Top Banner

of 95

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    1/95

    Fundamental ReferenceSystems

    Dr. Brian Luzum

    Dr. Georg e Kaplan

    Mr. John Bangert

    U.S. Naval Observatory

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    2/95Naval Oceanogr aphy 2

    Outl ine

    Reference Systems and Reference Frames

    Earth Orientat ion Parameters

    Time

    Software

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    3/95Naval Oceanogr aphy 3

    In t roduc t ion to

    Reference Sys tems

    and Reference

    Frames

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    4/95Naval Oceanogr aphy 4

    What is a Reference System?

    A 4-D coordin ate sys tem

    3 spat ial coord inates, 1 t ime coo rdinate

    A mathematical abstract ion that al lows u s to combine,compare, or o therwise relate posit ional measurements takenat dif ferent t imes and/or from dif ferent places

    Defined by specif icat ion of

    Orig in of co ord inates

    Direct ion of axes

    Standardized algor i thms (software) that al low raw

    measurements to be transform ed into the system

    Some reference systems are defined by their relat ion sh ip toothers

    xy

    z

    xy

    z

    z

    zz

    x

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    5/95Naval Oceanogr aphy 5

    Primary Reference Sys tems

    Two p rimary reference systems are of interest:

    Barycentr ic Celestial Reference Sys tem (BCRS)

    A lso referred to as the International Celestial Reference

    Sys tem (ICRS)= The sys tem o f star catalog d ata

    replacing the J2000.0 sy stemor the FK5 system

    International Terrestr ial Reference Sys tem (ITRS)

    = The wo rld geodetic s ys tem = WGS-84 = GPS

    = Earth -Centered-Earth -Fixed (ECEF)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    6/95Naval Oceanogr aphy 6

    Todays Problem: BCRS ITRS

    Celestial coordinates

    expressed in BCRS

    (ICRS)

    Terrestrial coordinatesexpressed in ITRS

    (ECEF)

    At any g iven t ime,what is the

    relat ionship?

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    7/95Naval Oceanogr aphy 7

    Reph rased, Todays Prob lem is . . .

    How to trans form vectors between the BCRS(ICRS) and the ITRS (ECEF)

    Vectors are sets of 4 numbers (3 spat ia l coo rdinates and 1 t ime

    coo rdin ate) represent ing locat ion (or i ts t im e der ivatives) or

    direct ion (or i ts t ime der ivat ives)

    There are som e intermediate reference sys tems that

    are often used as waypo ints:

    BCRS GCRS CIRS TIRS ITRS

    relat iv ist ic rotat ions

    t ransformat ion (a function of EOPs)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    8/95Naval Oceanogr aphy 8

    Real-World App l icat ions

    Looking up:In what direct ion is a ground -based senso rpointed?

    Look ing dow n:What spo t on Earth wi l l be seenby aspace-based sensor?

    Navigat ion:What is the posit ion, veloci ty , accelerat ion ,

    and/or rotat ion of a vehicle in inert ia l space? With respect tothe ground?

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    9/95Naval Oceanogr aphy 9

    A Few Ideas About the Primary

    Reference Systems

    The or ientat ion of the coo rdinate axes must b e specif ied,

    in pract ice, by th e pos it ion vecto rs of real objects

    cont ro l po in tsor anchors

    The ensemble of these defin ing objects, and their

    co ord inates, are referred to as a reference frame

    The ob jects themselves are provid ed by nature; their

    assigned co ord inates def ine the direct ions o f the co ord inate

    axes

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    10/95Naval Oceanogr aphy 10

    Reference Frame Contro l Po ints

    Terrestrial Celestial

    Survey Markers

    Instrument Sites

    Radio Galaxies

    Stars

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    11/95Naval Oceanogr aphy 11

    The Terrestr ial Reference Sys tem

    ITRS specif icat ions :

    Origin at geocenter (center of mass o f Earth + oceans +atmosphere)

    Relat iv ist ic local Earth framew ith uni t of t ime given by TCGsecond and uni t of length g iven by SI meter

    Direct ion of axes

    Init ial ly given b y BIH sy stem orientat ion at 1984.0

    Axes rotate with the crust time evolu t ion of orientat ion w il l create no residu al globalrotat ion w ith respect to the crust

    Realizations reference frames :

    ITRFyyyy: 3-dim ension al si te coord inates and v eloci t ies

    (yyyy ind icates year o f so luti on ; e.g., ITRF2005 or ITRF2008)

    Site select io n criter ia: 3 years ob servat ions avai lable, on r ig idplates away from cru stal deformat ions , veloci t ies known to betterthan 3 mm /year

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    12/95Naval Oceanogr aphy 12

    The Celestial Reference System

    BCRS (ICRS) specif ications :

    Origin at solar sys tem barycenter

    Relativist ic metric tensor s pecif ied in IAU resolutio n B1.3 of 2000

    Defining ob jects are un resolved, station ary, and stableextragalact ic radio so urces

    Direct ion of axes Fixed in space do n ot rotate with respect to def in ing ob jects

    As near as possib leto sys tem defined by the Earth mean equator and equinox of J2000.0(i.e., ICRS J2000.0 sy stem)

    Independent of t im e and specif ic realizat ions (if the objects that define their direct ioneventually change)

    Realizations two reference frames: ICRF2: Catalog of 3414 extragalactic radio sou rces (295 definin gsources)

    HCRF: Catalog of ~100,000 stars from th e Hipparco s catalog

    (85% of entire catalog; astrometrical ly wel l-behaved stars)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    13/95Naval Oceanogr aphy 13

    Dens if icat ion o f Reference Frames

    Addi t ion of new contro l points, wi th coord inatescons istent wi th those of def in ing po ints

    Al lows for high er sp atial densi ty

    Allow s for m ore even co verage of the Earth or celest ialsphere

    On the celestial sphere, allows fo r reference frame to berepresented at wavelengths other than radio (=5 cm ) oropt ic al (=0.5 m)

    For example, IR, mm , or UV

    Continued

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    14/95Naval Oceanogr aphy 14

    Densif icat ion of Reference Frames

    (cont.)

    On the Earth, any civ i l ian GPS receiver effectiv elydens if ies the ITRF at 10-meter-level accu racy (a fewmeters or better for DGPS)

    Celestial extensio ns of the ICRF and HCRF:

    VLBA Calibrato r Survey (VCS6)

    Tycho -2 Catalog

    UCAC2 (to V=16) and UCAC3 (UCAC4 in pro cess )

    USNO B1.0

    2MASS (IR)

    Solar sy stem ephemerides (e.g., JPL DE405) aligned to ICRF

    Accu racy of representat ion var ies con siderably Let thebuy er beware!

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    15/95Naval Oceanogr aphy 15

    Compl icat ions in Establ ish ing

    Reference Frames

    Problem is over-determ ined: only need two ob jects to defineor ientat ion of axes

    Therefore, if N objects in a catalog , there are ~N2/2

    independent reference frame defini t ions wh ich wi l l not , in

    general , be con sistent due to errors in coordin ate values

    Not too bad a prob lem as long as errors are random

    If errors are a funct ion of p os it ion, the reference frame is

    warped (sys tematic distor t ions )

    Also pro blematic i f errors are a funct ion o f other

    character ist ics:

    For stars, br ightness or co lor

    For Earth stat ions , type of ins trument / techniq ue

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    16/95

    (2.37, +26.1)

    (1.52,3.4)

    (0.89, +18.4)

    (1.32, +5.9)

    (3.10, +1.7)

    (1.21, +22.8)

    (2.05,1.7)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    17/95

    (2.37, +26.1)

    (1.52,3.4)

    (0.89, +18.4)

    (3.10, +1.7)

    (1.21, +22.8)

    (2.05,1.7)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    18/95

    Using a warped reference

    frame errors in

    coordinates a function of

    position

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    19/95

    Using a warped reference

    frame errors in

    coordinates a function of

    position

    Each measured positionof the target is slightly

    wrong, because the star

    positions on which it is

    based are slightly wrong

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    20/95

    What our tracking

    measurements actually

    mean

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    21/95

    What our tracking

    measurements seemto

    mean

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    22/95

    1950

    1976

    1990

    2005

    Actual Path

    Measured Path

    Why Star Posit ions , and the Reference

    Frames They Define, Degrade w ith Time

    E M f th ICRF R d i

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    23/95

    Naval Oceanogr aphy 23

    Even Many of the ICRF Rad io

    Sources Seem to Move

    From USNO Radio

    Reference Frame

    Image Database

    (RRFID), A. Fey et al.

    A Si i l P b l i th T t i l

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    24/95

    Naval Oceanogr aphy 24

    A Sim i lar Prob lem w ith Terrestr ial

    Frames Stat ions Do Move

    Final l The Bar centr ic to

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    25/95

    Naval Oceanogr aphy 25

    Final ly: The Barycentr ic to

    Geocentr ic Trans form at ion

    BCRS GCRS CIRS TIRS ITRS

    relat iv ist ic rotat ions

    t ransformat ion (a function of EOPs)

    How do we go from the Barycentr ic Celest ia l Reference System (BCRS)

    to th e Geoc entr ic Celestial Reference Sys tem (GCRS)?

    No te: GCRS = Earth -Centered Inerti al (ECI)

    That is, how do w e transform star coord inates f rom the solar system

    barycentr ic sy stem of the star catalogs to the geocentr ic system in

    wh ich w e actual ly o bserve the stars on a given date?

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    26/95

    Naval Oceanogr aphy26

    BCRS

    GCRS

    solar systembarycenter

    BCRS and GCRS

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    27/95

    Naval Oceanogr aphy 27

    BCRS to GCRS Trans format ion

    Posit ion s in star catalogs represent where the stars would beseen from an ideal ized barycentr ic s yst em at a certain epoch.

    To get observed geocentr ic coordin ates of s tars for a given

    date and time, they need to be adjus ted for:

    Orbi tal mo t ion, if par t of a binary or mul t ip le system

    Proper mot ion (3-D space veloc i ty)

    Parallax

    Gravitat ional l ight def lect ion

    Aberrat ion o f l ight

    There are comparable adjustments for planetary or spacecraft

    ephemerides expressed in the BCRS

    Relat iv is t ic terms in the

    aberrat ion fo rmu la

    ef fect ively imp lement

    the BCRS to GCRS

    transformat ion

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    28/95

    Naval Oceanogr aphy 28

    Why A l l This is Impo rtant

    An y l ist of real objects and th eir coord inates def ines a referenceframe

    It can be good , bad, or something in b etween

    I t may not be cons istent w ith th e ICRF or HCRF (for celest ial

    coo rdin ates) or the latest ITRF (for terrestr ial coor din ates)

    If i t is based on old d ata, i ts accu racy has pro bably degraded

    signi f icant ly

    It is a bad idea to keep u sing s ome l is t of co ord inates handed down

    from generation to generation

    The FK5 is ob solete!

    Please consult USNO!

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    29/95

    Naval Oceanogr aphy 29

    Earth Orien tat ion

    Parameters (EOP):

    Def in i t ions and theiruse in trans format ions

    Defini t ion o f Earth Orientat ion

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    30/95

    Naval Oceanogr aphy

    Defini t ion o f Earth Orientat ion

    Parameters

    Earth orientat ion parameters (EOPs) desc r ibe the

    direct ion of axes f ixed to the Earth in space

    used to transform between gro und based coordinates

    (terrestr ial reference frame) and inert ialc oordinates(celestial reference frame)

    5 EOPs

    2 polar motio n (PM-x and PM-y)

    1 Earth ro tatio n ang le (UT1-UTC)

    2 celestial pole (and or X and Y)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    31/95

    Naval Oceanogr aphy 31

    Three Aspects of Earth Rotat ion

    1 Path of rotation axis inspace (wrt GCRS)

    precession / nutation

    1

    2

    3

    2 Path of rotation axis

    across Earths crust

    (wrt ITRS)polar motion

    3 Rotation angleUT1

    All are functions of time

    Two schemes for t ransfo rm ing

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    32/95

    Naval Oceanogr aphy 32

    ITRSGCRS vWSNPBv =

    Polar

    Motion

    Sidereal

    Time

    Nutation

    Precession

    Frame

    Bias

    ITRSGCRS v'WRQv =Precession+ Nutation+ Frame

    Bias

    EarthRotation

    PolarMotion

    NEW:

    OLD:

    Two schemes for transfo rm ing

    between the ITRS and GCRS

    Two schemes for t ransfo rm ing

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    33/95

    Naval Oceanogr aphy 33

    ITRSGCRS vWSNPBv =

    Polar

    Motion

    ITRSGCRS v'WRQv =Polar

    Motion

    NEW:

    OLD:

    Two schemes for transfo rm ing

    between the ITRS and GCRS

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    34/95

    Naval Oceanogr aphy 34

    Polar Mot ion

    Left-handed coord inatesystem

    2 dom inant mo t ions

    Chand ler wobb le (430 d)

    Annual wobble (365 d)

    Other smaller amp l i tude

    stochast ic mot ions

    Causes of po lar mo t ion Oceans (pressu re>current)

    Atm osp here (press.>wind )

    Hydro logy?

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    35/95

    Naval Oceanogr aphy 35

    Spectrum

    Prograde Annual Wobble

    Prograde Semi-annual Wobble

    Atmospheric Tides

    Precession

    Nutations

    Free Core Nutation

    1 2-2 -1Frequency in the Terrestrial Reference Frame (cycles per day)

    2 3-1 0 1

    0

    Frequency in the Celestial Reference Frame (cycles per day)

    POLAR MOTION

    NUTATION

    ChandlerWobble

    Two schemes for t ransfo rm ing

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    36/95

    Naval Oceanogr aphy 36

    ITRSGCRS vWSNPBv =Sidereal

    Time

    ITRSGCRS v'WRQv =Earth

    Rotation

    NEW:

    OLD:

    Two schemes for transfo rm ing

    between the ITRS and GCRS

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    37/95

    Naval Oceanogr aphy 37

    UT1-UTC

    Dominant mot ions Trend

    Decadal

    Annual /semiannual

    Tidal Other smal ler ampl i tude

    mot ions

    Causes of UT1-UTC

    Tidal decelerat ion

    Internal changes ininer t ia tensor

    Atmosp here (wind s)

    Solid Earth t ides

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    38/95

    Naval Oceanogr aphy 38

    UT1-UTC Spect rum

    Frequency

    annual

    semi -annual

    southern

    oscillation

    quasi-biennial oscillation

    40-50 -day oscillations

    monthly

    fortnightly

    atmospheric tides

    decade fluctuations

    (from core?)

    atmospheric modes

    solid Earth and ocean tides

    0.1

    year-1

    0.2

    year-1

    1

    year-1

    0.1

    month-1

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    39/95

    Naval Oceanogr aphy 39

    Leap Seconds

    Leap seconds are a convent ional at tempt toalign Earth rotat ion t im e (angle) w ith clo ck t im e(UTC)

    |UT1-UTC| < 0.9 s

    Leap seconds occur at end o f June or Decemberbu t the t ime between leap seconds isunpredictable

    Expected to occur w i th increasing frequency

    Problematic for operat ional sys tems

    Internat ional Telecommun icat ions Union (ITU) iscons ider ing a redefini t ion o f UTC to el im inateleap seconds

    UT1 and UTC would diverge

    Potent ia l Impact o f Leap Second

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    40/95

    Naval Oceanogr aphy 40

    Potent ia l Impact o f Leap Second

    El iminat ion

    No impact i f system doesnt assume that

    UT1UTC, and

    makes no

    assumpt ionregarding s ize ofUT1-UTC

    Impact i f sys tem

    assumes that

    UT1UTC, or

    assum es a l imi t onthe size of UT1-UTC

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    41/95

    Naval Oceanogr aphy 41

    Suggest ions Regarding Leap Second

    If you are using UT1UTC,need to determ ine impact

    of chang ing to input UT1-

    UTC into operat ional

    procedures

    If you assumenumerical restr ic t ionson UT1-UTC, need todeterm ine impact onel iminat ing

    restr ic t ions

    Any signi f icant problem with operat ional procedures shou ldbe reported to USNO

    Two schemes for t ransfo rm ing

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    42/95

    Naval Oceanogr aphy 42

    ITRSGCRS vWSNPBv =Nutation

    Precession

    Frame

    Bias

    ITRSGCRS v'WRQv =Precession+ Nutation+ Frame

    Bias

    NEW:

    OLD

    :

    Two schemes for transfo rm ingbetween the ITRS and GCRS

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    43/95

    Naval Oceanogr aphy 43

    Precession and Nutat ion

    Precession: the long-term,

    smooth, secular motion

    23.5circle around theecliptic pole in 25,800 years

    Nutation: the smaller, short-

    term periodic motions

    Largest component: 18x12

    arcsecond ellipse traced out in

    18.6 years

    Precession / nu tat ion : The changing direct ion of the Earthsaxis in space (now specif ical ly with respect to the GCRS) due

    to to rques exerted by th e Moon, Sun, and planets

    (Diagram from G. Beutler)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    44/95

    Naval Oceanogr aphy 44

    Celes tial Pole

    Dominant mo t ions at

    frequencies

    18.6-year

    Semiannual

    For tn ight ly

    Causes of precession -nutat ion are gravi tat ionalpul l of celest ia l bod ies onthe equator ia l bu lge ofEarth

    Very w el l determin ed Small component not

    caused by g ravi ty

    C

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    45/95

    Naval Oceanogr aphy 45

    Celestial Pole Models

    Since direct ion o f celest ia l pole in space is affected mainlyby gravi tat ional attract ion of Sun , Moon, and planets, i t is

    very p redictable

    Current models IAU 2000 nutat ion and IAU 2006 precession

    Residu als between models and obs ervat ions (dand d ordX and dY) due to Free Core Nu tation (FCN)

    Other variable amp litud e terms (e.g. annual)

    Errors in models

    Estimated error in models ~0.5 mas

    Precession / Nutat ion Observat ion s

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    46/95

    Naval Oceanogr aphy 46

    Precession / Nutat ion Observat ion sLatest Resultswrt P03 / IAU2000A

    Model errors

    ~0.5 mas

    (Figure from Capitaine et al. 2008)

    C l t i l P l M d l

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    47/95

    Naval Oceanogr aphy 47

    Celestial Pole Models

    Older models IAU 1980 nu tation and IAU 1976precession

    Residuals between m odels and observat ion s (dand d) predom inan tly due to

    Errors in m odels

    Est imated error in models ~10 mas

    Error is systemat ic, no t random

    Precession / Nutat ion Observat ion s

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    48/95

    Naval Oceanogr aphy 48

    Precession / Nutat ion Observat ion sLate 90s Resultswrt Lieske / Wahr

    (Figure from Ma et al. 1998)

    Model errors

    ~10 mas

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    49/95

    49

    Time Scales

    B i

    http://tf.nist.gov/cesium/parcs.htm
  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    50/95

    Naval Oceanogr aphy 50

    Concepts

    Frequency

    Repeatable

    phenomenon

    Length o f the

    t ime uni t

    Epoch Naming

    convent ion

    Sources o f Time

    Ast ronomy

    Based on

    Earths rotat ion

    Atom ic Clocks

    Based on

    frequency of anatom ic trans i t ion

    Basics

    Time Scales

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    51/95

    51

    Time Scales

    UT1 (Universal Time)Measure of Earths rotation angle wrt Sun

    Determined by conventional expressionEarth Rotation Angle

    Greenwich Mean Sidereal TimeUT0 = UT1 including polar motion

    UT2 = UT1 with conventional Seasonal Correction

    Earth Rotation

    Coordinated Universal Time (UTC)

    * TAI corrected by leap seconds

    * Basis for civil time

    International Atomic Time (TAI)

    Atomic Time

    Space-Time Coordinates

    Terrestrial Time (TT)

    Geocentric Coordinate Time (TCG)

    Barycentric Coordinate Time (TCB)

    Ephemeris Time

    Earth Revolution

    Dynamical Time

    Terrestrial Dynamic Time (TDT)

    Barycentric Dynamic Time (TDB)

    Sidereal TimeMeasure of Earths rotation anglewrt Celestial Reference Frame

    Determined by conventional

    expression

    Echelle Atomique Libre (EAL)

    Time Scales

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    52/95

    52

    Time Scales

    UT1 (Universal Time)Measure of Earths rotation angle wrt Sun

    Determined by conventional expressionEarth Rotation Angle

    Greenwich Mean Sidereal TimeUT0 = UT1 including polar motion

    UT2 = UT1 with conventional Seasonal Correction

    Earth Rotation

    Sidereal TimeMeasure of Earths rotation anglewrt Celestial Reference Frame

    Determined by conventional

    expression

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    53/95

    53

    Sidereal Time Solar Time

    Universal Time (UT)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    54/95

    Naval Oceanogr aphy 54

    Time measured by the Earths rotat ion wi th respect to the Sun

    Elementary conc eptual def in i t ion b ased on the diurn al mo tion of th eSun

    Mean so lar t ime reckon ed from m idnight o n the Greenwich m erid ian

    Tradi t ional def in i t ion of the second used in astronom y

    Mean s olar second = 1/86 400 mean so lar day

    Three Forms

    UT1 is m easure o f Earths rotat ion angle

    Defined

    By observed sidereal time using conventionalexpression

    GMST= f1(UT1) by Earth Rotation Angle

    q = f2(UT1)

    UT0 is UT1 plu s effects o f polar mo t ion

    UT2 is UT1 co rrected b y co nvent ionalexpression for annual var iat ion inEarths rotat ional speed

    Universal Time (UT)

    Mean Time vs Apparent Time

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    55/95

    Naval Oceanogr aphy 55

    Mean Time vs . Apparent Time

    Time interval between su ccess ive passages of the Sun over a meridian is

    not constant

    Inc l ination o f the Earths axis

    Eccentr ic i ty of the Earths orb i t

    Dif ference between mean t ime and apparent t ime is cal led the equat ion

    of t ime

    Mean noon precedes apparent noo n by 14.5 minu tes on February 12

    App arent noon p recedes mean noo n by 16.5 minutes on Novemb er 3

    inclination effect

    combined effect

    eccentricity effect

    Time Scales

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    56/95

    56

    Time Scales

    International Atomic Time (TAI)

    Atomic Time

    Echelle Atomique Libre (EAL)

    Atom ic Time

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    57/95

    Naval Oceanogr aphy 57

    Atom ic Time

    First cesium -133 atomic clo ck establ ished at National Phys ical

    Labo ratory (NPL) by Essen and Parry in 1955 Frequency o f cesium transi t ion measu red in 1955 in terms o f the

    second of UT2

    9 192 631 830 10 Hz Frequency o f cesium transi t ion measu red by Markow itz, Hal l ,

    Essen, and Parry du ring 19551958 in terms of the second o f ET

    9 192 631 770 20 Hz Defini t ion o f the SI second adopted b y th e 13th CGPM in 1967

    Secon d o f atomic t im e = second of Eph emeris Time (ET)

    Second = duration of 9 192 631 770periods of radiation corresponding to

    the transition between the two

    hyperfine levels of the ground state of

    the cesium-133 atom

    In ternational A tom ic Time (TA I)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    58/95

    Naval Oceanogr aphy 58

    In ternational A tom ic Time (TA I)

    Coordin ate t ime scale in a geocentr ic reference frame with the SI

    second realized on the rotat ing geoid as th e scale unit Continu ous atomic t im e scale determ ined by Bureau Internat ional

    de lHeure (B IH) sin ce 1958, now m aintained by Bureau

    Internatio nal des Poid s et Mesu res (BIPM)

    TAI = UT2 on Janu ary 1, 1958 0 h

    Fol low -on from A.1 (maintained at USNO with in pu t from 9 other laborator ies or ig inal ly.

    - now only USNO)

    AM (at BIH with in pu t from m any laborator ies)

    A3 at BIH with in pu t from 3 best laborator ies

    Others

    Becam e AT (or TA) in 1969, TAI in 1971

    Time Scales

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    59/95

    59

    Time Scales

    Coordinated Universal Time (UTC)

    * TAI corrected by leap seconds

    * Basis for civil time

    Coo rd inated Universal Time (UTC)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    60/95

    Naval Oceanogr aphy 60

    Coo rd inated Universal Time (UTC)

    Name Coord inated Universal Time(UTC) adop ted by IAU in 1967

    From 1961 to 1972 UTC contained both frequency offsets andfract ional (less than 1 s) steps to maintain agreement with UT2

    within about 0.1 s

    In 1970 form alized by International Radio Consu ltative Committee

    (CCIR) of Internation al Telecommun ication Union (ITU) in 1962

    ITU-R TF.460-6 STANDARD-FREQUENCY AND TIME-SIGNALEMISSIONS(1970-1974-1978-1982-1986-1997-2002)

    Inco rporated by reference into the Radio Regu lat ions

    UTCTAI

    Adjustments

    Leap Seconds may be introduced as the last

    second of any UTC month.

    December and June preferred, March and

    September second choice.

    Coo rd inated Universal Time (UTC)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    61/95

    Naval Oceanogr aphy 61

    In 1972 present UTC sys tem w as imp lemented, with 1 s (leap seco nd ) steps

    but n o frequency offsets to maintain agreement w ith UT1 with in 0.9 s Def in i t ion of UTC is a comp rom ise to provid e both the SI secon d and an

    approx imat ion to UT1 for celest ial navigat ion in same radio em issio n

    Coo rd inated Universal Time (UTC)

    YEAR

    1960 1970 1980 1990 2000 2010

    0

    10

    20

    30TAI-UT1

    TAI-UTC

    Leap Seconds Introduced

    Standard Time

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    62/95

    Naval Oceanogr aphy 62

    Standard Time

    U. S. Code specif ies UTC offset by integral hours as standard t im e

    Federal (DoD and DoT) Radionavigat ion Sys tems document specif iesUSNO as time/frequency s tandard fo r all U. S. radion avigationservices

    DoD Master Posit ion Navigat ion and Timing Plan s pecif ies USNO asstandard t ime/frequency fo r DoD

    SEC regulat ions specify NIST as s tandard for t im ing sales o fsecur i t ies

    Federal Standard 1002A - 1990 (Time and Frequency Info rmation inFederal Telecommunicat ions Sys tems) specif ies NIST as standard

    USNO and NIST have Memorandum of A greement

    UTC(USNO) and UTC(NIST) do no t d if fer by more than 100 nano secon ds .

    Typically they do no t di f fer by mo re than a few tens of n anoseconds

    Time scales of both in st i tut io ns are traceable to each oth er at thenanosecond level

    GPS Sys tem Time (GPS Time)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    63/95

    Naval Oceanogr aphy 63

    GPS Sys tem Time (GPS Time)

    Each satel l i te carr ies a su i te of cesium o r rubid ium atom ic clock s

    Sate ll i te and global t racking network atom ic cloc ks are used to form a

    common s tat is t ical t ime scale known as GPS Time

    No leap secon ds

    Origin is m idn igh t of J anuary 5/6, 1980 UTC

    Steered to w ithin 1 s o f UTC(USNO), except no leap s econd s are inserted Relat ionsh ips with TAI and UTC (with in s tat ist ical error)

    GPS Tim e = TA I19 s = con stant

    Re-compu ted every 15 m inutes basedon satel l i te ranging m easurementsmade by GPS monitor stat ions

    OCS softw are est imates clockdif ferences of GPS satel l i te andmon i to r s tat ion c locks

    Satel l i te cloc k dif ferences up loaded toeach satell i te app roxim ately o nce aday

    The addi t ional correct ion contained inthe GPS broadcast message al low s aGPS t imin g us er to pro du ce TAI orUTC time.

    Implement ing GPS Time

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    64/95

    Naval Oceanogr aphy 64

    USNO cont inuous ly moni tors GPSsatel l i tes

    Provid es GPS Master Contro l

    Stat ion dif ferences between GPS

    Time and UTC(USNO)

    Master Control Stat ion KalmanFilter (MCSKF) generates c lock

    solu t ions to m inim ize UTC(USNO)-

    GPS

    Correct ions to create both GPS

    Time and GPS

    s del iveredpredic tion of UTC(USNO) are

    appl ied in GPS receiver by

    apply ing co rrect ion c onta ined in

    the GPS data message

    Implement ing GPS Time

    Tell ing GPS Time

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    65/95

    Naval Oceanogr aphy 65

    Tell ing GPS Time

    GPS Time counts in weeks and second s of a week from midn ight ofJanuary 5/6, 1980 UTC

    Weeks begin at the Saturday/Sunday transi t ion

    Days of th e week are numbered, with Sund ay being 0; Saturday isday 6

    GPS week 0 began at th e begin nin g o f the GPS Time Scale. ( 60 x 60 x 24x 7)

    Within each w eek the t ime denotedas the second o f the week

    Number between 0 and 604,800

    (60 x 60 x 24 x 7)

    Time scales from GPS

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    66/95

    Naval Oceanogr aphy 66

    Time scales from GPS

    SV Clocks

    CesiumRubidium

    Monitor StationClocksCesium

    GPS System

    Time

    Monitoring

    Data

    GPS Time

    SV Time

    SV Nav Message

    UTC(USNO) - GPS Time

    SV Time UTC(USNO)GPS Time

    GPS

    USERS

    USNO

    Time Scales

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    67/95

    67

    Ephemeris Time

    Earth Revolution

    Relativis t ic Time Scales

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    68/95

    Naval Oceanogr aphy 68

    Relativis t ic Time Scales

    Ephemeris Time (ET) was based on the

    Newto nian theory of gravi tat ion andmade no dist inct ion between p roper

    t ime and coo rdinate t imeProper t ime: Reading of an ideal cloc k

    in i ts own rest frame

    Coord inate t ime: Time coord inate in

    given sp ace-t ime c oord inate system

    Between 1976 and 2000, the IAU

    adopted new relat iv ist ic t ime scales

    con sistent with the general theory of

    relat iv i ty who se unit is the SI second

    Note that relativis t ic times aretheoretical

    - Time not kept on a clock

    Time Scales

    http://www.allposters.com/GetPoster.asp?APNum=263090&CID=5A485803D7764E81A8BF1D96CC003D81&PPID=1&search=einstein&f=c&FindID=17144&P=1&PP=6&sortby=PD&cname=Albert+Einstein&SearchID=
  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    69/95

    69

    Space-Time Coordinates

    Terrestrial Time (TT)

    Geocentric Coordinate Time (TCG)

    Barycentric Coordinate Time (TCB)

    Terrest rial Time (TT)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    70/95

    Naval Oceanogr aphy 70

    Terrest rial Time (TT)

    In 1991 IAU ren amed TDT as Terrest rial Time

    (TT) Uni t is the SI second on the geoid and is def ined

    by atomic cloc ks on the surface of the Earth

    Origin o f January 1, 1977 0 h

    TT = TAI + 32.184 s

    Maintains c ont inu i ty w ith Eph emeris Time (ET)

    Theoret ical equivalence of t ime m easured b y

    quantum mechanical atomic interact ion and t ime

    measured b y g ravi tat ional p lanetary interact ion

    To be used as the time reference for apparent

    geocentr ic ephemerides

    An y dif ference between TAI and TT is a

    cons equence of the physical defects of

    atomic t im e standards, and has probably

    remained with in the appro ximate l imi ts of10s. It may increase slow ly in the futur e as

    t ime standards impro ve. In mos t cases, and

    part icular ly for the pub l icat ion of

    ephemerides, th is d eviat ion is negl ig ib le

    T since 1600

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    71/95

    Naval Oceanogr aphy 71

    T since 1600

    After F.R. Stephenson and L.V. Morrison, Phil. Trans. R. Soc. LondonA351, 165 202 (1995)

    TT

    ET

    1977.0

    Ju lian Date

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    72/95

    Naval Oceanogr aphy 72

    Ju lian Date

    Used for cont inuous counts o f days

    Joseph Justu s Scal iger in 1583 used three cycles :

    The Jul ian calendar in use unti l the Gregorian calendar reform of 1582

    The Golden Numbercycle assoc iated with Meton in the fi f th centu ry B.C., equated 19 yearswi th 235 months .

    A tax cycle or indic t ionof 15 years us ed in legal and financial org anization of th e RomanEmpire

    Year could be characterized b y i ts posi t ion (S) with in a 28-year solar cycle, i ts p osi t ion

    (G) with in th e 19-year cycle of Golden Numbers, and its pos it ion (I) with in the Romantax cycle

    Becaus e 15, 19 and 28 have no common factors S, G,

    and I repeat after 281915 = 7980 year s. Scal iger cal led this a Jul ian per iod, not in hono r of his

    father as is frequently asserted, but becaus e of the

    inv olvement of the Jul ian Calendar.

    Know ing that the year 1 B.C. was ch aracterized by S=1,

    G=1, I=3, Scal iger c om put ed th at S=1, G=1, I=1 occ urred

    for 4713 B.C. This p rovided h im with the star t ing year

    Modified Julian Date (MJD) is defined as JD2400000.5

    Timescale shou ld be speci f ied when precis ion matters,

    e.g., MJD 47479.25 TA I.

    Traceabil i ty

    http://upload.wikimedia.org/wikipedia/commons/b/b6/Joseph_Justus_Scaliger.JPG
  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    73/95

    Naval Oceanogr aphy 73

    Traceabil i ty

    International Organizat ion fo r Standardizat ion (ISO) International Vocabulary ofBasic and General Terms in Metrology, traceabi l i ty is defined as:

    The property of a result of a measurement or the value of a standard whereby it can berelated to stated references, usually national or international standards, through anunbroken chain of comparisons all having stated uncertainties.

    GPS Time can be made direct ly tr aceable to UTC

    Measured difference between UTC and GPS Time is reported in the BIPM Circular T, withan accur acy of 10 ns.

    GPS Time directly traceable to UTC by being tr aceable to UTC(USNO), whic h is also

    traceable to UTC via the Circu lar T.

    Alternate means of dir ect traceabi l i ty may also be establ ish ed via any oth er nationallaborator y, such as NIST.

    Phi losoph y is that only a user shou ld decide traceabi li ty issu es because only thatuser know s the speci f ics of their system

    User

    National

    Standard

    International

    Standard (BIPM)

    Time / Frequency

    Transfer

    Time Dissemination

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    74/95

    Naval Oceanogr aphy 74

    ComputerModem

    GPS(8 ns)

    Two-way SatelliteTime Transfer

    (1ns)

    Internet(1ms)

    Master Clock

    Alternate Master Clock

    Ships, Submarines, Aircraft Ground Forces

    Shore Activities

    Space Commands

    NGA GPS

    CommunicationsCenters

    Operation Centers

    GPS DSCS

    Classified Programs

    GPS

    DSCS

    SatelliteTracking Ranges

    Satellite GroundControl Stations

    NGA

    DSN

    Loran-C NAVSECGRU

    USERS

    Voice

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    75/95

    Naval Oceanogr aphy 75

    Software for Trans form ing

    Between Celes t ial andTerrestr ial Sys tems

    Scope

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    76/95

    Naval Oceanogr aphy

    p

    Au thor i tat ive so ftware

    Tied to internat ional standards

    Produc ed or vetted by DoD SMEs

    Free

    Source-cod e produc ts

    Web-based calcu lator

    76

    Source-Code Products

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    77/95

    Naval Oceanogr aphy 77

    Naval Observatory Vector Astrometry Software(NOVAS)

    Standards of Fundamental Astronom y (SOFA)

    NOVASN l Ob V A S b i

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    78/95

    Naval Oceanogr aphy 78

    Complete sof tware package for pos i t ional astronom y

    Instantaneou s coordin ates and radial veloci ty o f any s tar orplanet

    e.g., apparent, topoc entric, astrometric places

    Observer at geocenter, on or near surface, on near-Earth sp acecraft

    Terrestrial celestial transformation

    Bui ld ing b locksand sup por t func t ions for these calcu lat ions

    e.g., precessio n, nutation, frame bias, star-catalog tran sformation s, etc.

    Produced and suppor ted by USNO

    Used for US sect ions of The Astron om ical Almanac

    Status

    Version 3.1 released in March 2011

    Python edi tion n ear ly com pleted

    Naval Observatory Vector As tronomy Subrou t ines

    SOFASt d d f F d t l A t

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    79/95

    Naval Oceanogr aphy 79

    Col lect ion of rou t ines w hich implement of f ic ial algor i thms for

    fundamenta l-astronom y computations Primar i ly supp orts celest ial terrestr ia l trans form at ion

    ast ronomyrout ines

    e.g., calendars, t ime scales, precession, nutation , star space mo tion, and starcatalog transform at ions

    vector /matr ix

    rout ines Service of IAU Divis ion I

    Managed by international review board

    Basis for IERS Convention s Chapter 5 software

    Used for UK sect ions of The Astron om ical Almanac

    Status

    Lates t release 2010-12-01

    Standards of Fundamental Astronom y

    NOVAS/SOFA Comparison

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    80/95

    Naval Oceanogr aphy 80

    Similar i t ies

    Both come from author i tat ive sources

    Bo th suppo rt latest IAU resolut ions

    Bo th are consistent w i th IERS Convent ions fo rpract ical levels of accu racy

    Bo th have Fortran and C versions

    Bo th con tain testbedand demons trat ionprograms

    NOVAS/SOFA Comparison

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    81/95

    Naval Oceanogr aphy 81

    Developed independently Except NOVAS u ses SOFA code fo r IAU 2000A nu tation

    NOVAS current ly has b roader scope

    i .e., instantaneous coo rdin ates o f celest ial bo dies (Sun, Moon ,planets, stars, etc.)

    NOVAS con tains i ts own improv ed low -precis ion

    nutation model

    2000K : 0.1 mas level, 1700 to 2300 (tru nc ated IAU 2000A)

    Documented in USNO Circular 181

    NOVAS uses an alternat ive algo r i thm for locat ion o f

    CIO

    Differences

    NOVAS/SOFA Comparison

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    82/95

    Naval Oceanogr aphy 82

    Differences (con t inued)

    SOFA includes su ppo rt for older models e.g., IAU 1976 precessio n, IAU 1980 nutatio n

    SOFA inc ludes small co rrect ion s to IAU 2000A

    nutat ion

    SOFA has finer stru ctu re

    NOVAS/SOFA Numerical Comparison

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    83/95

    Naval Oceanogr aphy 83

    Test: Compare ITRF GCRS transformation using

    SOFA and NOVAS February 2009: latest Fo rtran SOFA and NOVAS F3.0g

    (beta)

    May 2010: latest C edit ions of SOFA and NOVAS

    Results: Differences ~ 1.8 as

    Attr ibutable to very sm al l terms from IAU 2006 precession mo delthat were inclu ded in SOFA imp lementat ion of IAU 2000A nutat ionmodel

    Differences drop to ~ 0.2 as when these terms are

    removed

    Ful l discussion in NOVAS Users Guides

    Which Produc t Should I Use?

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    84/95

    Naval Oceanogr aphy 84

    Use NOVAS When You need coord inates of celest ia l bodies (Sun, Moon , planets,

    stars , etc.)

    You r project requires use of DoD or GOTS cod e

    Use SOFA When

    You r project requires us e of off ic ia l IAU co de You n eed to com pute the actual transform ation matr ices

    You also need c ode for now-obsolete models

    Both products are authoritative, well-documented,relatively easy to use, and comply with IERS Conventions

    and IAU recommendations.

    USNO Equ ino x-Based ITRF-to -GCRS Calcu latorBackground

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    85/95

    Naval Oceanogr aphy 85

    Background

    Upgraded equ inox -based transfo rmation matr ix calculator is being

    tested at the USNO EO Department server athtt p://maia.usno .navy .m il/t2c36e/t2c36e.htm l

    The IERS Convent io ns (2010) TN36-based v al idation code for compu t ingthe equino x-based ITRF to GCRS transfo rmat ion

    Written in FORTRAN

    Rely ing heavi ly on code from http:/ / tai.bipm.org/ iers/conv2010/conv2010.htmland SOFA.

    Observable quanti t ies are obtained from a versio n of fin als2000A.dai ly

    Later ob servables c an be obtained from evaluat ion of the NGA 5- liner

    Nutat ion and t ida l model changes

    Major ch anges are updates to the nutat ion and long -period t idal mod els Interpolation of observable quanti t ies, intermediate quanti t ies, and oth erou tpu t quant i t ies are simi lar to the TN32-based calculator

    Calcu lator User-In terface

    http://maia.usno.navy.mil/t2c36e.htmlhttp://tai.bipm.org/iers/conv2003/conv2003_c5.htmlhttp://tai.bipm.org/iers/conv2003/conv2003_c5.htmlhttp://maia.usno.navy.mil/t2c36e.html
  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    86/95

    Naval Oceanogr aphy

    Equ ino x-Based ITRF-to -GCRS CalculatorUser Interface (co ntin ued)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    87/95

    Naval Oceanogr aphy 87

    User Interface (co ntin ued)

    User chooses dates and tim e intervals

    Code p roduces a f i le containin g th e ITRF-to-GCRS

    transform at ion and desired intermediate quant i t ies

    Standard outpu t is the trans formation matr ix from terrestr ia l

    to celest ia l frames

    Option al quaternion /euler-parameter ou tpu t

    Option s for intermediate quanti t ies include the polar mo tion,

    GMST, Equation of the Equinoxes, Precession, Nutat ion, and

    combined bias-precession -nutat ion matr ices or quaternion s

    Future developments include

    CIO/CIP com pat ible (as op po sed to equino x b ased) us ing 2006

    IAU Precessio n Mod el

    Calculator Outpu t

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    88/95

    Naval Oceanogr aphy

    Terrest rial-to-celest ial (T2C)rotation matr ix

    Intermediate rotat ion m atr ices

    are below the T2C matr ix

    Resources A Sample

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    89/95

    Naval Oceanogr aphy 89

    IERS Conventi on s (2010):

    http://maia.usno.navy.mil/conv2010/conventions.html

    Conventions userssurvey available at

    http://maia.usno.navy.mil/conv2010/Conventions_Survey.html

    USNO Circu lar 179 (PDF vers ion ):

    http://aa.usno.navy.mil/publications/docs/Circular_179.php

    IERS FAQs: http://www.iers.org/IERS/EN/Service/FAQs/faq__cont.html

    IERS Earth rotat ion data (Bu l let ins A & B):

    http://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html?__nnn=true

    The Astronom ical Almanac:

    http://aa.usno.navy.mil/publications/docs/asa.php

    Software Resources

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    90/95

    Naval Oceanogr aphy 90

    NOVAS

    http ://www.usno .navy.mi l /USNO/astronom ical-appl icat ions/software-products/novas/

    SOFA

    http:/ /www.iausofa.org/

    USNO Earth Orientat ion Matr ix Calcu lator

    http://maia.usno.navy.mil/t2crequest/t2crequest.html

    Backups

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    91/95

    Naval Oceanogr aphy 91

    Polar Mot ion

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    92/95

    Naval Oceanogr aphy 92

    OLDTransformation:

    ( ) ( )

    =

    =

    PPP

    PP

    PPPPP

    PXPY

    ycosxcos0xsin

    ysinycos0

    ycosxsinysinxsinxcos

    yRxRW

    NEWTransformation:( ) ( ) ( )

    ++

    ++

    =

    =

    PPPPP

    PPPPPPP

    PPPPPPP

    PXPYZ

    ycosxcosysinxcosxsin

    scosysinssinycosxsinscosycosssinysinxsinssinxcos

    ssinysinscosycosxsinssinycosscosysinxsinscosxcos

    yRxRsRW

    xPand yPare the pole coordinates

    sis new and is given by

    T704000.0s =

    nutationpptidalppUSNO/IERSpppp y,xy,xy,xy,x ++=

    tidalppUSNO/IERSpppp y,xy,xy,x +=

    o Terms with periods

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    93/95

    Naval Oceanogr aphy 93

    ICD-GPS-200C

    GPS time is established by the Control Segm ent and is referenced to a UTC (as maintained by the U.S. NavalObservatory) zero time-point defined as m idnig ht on the nigh t of Janu ary 5, 1980/mor ning o f January 6, 1980. Thelargest unit us ed in stat ing GPS time is one week defined as 604,800 second s. GPS time may dif fer from UTCbecause GPS time shall be a con tinuo us tim e scale, while UTC is corrected periodic al ly with an integer num ber ofleap seconds . There also is an inherent but bou nded d rif t rate between the UTC and GPS time scales. The OCSshal l contro l the GPS t ime scale to be with in one microsecond of UTC (Modulo o ne second) .

    2003 CJCS Master Posit ion ing, Navigation and Timing Plan (CJCSI 6130.01C )

    The accuracy of th e GPS transfer of UTC is measu red at the Master Clock of th e United States, which is loc ated atthe USNO. The USNO calculates the accuracy and delivers it to the Operational Control Segment (OCS). The OCSmaintains acc urate time transfer by calculat ing GPS time, calculat ing ind ividu al space vehicle (SV) correct io ns to

    GPS time, and uplo ading c orrect ion s into the SV databases for subsequ ent re-broadc ast to users. The OCSmaintains a steady state time transfer accuracy of th e GPS signal to an error of less th an or equal to 20nanoseco nds (nsec) (95 percent) relat ive to UTC (USNO) (threshold) and 10 nsec (95 percent) relat ive to UTC(USNO) (objective).

    GPS Timeis us ed to in dicate the internal GPS System Time as defined in sect ion 3.3.4 of ICD-GPS-200C (2003).

    " UTC(USNO) via GPS" is us ed to ind icate GPSs del ivered pr edict ion of UTC (USNO).

    In mathemat ical expressions where "UTC(USNO) via GPS" migh t be considered to be awkward, tUTC

    may b e subst i tuted. Only in text f i les that do not permi t the display of subscr ipts should t_UTCbe used as a subst i tute

    for tUTC

    This nom enclature may be extended, i f requi red, to speci f ic appl icat ions of GPS for other m eans oft ime dissem ination by addin g the techniq ue emplo yed, e.g. UTC(USNO) via GPS common view

    Dynam ical Time

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    94/95

    Naval Oceanogr aphy 94

    In 1976 IAU def ined dyn amical t ime scales con sistent

    with g eneral relat iv i ty to dist ing uish b etween t imescales with o r igins at the geocenter and th e

    barycenter.of th e solar sys tem

    Named Terrestrial Dynamic al Time (TDT) andBarycen tr ic Dyn ami cal Time (TDB) in 1979 At the in stant 1977 January 01 d 00h 00m 00s TAI, the

    value of the new t im e scale for apparent geocentr icephemerides is 1977 January 1d 00h 00m 32.184 exactly.

    The unit is a day o f 86400 SI second s at mean sea level.

    The t imescales for equat ions o f mo t ion referred to the

    barycenter of the solar system is s uch that there wi l l be

    only p er iodic var iat ions between these t imescales and

    those o f the apparent geocentr ic ephemerides.

    TDT maintains c ont inu i ty wi th ET By c hoo sing an appropr iate scal ing factor TDB

    determined from TDT by a conv ent ional mathematical

    expression

    Barycentr ic Ephemeris Time (Teph)

  • 5/26/2018 JNC 2011 Reference Systems Tutorial

    95/95

    Coord inate t ime related to TCB b y anoffset and a scale factor

    Ephemerides (e.g.DEnnn) based uponthe coo rdinate t ime Tep hare automatical lyadjusted in the creat ion pro cess so thatthe rate of Tep hhas n o overal l di f ferencefrom the rate of Terrestr ial Time (TT)

    Therefore also no overal l di f ference fromthe rate of B arycentr ic Dynam ical Time(TDB).

    Space coordin ates ob tained from theephemerides are consis tent with TDB.