m

.1 1.5.22

1p

l

.3s

hardest!hard

expexp

exl

pn z p

pz p

Tp

T

Page 77: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

10

100

Speed 1/

.1 1.5.22

.3s

exp p

Slower

vision

Act

delay

Vary delay?

Page 78: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

easyharder

“costly”

fragile

“efficient”

robust

Hard tradeoff

Page 79: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

“costly”

fragile

“efficient”

robust

Bad design

Gratuitous fragility

Page 80: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

“costly”

fragile

“efficient”

robust

exp ln

expz pT

Tp

z p

Same constraints:Mechanics+Gravity+

Different consequences

Constrained sensing

unconstrained

The nature of “laws”

Page 81: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

“costly”

fragile

“efficient”

robust easy

hard

harder hardest!

up&short down or long

Different consequences

Page 82: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

wasteful

fragile

efficient

robust Ideal

Impossible (law)

Architecture

Universal laws and architectures

Flexibly achieves what’s possible

Page 83: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

Highly evolved (hidden)

architecture

Page 84: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

slowest

Page 85: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

AOS = Accessory Optical system

noise

Act

Delays everywhere

Distributed control

slowest

Page 86: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Cortex

eye vision

Actslow

delay

VOR

fast

Object motion

Head motion

Cerebellum

+

ErrorTune gain

gain

AOS

noise

Act

slowestHeterogeneous

delays everywhere

Page 87: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Efficiency/instability/layers/feedback

• Sustainable infrastructure? (e.g. smartgrids)• Money/finance/lobbyists/etc• Industrialization• Society/agriculture/weapons/etc• Bipedalism• Maternal care• Warm blood• Flight• Mitochondria• Oxygen• Translation (ribosomes)• Glycolysis (2011 Science)

Major transitions

How universal? Very.

Page 88: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Chandra, Buzi, and Doyle

UG biochem, math, control theory

InsightAccessibleVerifiable

Page 89: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Glycolytic oscillations

• Exhaustively studied– Extensive experiments and data– Detailed models and simulations– Great! But all just deepen the mystery

• Perfectly illustrates “conservation law”• Without which? Bewilderment.

exp ln T z p

z pT

Page 90: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Law #1 : Chemistry (vs mechanics)Law #2 : Autocatalysis (vs gravity)

( RHP p and z)

exp ln T z p

z pT

Law #3:

Page 91: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

k

z p

z p

10-1

100

10110

0

101

too fragile

complex

No tradeoff

expensive

fragile

Law #1 : ChemistryLaw #2 : Autocatalysis

( RHP p and z)

Law #3:

exp ln T z p

z pT

Page 92: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Metabolic overhead to make enzymes

fragile

Robust Efficiency in Energy Supply

Robust to in supply and demand

Page 93: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

k

z p

z p

10-1

100

10110

0

101

too fragile

complex

No tradeoff

Metabolic overhead to make enzymes

fragile

Robust Efficiency in Energy Supply

Robust to in supply and demand

exp ln T z p

z pT

Page 94: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Core metabolism

Inside every cell (1030)

Metabolic pathways

No architecture

Page 95: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Catabolism

Pre

curs

ors

Carriers

Co-factors

Fatty acids

Sugars

NucleotidesAmino Acids

Metabolic pathways

Page 96: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Co-factors

Fatty acids

Sugars

NucleotidesAmino Acids

Catabolism

Pre

curs

ors

Taxis and transport

Nut

rien

ts

Carriers

Core metabolism

Huge Variety

Same 12

in all cells

Same 8

in all cells

100

» same

in all

organism

s

Page 97: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Co-factors

Fatty acids

Sugars

NucleotidesAmino Acids

Catabolism

Taxis and transport

Nut

rien

ts

Carriers

Core metabolism

Huge Variety

Same 12

in all cells

Same 8

in all cells

100

» same

in all

organism

s

Extremely conserved

core

Pre

curs

ors

Page 98: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Genes

Co-factorsFatty acidsSugars

Nucleotides

Amino Acids

Polymerization and complex

assemblyP

roteinsP

recu

rsor

s

Autocatalytic feedback

Taxis and transport

Nut

rien

ts

Core metabolism

DNA replication

Trans*

Cat

abol

ism

Carriers

100 104 to ∞in one

organisms

Huge Variety

12

8

Page 99: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

EfficientRobust

Evolvable

Constrained

DeconstrainedDeconstrained

DiverseDiverse

Page 100: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Inside every cell

Layered architecture

Catabolism

Precursors

Carriers

Biosynthesis

Page 101: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Cat

abol

ism

Pre

curs

ors

Carriers

Inside every cell

Layered architecture

Bio

synt

hesi

sCo-factors

Fatty acids

Sugars

NucleotidesAmino Acids

BiosyntheticPathways

Page 102: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Catabolism

Pre

curs

ors

Carriers

Co-factors

Fatty acids

Sugars

NucleotidesAmino Acids

Inside every cell

Core metabolic bowtieLayered architecture

Page 103: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

food

Glucose

Oxygen

OrgansTissuesCellsMolecules

Universal metabolic system

Blood

EfficientRobust

Evolvable

Page 104: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

food

Glucose

Oxygen

OrgansTissuesCellsMolecules

Blood

EfficientRobust

Evolvable

Constrained

DeconstrainedDeconstrained

Page 105: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

EfficientRobust

Evolvable

Constrained

DeconstrainedDeconstrained

DiverseDiverse

Page 106: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Catabolism

Pre

curs

ors

Carriers

Co-factors

Fatty acids

Sugars

NucleotidesAmino Acids

Inside every cell

Core metabolic bowtieLayered architecture

Page 107: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Catabolism

Pre

curs

ors

Carriers

Page 108: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Catabolism

TCAPyr

Oxa

Cit

ACA

Gly

G1P

G6P

F6P

F1-6BP

PEP

Gly3p

13BPG

3PG

2PG

ATP

NADH

Page 109: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

TCAPyr

Oxa

Cit

ACA

Gly

G1P

G6P

F6P

F1-6BP

PEP

Gly3p

13BPG

3PG

2PG

Pre

curs

ors

metabolites

Page 110: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Enzymatically catalyzed reactions

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

Oxa

Cit

ACA

Page 111: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Enzymes (implement) catalyze

(virtual) reactions

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

Oxa

Cit

ACA

Page 112: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

TCAPyr

Oxa

Cit

ACA

Gly

G1P

G6P

F6P

F1-6BP

PEP

Gly3p

13BPG

3PG

2PG

ATP

Autocatalytic

NADH

produced

consumedRest of cell

Page 113: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

Autocatalysis

Control

Feedbacks

Page 114: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

TCAPyr

Oxa

Cit

ACA

Gly

G1P

G6P

F6P

F1-6BP

PEP

Gly3p

13BPG

3PG

2PG

Page 115: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

Unreadable

Why so complex?

Page 116: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

source receiver

signalinggene expression

metabolismlineage

Biological pathways

Page 117: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

source receiver

control

energy

materials

signalinggene expression

metabolismlineage

More complex

feedback

Page 118: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Chandra, Buzi, and Doyle

UG biochem, math, control theory

Most important paper so far.

Page 119: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Universal laws?

10

100

Length, m

.1 1.5.22

k10-1

100

10110

0

101

expensive

fragile

exp ln

expT z p

pz pT

wasteful

fragile

efficient

robust Ideal

Page 120: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

Autocatalysis

Control

Feedbacks

Robust=maintain energy charge w/fluctuating cell demand

Efficient=minimize metabolic waste and overhead

Page 121: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

F6P

F1-6BP

Gly3p

13BPG

3PG

ATP

Autocatalysis

Control

PEP2PG Pyr

Minimal model?

Page 122: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

F6P

F1-6BP

Gly3p

13BPG

3PG

ATP

F6P

F1-6BP

Gly3p

13BPG

3PG

ATP

ControlPlus Autocatalytic Feedback

PEP Pyr

Rest of cell

Minimal model ~1 equilibrium 2 metabolites 3 “reactions”

Page 123: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

F6P

F1-6BPATP

Page 124: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

F6P

F1-6BPGly3p

13BPG

3PG

ATP

produced

consumed

Cell

PEPPyr

lump

Minimal model ~1 equilibrium 2 metabolites 3 “reactions”

Page 125: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Fragile

Robust

ATP Rest of cell

energy

ATP

disturbance

Robust = Maintain energy

(ATP concentration) despite demand fluctuation

Hard tradeoff in glycolysis

Page 126: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Fragile

Robust

disturbance

Robust Disturbance rejection

Accurate

What makes this hard?1. Instability (autocatalysis)2. Delay (enzyme amount)

Accurate vs sloppy

Page 127: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Fragile

Robust

What makes this hard?

1. Instability2. Delay

The CNS must cope with both!

Page 128: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

ATP

Reaction 2 (“PK”)

Reaction 1 (“PFK”) energy

enzymes catalyze reactions

Rest of cell

Page 129: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

ATP

Rest of cell

Reaction 2 (“PK”)

Reaction 1 (“PFK”)

Protein biosyn

energy

enzymes

enzymes

enzy

mes

Efficient = low metabolic overhead low enzyme amount

enzymes catalyze reactions, another

source of autocatalysis

Page 130: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

ATP

Rest of cell

Protein biosyn

energy

enzymes

enzymes

enzy

mes

Efficient = low metabolic overhead» low enzyme amount( slow reactions)

enzymes catalyze reactions, another

source of autocatalysis

Can’t make too many enzymes here, need to supply rest of the cell.

reaction rates

enzyme amount

Page 131: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

TCA

Gly

G1P

G6P

F6P

F1-6BP

PEP Pyr

Gly3p

13BPG

3PG

2PG

ATP

NADH

Oxa

Cit

ACA

Autocatalysis

Control

ATP

Rest of cell

Reaction 2 (“PK”)

Reaction 1 (“PFK”)

Protein biosyn

Autocatalysis

Page 132: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Autocatalysis

• Sustainable infrastructure? (e.g. smartgrids)• Money/finance/lobbyists/etc• Industrialization• Society/agriculture/weapons/etc• Bipedalism• Maternal care• Warm blood• Flight• Mitochondria• Oxygen• Translation (ribosomes)• Glycolysis (2011 Science)

• New forms important in most transitions• Major and poorly studies source of instability

Major transitions

Page 133: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

k

z p

z p

10-1

100

10110

0

101

too fragile

complex

No tradeoff

Metabolic overhead to make enzymes

fragile

Robust Efficiency in Energy Supply

Robust to in supply and demand

exp ln T z p

z pT

Page 134: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

k

z p

z p

10-1

100

10110

0

101

too fragile

complex

No tradeoff

Metabolic overhead

fragile

Robust to in supply and demand

Uncertain k

Page 135: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

What (some) reviewers say• “…to establish universality … is simply wrong. It

cannot be done…• … a mathematical scheme without any real

connections to biological or medical… • …universality is well justified in physics… for

biological and physiological systems …a dream …never be realized, due to the vast diversity in such systems.

• …does not seem to understand or appreciate the vast diversity of biological and physiological systems…

• …a high degree of abstraction, which …make[s] the model useless …

Page 136: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

What (some) reviewers say• “…to establish universality … is simply wrong. It

cannot be done…• … a mathematical scheme without any real

connections to biological or medical… • …universality is well justified in physics… for

biological and physiological systems …a dream …never be realized, due to the vast diversity in such systems.

• …does not seem to understand or appreciate the vast diversity of biological and physiological systems…

• …a high degree of abstraction, which …make[s] the model useless …

If you agree• You’re in good company • Stay off commercial aircraft

Page 137: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

k

z p

z p

10-1

100

10110

0

101

too fragile

complex

No tradeoff

Metabolic overhead

fragile

Robust to in supply and demand

Uncertain k

Page 138: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

M

m

l

l lengthm massM massg gravityu control force

y

x

u

Standard inverted pendulum

2

sin

cos sin 0

cos sin

Oy x l n

x l g

M m x ml u

Uncertainty?

Page 139: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

eye vision

Act

delay

Control

l noise

error

In our model?In our brain?In our brain’s model?

• Parameters• Noise• Unmodeled dynamics

2

sin

cos sin 0

cos sin

Oy x l n

x l g

M m x ml u

Uncertainty?

Page 140: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

In our model?In our brain?In our brain’s model?

• Parameters (real)• Noise (additive)• Unmodeled dynamics (complex)• Nonlinear dynamics

2

sin

cos sin 0

cos sin

Oy x l n

x l g

M m x ml u

Uncertainty?

AnalysisLimits/lawsSynthesis

Page 141: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

controls

external disturbances

heart rateventilation

errors

O2BP

energy

Homeostasis and HRV

Page 142: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

0 100 200 300 4000 100 200 300 400

40

60

80

100

120

140

160

180

HR

High mean, low variability

Low mean, high variability

The persistent mysteryYoung, fit, healthy more extreme

Seeking mechanistic explanations

sec

Page 143: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

0 100 200 300 4000 100 200 300 400

40

60

80

100

120

140

160

180

HRHigh mean, low variability

Low mean, high variability

sec

controls

external disturbances

heart rateventilation

errors

O2BP

energy

Finally!

Homeostasis and HRV

Page 144: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

sensor

controls

external disturbances

heart rateventilationvasodilationcoagulationinflammationdigestionstorage…

errors

O2BPpHGlucoseEnergy storeBlood volume…

infection

traumaenergy

Homeostasis and robust efficiency

internal noise

heart beatbreath

Mechanistic physiology

Page 145: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

The main tradeoff: Robust efficiency

Mechanistic physiology + rigorous math and stats

Page 146: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

sensor

controls

external disturbances

heart rateventilationvasodilationcoagulationinflammationdigestionstorage…

errors

O2BPpHGlucoseEnergy storeBlood volume…

infection

traumaenergy

Homeostasis

internal noise

heart beatbreath

costly

fragile

efficient

robust

Tradeoffs:• physiology • evolution • ecologically

relevant

Mechanistic physiology + rigorous math and stats

Page 147: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

controls

external disturbances

heart rateventilation

errors

O2BP

energy

Homeostasis

Page 148: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Muscle

Lung

W

H

EV

CBF

H

sR

pump

pump

dilate

dilate

high variability

Disturbance: W

SaO2

Pas

O2

CBF

Health low variability

Why?

flow

pressure

O2

O2

Minimal cartoon

Page 149: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

pump

pump

dilate

dilate

high variability

Disturbance:run

Healthy homeostasis

low variability

flow

pressure

O2

O2

Minimal cartoon

actuators

regulated variables

Page 150: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

pump

pump

dilate

dilate

high variability Healthy homeostasis

low variability

flow

pressure

O2

O2

Minimal cartoon

+

actuators

regulated variablesDisturbance

Page 151: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

0 100 200 300 4000 100 200 300 400

40

60

80

100

120

140

160

180

HR

High mean, low variability

Low mean, high variability

The persistent mysteryYoung, fit, healthy more extreme

Seeking mechanistic explanations

sec

Page 152: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

actuators(controls)

+

(outputs)regulated variables

Disturbance

low variability errors+ large disturbances high variability controls

Universals

Page 153: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

low variability errors+ large noise/delay high variability controls

Universals

Is loss of actuator

variability a precursor

of a crash?

eye vision

Act

delay

Control

l noise

error

Control actuators

Page 154: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Universal laws

10

100

Length, m

.1 1.5.22

k10-1

100

10110

0

101

expensive

fragile

wasteful

fragile

efficient

robust

sensor

controlsheart rateventilationvasodilationcoagulationinflammationdigestionstorage…

errors

O2BPpHGlucoseEnergyBlood vol

infection

traumaenergy

heart beatbreath

Homeostasis

Page 155: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

Universal laws

10

100

Length, m

.1 1.5.22

k10-1

100

10110

0

101

expensive

fragile

wasteful

fragile

efficient

robust

sensor

controlsheart rateventilationvasodilationcoagulationinflammationdigestionstorage…

errors

O2BPpHGlucoseEnergyBlood vol

infection

traumaenergy

heart beatbreath

Homeostasis

Do these oscillations have a function/purpose?

Is loss of actuator variability a precursor?

Page 156: John Doyle   道陽 Jean-Lou Chameau Professor Control and Dynamical Systems, EE, &  BioE

eye vision

Act

delay

Control

l noise

error ET j

N

P

+

noise

error

C

Understand this more deeply?

+ Neuroscience

Mechanics+Gravity +

Light +Control theory

exp ln

expT z p

pz pT